MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nffun Structured version   Visualization version   GIF version

Theorem nffun 6539
Description: Bound-variable hypothesis builder for a function. (Contributed by NM, 30-Jan-2004.)
Hypothesis
Ref Expression
nffun.1 𝑥𝐹
Assertion
Ref Expression
nffun 𝑥Fun 𝐹

Proof of Theorem nffun
StepHypRef Expression
1 df-fun 6513 . 2 (Fun 𝐹 ↔ (Rel 𝐹 ∧ (𝐹𝐹) ⊆ I ))
2 nffun.1 . . . 4 𝑥𝐹
32nfrel 5742 . . 3 𝑥Rel 𝐹
42nfcnv 5842 . . . . 5 𝑥𝐹
52, 4nfco 5829 . . . 4 𝑥(𝐹𝐹)
6 nfcv 2891 . . . 4 𝑥 I
75, 6nfss 3939 . . 3 𝑥(𝐹𝐹) ⊆ I
83, 7nfan 1899 . 2 𝑥(Rel 𝐹 ∧ (𝐹𝐹) ⊆ I )
91, 8nfxfr 1853 1 𝑥Fun 𝐹
Colors of variables: wff setvar class
Syntax hints:  wa 395  wnf 1783  wnfc 2876  wss 3914   I cid 5532  ccnv 5637  ccom 5642  Rel wrel 5643  Fun wfun 6505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-br 5108  df-opab 5170  df-rel 5645  df-cnv 5646  df-co 5647  df-fun 6513
This theorem is referenced by:  nffn  6617  nff1  6754  fliftfun  7287  funimass4f  32561  nfdfat  47128
  Copyright terms: Public domain W3C validator