MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfiun Structured version   Visualization version   GIF version

Theorem nfiun 5004
Description: Bound-variable hypothesis builder for indexed union. (Contributed by Mario Carneiro, 25-Jan-2014.) Add disjoint variable condition to avoid ax-13 2377. See nfiung 5006 for a less restrictive version requiring more axioms. (Revised by GG, 20-Jan-2024.)
Hypotheses
Ref Expression
nfiun.1 𝑦𝐴
nfiun.2 𝑦𝐵
Assertion
Ref Expression
nfiun 𝑦 𝑥𝐴 𝐵
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem nfiun
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-iun 4974 . 2 𝑥𝐴 𝐵 = {𝑧 ∣ ∃𝑥𝐴 𝑧𝐵}
2 nfiun.1 . . . 4 𝑦𝐴
3 nfiun.2 . . . . 5 𝑦𝐵
43nfcri 2891 . . . 4 𝑦 𝑧𝐵
52, 4nfrexw 3297 . . 3 𝑦𝑥𝐴 𝑧𝐵
65nfab 2905 . 2 𝑦{𝑧 ∣ ∃𝑥𝐴 𝑧𝐵}
71, 6nfcxfr 2897 1 𝑦 𝑥𝐴 𝐵
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  {cab 2714  wnfc 2884  wrex 3061   ciun 4972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ral 3053  df-rex 3062  df-iun 4974
This theorem is referenced by:  iunab  5032  disjxiun  5121  ttrclselem1  9744  ttrclselem2  9745  ovoliunnul  25465  iunxpssiun1  32554  iundisjf  32575  iundisj2f  32576  iundisjfi  32778  iundisj2fi  32779  bnj1498  35097  ss2iundf  43658  nfcoll  44255  fnlimcnv  45676  fnlimfvre  45683  fnlimabslt  45688  smfaddlem1  46772  smflimlem6  46785  smflim  46786  smfmullem4  46803  smflim2  46815  smflimsup  46837  smfliminf  46840  fsupdm  46851  finfdm  46855
  Copyright terms: Public domain W3C validator