MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfrel Structured version   Visualization version   GIF version

Theorem nfrel 5770
Description: Bound-variable hypothesis builder for a relation. (Contributed by NM, 31-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypothesis
Ref Expression
nfrel.1 𝑥𝐴
Assertion
Ref Expression
nfrel 𝑥Rel 𝐴

Proof of Theorem nfrel
StepHypRef Expression
1 df-rel 5674 . 2 (Rel 𝐴𝐴 ⊆ (V × V))
2 nfrel.1 . . 3 𝑥𝐴
3 nfcv 2895 . . 3 𝑥(V × V)
42, 3nfss 3967 . 2 𝑥 𝐴 ⊆ (V × V)
51, 4nfxfr 1847 1 𝑥Rel 𝐴
Colors of variables: wff setvar class
Syntax hints:  wnf 1777  wnfc 2875  Vcvv 3466  wss 3941   × cxp 5665  Rel wrel 5672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-tru 1536  df-ex 1774  df-nf 1778  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ral 3054  df-v 3468  df-in 3948  df-ss 3958  df-rel 5674
This theorem is referenced by:  nffun  6562
  Copyright terms: Public domain W3C validator