MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfrel Structured version   Visualization version   GIF version

Theorem nfrel 5788
Description: Bound-variable hypothesis builder for a relation. (Contributed by NM, 31-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypothesis
Ref Expression
nfrel.1 𝑥𝐴
Assertion
Ref Expression
nfrel 𝑥Rel 𝐴

Proof of Theorem nfrel
StepHypRef Expression
1 df-rel 5691 . 2 (Rel 𝐴𝐴 ⊆ (V × V))
2 nfrel.1 . . 3 𝑥𝐴
3 nfcv 2904 . . 3 𝑥(V × V)
42, 3nfss 3975 . 2 𝑥 𝐴 ⊆ (V × V)
51, 4nfxfr 1852 1 𝑥Rel 𝐴
Colors of variables: wff setvar class
Syntax hints:  wnf 1782  wnfc 2889  Vcvv 3479  wss 3950   × cxp 5682  Rel wrel 5689
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-10 2140  ax-11 2156  ax-12 2176
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ex 1779  df-nf 1783  df-clel 2815  df-nfc 2891  df-ral 3061  df-ss 3967  df-rel 5691
This theorem is referenced by:  nffun  6588
  Copyright terms: Public domain W3C validator