MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nffun Structured version   Visualization version   GIF version

Theorem nffun 6591
Description: Bound-variable hypothesis builder for a function. (Contributed by NM, 30-Jan-2004.)
Hypothesis
Ref Expression
nffun.1 𝑥𝐹
Assertion
Ref Expression
nffun 𝑥Fun 𝐹

Proof of Theorem nffun
StepHypRef Expression
1 df-fun 6565 . 2 (Fun 𝐹 ↔ (Rel 𝐹 ∧ (𝐹𝐹) ⊆ I ))
2 nffun.1 . . . 4 𝑥𝐹
32nfrel 5792 . . 3 𝑥Rel 𝐹
42nfcnv 5892 . . . . 5 𝑥𝐹
52, 4nfco 5879 . . . 4 𝑥(𝐹𝐹)
6 nfcv 2903 . . . 4 𝑥 I
75, 6nfss 3988 . . 3 𝑥(𝐹𝐹) ⊆ I
83, 7nfan 1897 . 2 𝑥(Rel 𝐹 ∧ (𝐹𝐹) ⊆ I )
91, 8nfxfr 1850 1 𝑥Fun 𝐹
Colors of variables: wff setvar class
Syntax hints:  wa 395  wnf 1780  wnfc 2888  wss 3963   I cid 5582  ccnv 5688  ccom 5693  Rel wrel 5694  Fun wfun 6557
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ral 3060  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-rel 5696  df-cnv 5697  df-co 5698  df-fun 6565
This theorem is referenced by:  nffn  6668  nff1  6803  fliftfun  7332  funimass4f  32654  nfdfat  47077
  Copyright terms: Public domain W3C validator