Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nffun | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for a function. (Contributed by NM, 30-Jan-2004.) |
Ref | Expression |
---|---|
nffun.1 | ⊢ Ⅎ𝑥𝐹 |
Ref | Expression |
---|---|
nffun | ⊢ Ⅎ𝑥Fun 𝐹 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fun 6420 | . 2 ⊢ (Fun 𝐹 ↔ (Rel 𝐹 ∧ (𝐹 ∘ ◡𝐹) ⊆ I )) | |
2 | nffun.1 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
3 | 2 | nfrel 5680 | . . 3 ⊢ Ⅎ𝑥Rel 𝐹 |
4 | 2 | nfcnv 5776 | . . . . 5 ⊢ Ⅎ𝑥◡𝐹 |
5 | 2, 4 | nfco 5763 | . . . 4 ⊢ Ⅎ𝑥(𝐹 ∘ ◡𝐹) |
6 | nfcv 2906 | . . . 4 ⊢ Ⅎ𝑥 I | |
7 | 5, 6 | nfss 3909 | . . 3 ⊢ Ⅎ𝑥(𝐹 ∘ ◡𝐹) ⊆ I |
8 | 3, 7 | nfan 1903 | . 2 ⊢ Ⅎ𝑥(Rel 𝐹 ∧ (𝐹 ∘ ◡𝐹) ⊆ I ) |
9 | 1, 8 | nfxfr 1856 | 1 ⊢ Ⅎ𝑥Fun 𝐹 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 Ⅎwnf 1787 Ⅎwnfc 2886 ⊆ wss 3883 I cid 5479 ◡ccnv 5579 ∘ ccom 5584 Rel wrel 5585 Fun wfun 6412 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-rel 5587 df-cnv 5588 df-co 5589 df-fun 6420 |
This theorem is referenced by: nffn 6516 nff1 6652 fliftfun 7163 funimass4f 30873 nfdfat 44506 |
Copyright terms: Public domain | W3C validator |