![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfiun | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for indexed union. (Contributed by Mario Carneiro, 25-Jan-2014.) Add disjoint variable condition to avoid ax-13 2380. See nfiung 5048 for a less restrictive version requiring more axioms. (Revised by GG, 20-Jan-2024.) |
Ref | Expression |
---|---|
nfiun.1 | ⊢ Ⅎ𝑦𝐴 |
nfiun.2 | ⊢ Ⅎ𝑦𝐵 |
Ref | Expression |
---|---|
nfiun | ⊢ Ⅎ𝑦∪ 𝑥 ∈ 𝐴 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-iun 5017 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵} | |
2 | nfiun.1 | . . . 4 ⊢ Ⅎ𝑦𝐴 | |
3 | nfiun.2 | . . . . 5 ⊢ Ⅎ𝑦𝐵 | |
4 | 3 | nfcri 2900 | . . . 4 ⊢ Ⅎ𝑦 𝑧 ∈ 𝐵 |
5 | 2, 4 | nfrexw 3319 | . . 3 ⊢ Ⅎ𝑦∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵 |
6 | 5 | nfab 2914 | . 2 ⊢ Ⅎ𝑦{𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵} |
7 | 1, 6 | nfcxfr 2906 | 1 ⊢ Ⅎ𝑦∪ 𝑥 ∈ 𝐴 𝐵 |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 {cab 2717 Ⅎwnfc 2893 ∃wrex 3076 ∪ ciun 5015 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-tru 1540 df-ex 1778 df-nf 1782 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-iun 5017 |
This theorem is referenced by: iunab 5074 disjxiun 5163 ttrclselem1 9794 ttrclselem2 9795 ovoliunnul 25561 iundisjf 32611 iundisj2f 32612 iundisjfi 32801 iundisj2fi 32802 bnj1498 35037 ss2iundf 43621 nfcoll 44225 fnlimcnv 45588 fnlimfvre 45595 fnlimabslt 45600 smfaddlem1 46684 smflimlem6 46697 smflim 46698 smfmullem4 46715 smflim2 46727 smflimsup 46749 smfliminf 46752 fsupdm 46763 finfdm 46767 |
Copyright terms: Public domain | W3C validator |