| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nffun | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for a function. (Contributed by NM, 30-Jan-2004.) |
| Ref | Expression |
|---|---|
| nffun.1 | ⊢ Ⅎ𝑥𝐹 |
| Ref | Expression |
|---|---|
| nffun | ⊢ Ⅎ𝑥Fun 𝐹 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-fun 6483 | . 2 ⊢ (Fun 𝐹 ↔ (Rel 𝐹 ∧ (𝐹 ∘ ◡𝐹) ⊆ I )) | |
| 2 | nffun.1 | . . . 4 ⊢ Ⅎ𝑥𝐹 | |
| 3 | 2 | nfrel 5720 | . . 3 ⊢ Ⅎ𝑥Rel 𝐹 |
| 4 | 2 | nfcnv 5818 | . . . . 5 ⊢ Ⅎ𝑥◡𝐹 |
| 5 | 2, 4 | nfco 5805 | . . . 4 ⊢ Ⅎ𝑥(𝐹 ∘ ◡𝐹) |
| 6 | nfcv 2894 | . . . 4 ⊢ Ⅎ𝑥 I | |
| 7 | 5, 6 | nfss 3927 | . . 3 ⊢ Ⅎ𝑥(𝐹 ∘ ◡𝐹) ⊆ I |
| 8 | 3, 7 | nfan 1900 | . 2 ⊢ Ⅎ𝑥(Rel 𝐹 ∧ (𝐹 ∘ ◡𝐹) ⊆ I ) |
| 9 | 1, 8 | nfxfr 1854 | 1 ⊢ Ⅎ𝑥Fun 𝐹 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 Ⅎwnf 1784 Ⅎwnfc 2879 ⊆ wss 3902 I cid 5510 ◡ccnv 5615 ∘ ccom 5620 Rel wrel 5621 Fun wfun 6475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ral 3048 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-rel 5623 df-cnv 5624 df-co 5625 df-fun 6483 |
| This theorem is referenced by: nffn 6580 nff1 6717 fliftfun 7246 funimass4f 32614 nfdfat 47157 |
| Copyright terms: Public domain | W3C validator |