![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfiun | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for indexed union. (Contributed by Mario Carneiro, 25-Jan-2014.) Add disjoint variable condition to avoid ax-13 2376. See nfiung 5031 for a less restrictive version requiring more axioms. (Revised by GG, 20-Jan-2024.) |
Ref | Expression |
---|---|
nfiun.1 | ⊢ Ⅎ𝑦𝐴 |
nfiun.2 | ⊢ Ⅎ𝑦𝐵 |
Ref | Expression |
---|---|
nfiun | ⊢ Ⅎ𝑦∪ 𝑥 ∈ 𝐴 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-iun 4999 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵} | |
2 | nfiun.1 | . . . 4 ⊢ Ⅎ𝑦𝐴 | |
3 | nfiun.2 | . . . . 5 ⊢ Ⅎ𝑦𝐵 | |
4 | 3 | nfcri 2896 | . . . 4 ⊢ Ⅎ𝑦 𝑧 ∈ 𝐵 |
5 | 2, 4 | nfrexw 3312 | . . 3 ⊢ Ⅎ𝑦∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 |
6 | 5 | nfab 2910 | . 2 ⊢ Ⅎ𝑦{𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵} |
7 | 1, 6 | nfcxfr 2902 | 1 ⊢ Ⅎ𝑦∪ 𝑥 ∈ 𝐴 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2107 {cab 2713 Ⅎwnfc 2889 ∃wrex 3069 ∪ ciun 4997 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1541 df-ex 1778 df-nf 1782 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ral 3061 df-rex 3070 df-iun 4999 |
This theorem is referenced by: iunab 5057 disjxiun 5146 ttrclselem1 9769 ttrclselem2 9770 ovoliunnul 25564 iundisjf 32622 iundisj2f 32623 iundisjfi 32817 iundisj2fi 32818 bnj1498 35067 ss2iundf 43663 nfcoll 44266 fnlimcnv 45634 fnlimfvre 45641 fnlimabslt 45646 smfaddlem1 46730 smflimlem6 46743 smflim 46744 smfmullem4 46761 smflim2 46773 smflimsup 46795 smfliminf 46798 fsupdm 46809 finfdm 46813 |
Copyright terms: Public domain | W3C validator |