MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfiun Structured version   Visualization version   GIF version

Theorem nfiun 5021
Description: Bound-variable hypothesis builder for indexed union. (Contributed by Mario Carneiro, 25-Jan-2014.) Add disjoint variable condition to avoid ax-13 2366. See nfiung 5023 for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 20-Jan-2024.)
Hypotheses
Ref Expression
nfiun.1 𝑦𝐴
nfiun.2 𝑦𝐵
Assertion
Ref Expression
nfiun 𝑦 𝑥𝐴 𝐵
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem nfiun
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-iun 4993 . 2 𝑥𝐴 𝐵 = {𝑧 ∣ ∃𝑥𝐴 𝑧𝐵}
2 nfiun.1 . . . 4 𝑦𝐴
3 nfiun.2 . . . . 5 𝑦𝐵
43nfcri 2885 . . . 4 𝑦 𝑧𝐵
52, 4nfrexw 3305 . . 3 𝑦𝑥𝐴 𝑧𝐵
65nfab 2904 . 2 𝑦{𝑧 ∣ ∃𝑥𝐴 𝑧𝐵}
71, 6nfcxfr 2896 1 𝑦 𝑥𝐴 𝐵
Colors of variables: wff setvar class
Syntax hints:  wcel 2099  {cab 2704  wnfc 2878  wrex 3065   ciun 4991
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-tru 1537  df-ex 1775  df-nf 1779  df-sb 2061  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ral 3057  df-rex 3066  df-iun 4993
This theorem is referenced by:  iunab  5048  disjxiun  5139  ttrclselem1  9740  ttrclselem2  9741  ovoliunnul  25423  iundisjf  32364  iundisj2f  32365  iundisjfi  32548  iundisj2fi  32549  bnj1498  34628  ss2iundf  43012  nfcoll  43616  fnlimcnv  44978  fnlimfvre  44985  fnlimabslt  44990  smfaddlem1  46074  smflimlem6  46087  smflim  46088  smfmullem4  46105  smflim2  46117  smflimsup  46139  smfliminf  46142  fsupdm  46153  finfdm  46157
  Copyright terms: Public domain W3C validator