| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfrel | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for a relation. (Contributed by NM, 31-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| nfrel.1 | ⊢ Ⅎ𝑥𝐴 |
| Ref | Expression |
|---|---|
| nfrel | ⊢ Ⅎ𝑥Rel 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rel 5672 | . 2 ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) | |
| 2 | nfrel.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
| 3 | nfcv 2897 | . . 3 ⊢ Ⅎ𝑥(V × V) | |
| 4 | 2, 3 | nfss 3956 | . 2 ⊢ Ⅎ𝑥 𝐴 ⊆ (V × V) |
| 5 | 1, 4 | nfxfr 1852 | 1 ⊢ Ⅎ𝑥Rel 𝐴 |
| Colors of variables: wff setvar class |
| Syntax hints: Ⅎwnf 1782 Ⅎwnfc 2882 Vcvv 3463 ⊆ wss 3931 × cxp 5663 Rel wrel 5670 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-10 2140 ax-11 2156 ax-12 2176 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1779 df-nf 1783 df-clel 2808 df-nfc 2884 df-ral 3051 df-ss 3948 df-rel 5672 |
| This theorem is referenced by: nffun 6569 |
| Copyright terms: Public domain | W3C validator |