MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfiun Structured version   Visualization version   GIF version

Theorem nfiun 5029
Description: Bound-variable hypothesis builder for indexed union. (Contributed by Mario Carneiro, 25-Jan-2014.) Add disjoint variable condition to avoid ax-13 2376. See nfiung 5031 for a less restrictive version requiring more axioms. (Revised by GG, 20-Jan-2024.)
Hypotheses
Ref Expression
nfiun.1 𝑦𝐴
nfiun.2 𝑦𝐵
Assertion
Ref Expression
nfiun 𝑦 𝑥𝐴 𝐵
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem nfiun
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-iun 4999 . 2 𝑥𝐴 𝐵 = {𝑧 ∣ ∃𝑥𝐴 𝑧𝐵}
2 nfiun.1 . . . 4 𝑦𝐴
3 nfiun.2 . . . . 5 𝑦𝐵
43nfcri 2896 . . . 4 𝑦 𝑧𝐵
52, 4nfrexw 3312 . . 3 𝑦𝑥𝐴 𝑧𝐵
65nfab 2910 . 2 𝑦{𝑧 ∣ ∃𝑥𝐴 𝑧𝐵}
71, 6nfcxfr 2902 1 𝑦 𝑥𝐴 𝐵
Colors of variables: wff setvar class
Syntax hints:  wcel 2107  {cab 2713  wnfc 2889  wrex 3069   ciun 4997
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1541  df-ex 1778  df-nf 1782  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ral 3061  df-rex 3070  df-iun 4999
This theorem is referenced by:  iunab  5057  disjxiun  5146  ttrclselem1  9769  ttrclselem2  9770  ovoliunnul  25564  iundisjf  32622  iundisj2f  32623  iundisjfi  32817  iundisj2fi  32818  bnj1498  35067  ss2iundf  43663  nfcoll  44266  fnlimcnv  45634  fnlimfvre  45641  fnlimabslt  45646  smfaddlem1  46730  smflimlem6  46743  smflim  46744  smfmullem4  46761  smflim2  46773  smflimsup  46795  smfliminf  46798  fsupdm  46809  finfdm  46813
  Copyright terms: Public domain W3C validator