MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nffun Structured version   Visualization version   GIF version

Theorem nffun 6588
Description: Bound-variable hypothesis builder for a function. (Contributed by NM, 30-Jan-2004.)
Hypothesis
Ref Expression
nffun.1 𝑥𝐹
Assertion
Ref Expression
nffun 𝑥Fun 𝐹

Proof of Theorem nffun
StepHypRef Expression
1 df-fun 6562 . 2 (Fun 𝐹 ↔ (Rel 𝐹 ∧ (𝐹𝐹) ⊆ I ))
2 nffun.1 . . . 4 𝑥𝐹
32nfrel 5788 . . 3 𝑥Rel 𝐹
42nfcnv 5888 . . . . 5 𝑥𝐹
52, 4nfco 5875 . . . 4 𝑥(𝐹𝐹)
6 nfcv 2904 . . . 4 𝑥 I
75, 6nfss 3975 . . 3 𝑥(𝐹𝐹) ⊆ I
83, 7nfan 1898 . 2 𝑥(Rel 𝐹 ∧ (𝐹𝐹) ⊆ I )
91, 8nfxfr 1852 1 𝑥Fun 𝐹
Colors of variables: wff setvar class
Syntax hints:  wa 395  wnf 1782  wnfc 2889  wss 3950   I cid 5576  ccnv 5683  ccom 5688  Rel wrel 5689  Fun wfun 6554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ral 3061  df-rab 3436  df-v 3481  df-dif 3953  df-un 3955  df-ss 3967  df-nul 4333  df-if 4525  df-sn 4626  df-pr 4628  df-op 4632  df-br 5143  df-opab 5205  df-rel 5691  df-cnv 5692  df-co 5693  df-fun 6562
This theorem is referenced by:  nffn  6666  nff1  6801  fliftfun  7333  funimass4f  32648  nfdfat  47144
  Copyright terms: Public domain W3C validator