MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfiun Structured version   Visualization version   GIF version

Theorem nfiun 4951
Description: Bound-variable hypothesis builder for indexed union. (Contributed by Mario Carneiro, 25-Jan-2014.) Add disjoint variable condition to avoid ax-13 2372. See nfiung 4953 for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 20-Jan-2024.)
Hypotheses
Ref Expression
nfiun.1 𝑦𝐴
nfiun.2 𝑦𝐵
Assertion
Ref Expression
nfiun 𝑦 𝑥𝐴 𝐵
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem nfiun
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-iun 4923 . 2 𝑥𝐴 𝐵 = {𝑧 ∣ ∃𝑥𝐴 𝑧𝐵}
2 nfiun.1 . . . 4 𝑦𝐴
3 nfiun.2 . . . . 5 𝑦𝐵
43nfcri 2893 . . . 4 𝑦 𝑧𝐵
52, 4nfrex 3237 . . 3 𝑦𝑥𝐴 𝑧𝐵
65nfab 2912 . 2 𝑦{𝑧 ∣ ∃𝑥𝐴 𝑧𝐵}
71, 6nfcxfr 2904 1 𝑦 𝑥𝐴 𝐵
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  {cab 2715  wnfc 2886  wrex 3064   ciun 4921
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-iun 4923
This theorem is referenced by:  iunab  4977  disjxiun  5067  trpredlem1  9405  trpredrec  9415  ovoliunnul  24576  iundisjf  30829  iundisj2f  30830  iundisjfi  31019  iundisj2fi  31020  bnj1498  32941  ttrclselem1  33711  ttrclselem2  33712  ss2iundf  41156  nfcoll  41763  fnlimcnv  43098  fnlimfvre  43105  fnlimabslt  43110  smfaddlem1  44185  smflimlem6  44198  smflim  44199  smfmullem4  44215  smflim2  44226  smflimsup  44248  smfliminf  44251
  Copyright terms: Public domain W3C validator