MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfrel Structured version   Visualization version   GIF version

Theorem nfrel 5803
Description: Bound-variable hypothesis builder for a relation. (Contributed by NM, 31-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypothesis
Ref Expression
nfrel.1 𝑥𝐴
Assertion
Ref Expression
nfrel 𝑥Rel 𝐴

Proof of Theorem nfrel
StepHypRef Expression
1 df-rel 5707 . 2 (Rel 𝐴𝐴 ⊆ (V × V))
2 nfrel.1 . . 3 𝑥𝐴
3 nfcv 2908 . . 3 𝑥(V × V)
42, 3nfss 4001 . 2 𝑥 𝐴 ⊆ (V × V)
51, 4nfxfr 1851 1 𝑥Rel 𝐴
Colors of variables: wff setvar class
Syntax hints:  wnf 1781  wnfc 2893  Vcvv 3488  wss 3976   × cxp 5698  Rel wrel 5705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-10 2141  ax-11 2158  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-ex 1778  df-nf 1782  df-clel 2819  df-nfc 2895  df-ral 3068  df-ss 3993  df-rel 5707
This theorem is referenced by:  nffun  6601
  Copyright terms: Public domain W3C validator