MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfiun Structured version   Visualization version   GIF version

Theorem nfiun 4983
Description: Bound-variable hypothesis builder for indexed union. (Contributed by Mario Carneiro, 25-Jan-2014.) Add disjoint variable condition to avoid ax-13 2370. See nfiung 4985 for a less restrictive version requiring more axioms. (Revised by GG, 20-Jan-2024.)
Hypotheses
Ref Expression
nfiun.1 𝑦𝐴
nfiun.2 𝑦𝐵
Assertion
Ref Expression
nfiun 𝑦 𝑥𝐴 𝐵
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem nfiun
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-iun 4953 . 2 𝑥𝐴 𝐵 = {𝑧 ∣ ∃𝑥𝐴 𝑧𝐵}
2 nfiun.1 . . . 4 𝑦𝐴
3 nfiun.2 . . . . 5 𝑦𝐵
43nfcri 2883 . . . 4 𝑦 𝑧𝐵
52, 4nfrexw 3284 . . 3 𝑦𝑥𝐴 𝑧𝐵
65nfab 2897 . 2 𝑦{𝑧 ∣ ∃𝑥𝐴 𝑧𝐵}
71, 6nfcxfr 2889 1 𝑦 𝑥𝐴 𝐵
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  {cab 2707  wnfc 2876  wrex 3053   ciun 4951
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-iun 4953
This theorem is referenced by:  iunab  5010  disjxiun  5099  ttrclselem1  9654  ttrclselem2  9655  ovoliunnul  25441  iunxpssiun1  32547  iundisjf  32568  iundisj2f  32569  iundisjfi  32769  iundisj2fi  32770  bnj1498  35044  ss2iundf  43641  nfcoll  44238  fnlimcnv  45658  fnlimfvre  45665  fnlimabslt  45670  smfaddlem1  46754  smflimlem6  46767  smflim  46768  smfmullem4  46785  smflim2  46797  smflimsup  46819  smfliminf  46822  fsupdm  46833  finfdm  46837
  Copyright terms: Public domain W3C validator