MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfiun Structured version   Visualization version   GIF version

Theorem nfiun 4971
Description: Bound-variable hypothesis builder for indexed union. (Contributed by Mario Carneiro, 25-Jan-2014.) Add disjoint variable condition to avoid ax-13 2372. See nfiung 4973 for a less restrictive version requiring more axioms. (Revised by GG, 20-Jan-2024.)
Hypotheses
Ref Expression
nfiun.1 𝑦𝐴
nfiun.2 𝑦𝐵
Assertion
Ref Expression
nfiun 𝑦 𝑥𝐴 𝐵
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem nfiun
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-iun 4941 . 2 𝑥𝐴 𝐵 = {𝑧 ∣ ∃𝑥𝐴 𝑧𝐵}
2 nfiun.1 . . . 4 𝑦𝐴
3 nfiun.2 . . . . 5 𝑦𝐵
43nfcri 2886 . . . 4 𝑦 𝑧𝐵
52, 4nfrexw 3280 . . 3 𝑦𝑥𝐴 𝑧𝐵
65nfab 2900 . 2 𝑦{𝑧 ∣ ∃𝑥𝐴 𝑧𝐵}
71, 6nfcxfr 2892 1 𝑦 𝑥𝐴 𝐵
Colors of variables: wff setvar class
Syntax hints:  wcel 2111  {cab 2709  wnfc 2879  wrex 3056   ciun 4939
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-iun 4941
This theorem is referenced by:  iunab  4998  disjxiun  5086  ttrclselem1  9615  ttrclselem2  9616  ovoliunnul  25435  iunxpssiun1  32548  iundisjf  32569  iundisj2f  32570  iundisjfi  32778  iundisj2fi  32779  bnj1498  35073  ss2iundf  43762  nfcoll  44359  fnlimcnv  45775  fnlimfvre  45782  fnlimabslt  45787  smfaddlem1  46871  smflimlem6  46884  smflim  46885  smfmullem4  46902  smflim2  46914  smflimsup  46936  smfliminf  46939  fsupdm  46950  finfdm  46954
  Copyright terms: Public domain W3C validator