![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfrel | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for a relation. (Contributed by NM, 31-Jan-2004.) (Revised by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
nfrel.1 | ⊢ Ⅎ𝑥𝐴 |
Ref | Expression |
---|---|
nfrel | ⊢ Ⅎ𝑥Rel 𝐴 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rel 5696 | . 2 ⊢ (Rel 𝐴 ↔ 𝐴 ⊆ (V × V)) | |
2 | nfrel.1 | . . 3 ⊢ Ⅎ𝑥𝐴 | |
3 | nfcv 2903 | . . 3 ⊢ Ⅎ𝑥(V × V) | |
4 | 2, 3 | nfss 3988 | . 2 ⊢ Ⅎ𝑥 𝐴 ⊆ (V × V) |
5 | 1, 4 | nfxfr 1850 | 1 ⊢ Ⅎ𝑥Rel 𝐴 |
Colors of variables: wff setvar class |
Syntax hints: Ⅎwnf 1780 Ⅎwnfc 2888 Vcvv 3478 ⊆ wss 3963 × cxp 5687 Rel wrel 5694 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-10 2139 ax-11 2155 ax-12 2175 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1777 df-nf 1781 df-clel 2814 df-nfc 2890 df-ral 3060 df-ss 3980 df-rel 5696 |
This theorem is referenced by: nffun 6591 |
Copyright terms: Public domain | W3C validator |