MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nffun Structured version   Visualization version   GIF version

Theorem nffun 6601
Description: Bound-variable hypothesis builder for a function. (Contributed by NM, 30-Jan-2004.)
Hypothesis
Ref Expression
nffun.1 𝑥𝐹
Assertion
Ref Expression
nffun 𝑥Fun 𝐹

Proof of Theorem nffun
StepHypRef Expression
1 df-fun 6575 . 2 (Fun 𝐹 ↔ (Rel 𝐹 ∧ (𝐹𝐹) ⊆ I ))
2 nffun.1 . . . 4 𝑥𝐹
32nfrel 5803 . . 3 𝑥Rel 𝐹
42nfcnv 5903 . . . . 5 𝑥𝐹
52, 4nfco 5890 . . . 4 𝑥(𝐹𝐹)
6 nfcv 2908 . . . 4 𝑥 I
75, 6nfss 4001 . . 3 𝑥(𝐹𝐹) ⊆ I
83, 7nfan 1898 . 2 𝑥(Rel 𝐹 ∧ (𝐹𝐹) ⊆ I )
91, 8nfxfr 1851 1 𝑥Fun 𝐹
Colors of variables: wff setvar class
Syntax hints:  wa 395  wnf 1781  wnfc 2893  wss 3976   I cid 5592  ccnv 5699  ccom 5704  Rel wrel 5705  Fun wfun 6567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ral 3068  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-rel 5707  df-cnv 5708  df-co 5709  df-fun 6575
This theorem is referenced by:  nffn  6678  nff1  6815  fliftfun  7348  funimass4f  32656  nfdfat  47042
  Copyright terms: Public domain W3C validator