![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfrel | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for a relation. (Contributed by NM, 31-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
nfrel.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfrel | ⊢ Ⅎ𝑥Rel 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rel 5674 | . 2 ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) | |
2 | nfrel.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
3 | nfcv 2895 | . . 3 ⊢ Ⅎ𝑥(V × V) | |
4 | 2, 3 | nfss 3967 | . 2 ⊢ Ⅎ𝑥 𝐴 ⊆ (V × V) |
5 | 1, 4 | nfxfr 1847 | 1 ⊢ Ⅎ𝑥Rel 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnf 1777 Ⅎwnfc 2875 Vcvv 3466 ⊆ wss 3941 × cxp 5665 Rel wrel 5672 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1536 df-ex 1774 df-nf 1778 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ral 3054 df-v 3468 df-in 3948 df-ss 3958 df-rel 5674 |
This theorem is referenced by: nffun 6562 |
Copyright terms: Public domain | W3C validator |