Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfrel | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for a relation. (Contributed by NM, 31-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
nfrel.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfrel | ⊢ Ⅎ𝑥Rel 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rel 5587 | . 2 ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) | |
2 | nfrel.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
3 | nfcv 2906 | . . 3 ⊢ Ⅎ𝑥(V × V) | |
4 | 2, 3 | nfss 3909 | . 2 ⊢ Ⅎ𝑥 𝐴 ⊆ (V × V) |
5 | 1, 4 | nfxfr 1856 | 1 ⊢ Ⅎ𝑥Rel 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnf 1787 Ⅎwnfc 2886 Vcvv 3422 ⊆ wss 3883 × cxp 5578 Rel wrel 5585 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-v 3424 df-in 3890 df-ss 3900 df-rel 5587 |
This theorem is referenced by: nffun 6441 |
Copyright terms: Public domain | W3C validator |