| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nffun | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for a function. (Contributed by NM, 30-Jan-2004.) |
| Ref | Expression |
|---|---|
| nffun.1 | ⊢ Ⅎ𝑥𝐹 |
| Ref | Expression |
|---|---|
| nffun | ⊢ Ⅎ𝑥Fun 𝐹 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fun 6538 | . 2 ⊢ (Fun 𝐹 ↔ (Rel 𝐹 ∧ (𝐹 ∘ ◡𝐹) ⊆ I )) | |
| 2 | nffun.1 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
| 3 | 2 | nfrel 5763 | . . 3 ⊢ Ⅎ𝑥Rel 𝐹 |
| 4 | 2 | nfcnv 5863 | . . . . 5 ⊢ Ⅎ𝑥◡𝐹 |
| 5 | 2, 4 | nfco 5850 | . . . 4 ⊢ Ⅎ𝑥(𝐹 ∘ ◡𝐹) |
| 6 | nfcv 2899 | . . . 4 ⊢ Ⅎ𝑥 I | |
| 7 | 5, 6 | nfss 3956 | . . 3 ⊢ Ⅎ𝑥(𝐹 ∘ ◡𝐹) ⊆ I |
| 8 | 3, 7 | nfan 1899 | . 2 ⊢ Ⅎ𝑥(Rel 𝐹 ∧ (𝐹 ∘ ◡𝐹) ⊆ I ) |
| 9 | 1, 8 | nfxfr 1853 | 1 ⊢ Ⅎ𝑥Fun 𝐹 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 Ⅎwnf 1783 Ⅎwnfc 2884 ⊆ wss 3931 I cid 5552 ◡ccnv 5658 ∘ ccom 5663 Rel wrel 5664 Fun wfun 6530 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ral 3053 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-br 5125 df-opab 5187 df-rel 5666 df-cnv 5667 df-co 5668 df-fun 6538 |
| This theorem is referenced by: nffn 6642 nff1 6777 fliftfun 7310 funimass4f 32620 nfdfat 47136 |
| Copyright terms: Public domain | W3C validator |