MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nffun Structured version   Visualization version   GIF version

Theorem nffun 6441
Description: Bound-variable hypothesis builder for a function. (Contributed by NM, 30-Jan-2004.)
Hypothesis
Ref Expression
nffun.1 𝑥𝐹
Assertion
Ref Expression
nffun 𝑥Fun 𝐹

Proof of Theorem nffun
StepHypRef Expression
1 df-fun 6420 . 2 (Fun 𝐹 ↔ (Rel 𝐹 ∧ (𝐹𝐹) ⊆ I ))
2 nffun.1 . . . 4 𝑥𝐹
32nfrel 5680 . . 3 𝑥Rel 𝐹
42nfcnv 5776 . . . . 5 𝑥𝐹
52, 4nfco 5763 . . . 4 𝑥(𝐹𝐹)
6 nfcv 2906 . . . 4 𝑥 I
75, 6nfss 3909 . . 3 𝑥(𝐹𝐹) ⊆ I
83, 7nfan 1903 . 2 𝑥(Rel 𝐹 ∧ (𝐹𝐹) ⊆ I )
91, 8nfxfr 1856 1 𝑥Fun 𝐹
Colors of variables: wff setvar class
Syntax hints:  wa 395  wnf 1787  wnfc 2886  wss 3883   I cid 5479  ccnv 5579  ccom 5584  Rel wrel 5585  Fun wfun 6412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-rel 5587  df-cnv 5588  df-co 5589  df-fun 6420
This theorem is referenced by:  nffn  6516  nff1  6652  fliftfun  7163  funimass4f  30873  nfdfat  44506
  Copyright terms: Public domain W3C validator