| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfiun | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for indexed union. (Contributed by Mario Carneiro, 25-Jan-2014.) Add disjoint variable condition to avoid ax-13 2377. See nfiung 5006 for a less restrictive version requiring more axioms. (Revised by GG, 20-Jan-2024.) |
| Ref | Expression |
|---|---|
| nfiun.1 | ⊢ Ⅎ𝑦𝐴 |
| nfiun.2 | ⊢ Ⅎ𝑦𝐵 |
| Ref | Expression |
|---|---|
| nfiun | ⊢ Ⅎ𝑦∪ 𝑥 ∈ 𝐴 𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-iun 4974 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵} | |
| 2 | nfiun.1 | . . . 4 ⊢ Ⅎ𝑦𝐴 | |
| 3 | nfiun.2 | . . . . 5 ⊢ Ⅎ𝑦𝐵 | |
| 4 | 3 | nfcri 2891 | . . . 4 ⊢ Ⅎ𝑦 𝑧 ∈ 𝐵 |
| 5 | 2, 4 | nfrexw 3297 | . . 3 ⊢ Ⅎ𝑦∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 |
| 6 | 5 | nfab 2905 | . 2 ⊢ Ⅎ𝑦{𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵} |
| 7 | 1, 6 | nfcxfr 2897 | 1 ⊢ Ⅎ𝑦∪ 𝑥 ∈ 𝐴 𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 {cab 2714 Ⅎwnfc 2884 ∃wrex 3061 ∪ ciun 4972 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ral 3053 df-rex 3062 df-iun 4974 |
| This theorem is referenced by: iunab 5032 disjxiun 5121 ttrclselem1 9744 ttrclselem2 9745 ovoliunnul 25465 iunxpssiun1 32554 iundisjf 32575 iundisj2f 32576 iundisjfi 32778 iundisj2fi 32779 bnj1498 35097 ss2iundf 43658 nfcoll 44255 fnlimcnv 45676 fnlimfvre 45683 fnlimabslt 45688 smfaddlem1 46772 smflimlem6 46785 smflim 46786 smfmullem4 46803 smflim2 46815 smflimsup 46837 smfliminf 46840 fsupdm 46851 finfdm 46855 |
| Copyright terms: Public domain | W3C validator |