| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nffun | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for a function. (Contributed by NM, 30-Jan-2004.) |
| Ref | Expression |
|---|---|
| nffun.1 | ⊢ Ⅎ𝑥𝐹 |
| Ref | Expression |
|---|---|
| nffun | ⊢ Ⅎ𝑥Fun 𝐹 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fun 6562 | . 2 ⊢ (Fun 𝐹 ↔ (Rel 𝐹 ∧ (𝐹 ∘ ◡𝐹) ⊆ I )) | |
| 2 | nffun.1 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
| 3 | 2 | nfrel 5788 | . . 3 ⊢ Ⅎ𝑥Rel 𝐹 |
| 4 | 2 | nfcnv 5888 | . . . . 5 ⊢ Ⅎ𝑥◡𝐹 |
| 5 | 2, 4 | nfco 5875 | . . . 4 ⊢ Ⅎ𝑥(𝐹 ∘ ◡𝐹) |
| 6 | nfcv 2904 | . . . 4 ⊢ Ⅎ𝑥 I | |
| 7 | 5, 6 | nfss 3975 | . . 3 ⊢ Ⅎ𝑥(𝐹 ∘ ◡𝐹) ⊆ I |
| 8 | 3, 7 | nfan 1898 | . 2 ⊢ Ⅎ𝑥(Rel 𝐹 ∧ (𝐹 ∘ ◡𝐹) ⊆ I ) |
| 9 | 1, 8 | nfxfr 1852 | 1 ⊢ Ⅎ𝑥Fun 𝐹 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 Ⅎwnf 1782 Ⅎwnfc 2889 ⊆ wss 3950 I cid 5576 ◡ccnv 5683 ∘ ccom 5688 Rel wrel 5689 Fun wfun 6554 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ral 3061 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-br 5143 df-opab 5205 df-rel 5691 df-cnv 5692 df-co 5693 df-fun 6562 |
| This theorem is referenced by: nffn 6666 nff1 6801 fliftfun 7333 funimass4f 32648 nfdfat 47144 |
| Copyright terms: Public domain | W3C validator |