MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfiun Structured version   Visualization version   GIF version

Theorem nfiun 4908
Description: Bound-variable hypothesis builder for indexed union. (Contributed by Mario Carneiro, 25-Jan-2014.) Add disjoint variable condition to avoid ax-13 2371. See nfiung 4910 for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 20-Jan-2024.)
Hypotheses
Ref Expression
nfiun.1 𝑦𝐴
nfiun.2 𝑦𝐵
Assertion
Ref Expression
nfiun 𝑦 𝑥𝐴 𝐵
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)

Proof of Theorem nfiun
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-iun 4880 . 2 𝑥𝐴 𝐵 = {𝑧 ∣ ∃𝑥𝐴 𝑧𝐵}
2 nfiun.1 . . . 4 𝑦𝐴
3 nfiun.2 . . . . 5 𝑦𝐵
43nfcri 2886 . . . 4 𝑦 𝑧𝐵
52, 4nfrex 3218 . . 3 𝑦𝑥𝐴 𝑧𝐵
65nfab 2905 . 2 𝑦{𝑧 ∣ ∃𝑥𝐴 𝑧𝐵}
71, 6nfcxfr 2897 1 𝑦 𝑥𝐴 𝐵
Colors of variables: wff setvar class
Syntax hints:  wcel 2113  {cab 2716  wnfc 2879  wrex 3054   ciun 4878
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1916  ax-6 1974  ax-7 2019  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2161  ax-12 2178  ax-ext 2710
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-tru 1545  df-ex 1787  df-nf 1791  df-sb 2074  df-clab 2717  df-cleq 2730  df-clel 2811  df-nfc 2881  df-ral 3058  df-rex 3059  df-iun 4880
This theorem is referenced by:  iunab  4934  disjxiun  5024  ovoliunnul  24252  iundisjf  30494  iundisj2f  30495  iundisjfi  30684  iundisj2fi  30685  bnj1498  32604  trpredlem1  33361  trpredrec  33372  ss2iundf  40797  nfcoll  41400  fnlimcnv  42734  fnlimfvre  42741  fnlimabslt  42746  smfaddlem1  43821  smflimlem6  43834  smflim  43835  smfmullem4  43851  smflim2  43862  smflimsup  43884  smfliminf  43887
  Copyright terms: Public domain W3C validator