Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfiun | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for indexed union. (Contributed by Mario Carneiro, 25-Jan-2014.) Add disjoint variable condition to avoid ax-13 2372. See nfiung 4953 for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 20-Jan-2024.) |
Ref | Expression |
---|---|
nfiun.1 | ⊢ Ⅎ𝑦𝐴 |
nfiun.2 | ⊢ Ⅎ𝑦𝐵 |
Ref | Expression |
---|---|
nfiun | ⊢ Ⅎ𝑦∪ 𝑥 ∈ 𝐴 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-iun 4923 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵} | |
2 | nfiun.1 | . . . 4 ⊢ Ⅎ𝑦𝐴 | |
3 | nfiun.2 | . . . . 5 ⊢ Ⅎ𝑦𝐵 | |
4 | 3 | nfcri 2893 | . . . 4 ⊢ Ⅎ𝑦 𝑧 ∈ 𝐵 |
5 | 2, 4 | nfrex 3237 | . . 3 ⊢ Ⅎ𝑦∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 |
6 | 5 | nfab 2912 | . 2 ⊢ Ⅎ𝑦{𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵} |
7 | 1, 6 | nfcxfr 2904 | 1 ⊢ Ⅎ𝑦∪ 𝑥 ∈ 𝐴 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 {cab 2715 Ⅎwnfc 2886 ∃wrex 3064 ∪ ciun 4921 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-iun 4923 |
This theorem is referenced by: iunab 4977 disjxiun 5067 trpredlem1 9405 trpredrec 9415 ovoliunnul 24576 iundisjf 30829 iundisj2f 30830 iundisjfi 31019 iundisj2fi 31020 bnj1498 32941 ttrclselem1 33711 ttrclselem2 33712 ss2iundf 41156 nfcoll 41763 fnlimcnv 43098 fnlimfvre 43105 fnlimabslt 43110 smfaddlem1 44185 smflimlem6 44198 smflim 44199 smfmullem4 44215 smflim2 44226 smflimsup 44248 smfliminf 44251 |
Copyright terms: Public domain | W3C validator |