MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfiun Structured version   Visualization version   GIF version

Theorem nfiun 5026
Description: Bound-variable hypothesis builder for indexed union. (Contributed by Mario Carneiro, 25-Jan-2014.) Add disjoint variable condition to avoid ax-13 2365. See nfiung 5028 for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 20-Jan-2024.)
Hypotheses
Ref Expression
nfiun.1 𝑦𝐴
nfiun.2 𝑦𝐵
Assertion
Ref Expression
nfiun 𝑦 𝑥𝐴 𝐵
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem nfiun
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-iun 4998 . 2 𝑥𝐴 𝐵 = {𝑧 ∣ ∃𝑥𝐴 𝑧𝐵}
2 nfiun.1 . . . 4 𝑦𝐴
3 nfiun.2 . . . . 5 𝑦𝐵
43nfcri 2882 . . . 4 𝑦 𝑧𝐵
52, 4nfrexw 3301 . . 3 𝑦𝑥𝐴 𝑧𝐵
65nfab 2898 . 2 𝑦{𝑧 ∣ ∃𝑥𝐴 𝑧𝐵}
71, 6nfcxfr 2890 1 𝑦 𝑥𝐴 𝐵
Colors of variables: wff setvar class
Syntax hints:  wcel 2098  {cab 2702  wnfc 2875  wrex 3060   ciun 4996
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-tru 1536  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ral 3052  df-rex 3061  df-iun 4998
This theorem is referenced by:  iunab  5054  disjxiun  5145  ttrclselem1  9748  ttrclselem2  9749  ovoliunnul  25466  iundisjf  32436  iundisj2f  32437  iundisjfi  32621  iundisj2fi  32622  bnj1498  34762  ss2iundf  43154  nfcoll  43758  fnlimcnv  45118  fnlimfvre  45125  fnlimabslt  45130  smfaddlem1  46214  smflimlem6  46227  smflim  46228  smfmullem4  46245  smflim2  46257  smflimsup  46279  smfliminf  46282  fsupdm  46293  finfdm  46297
  Copyright terms: Public domain W3C validator