| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbcrel | Structured version Visualization version GIF version | ||
| Description: Distribute proper substitution through a relation predicate. (Contributed by Alexander van der Vekens, 23-Jul-2017.) |
| Ref | Expression |
|---|---|
| sbcrel | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]Rel 𝑅 ↔ Rel ⦋𝐴 / 𝑥⦌𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcssg 4469 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝑅 ⊆ (V × V) ↔ ⦋𝐴 / 𝑥⦌𝑅 ⊆ ⦋𝐴 / 𝑥⦌(V × V))) | |
| 2 | csbconstg 3865 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(V × V) = (V × V)) | |
| 3 | 2 | sseq2d 3963 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (⦋𝐴 / 𝑥⦌𝑅 ⊆ ⦋𝐴 / 𝑥⦌(V × V) ↔ ⦋𝐴 / 𝑥⦌𝑅 ⊆ (V × V))) |
| 4 | 1, 3 | bitrd 279 | . 2 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝑅 ⊆ (V × V) ↔ ⦋𝐴 / 𝑥⦌𝑅 ⊆ (V × V))) |
| 5 | df-rel 5626 | . . 3 ⊢ (Rel 𝑅 ↔ 𝑅 ⊆ (V × V)) | |
| 6 | 5 | sbcbii 3794 | . 2 ⊢ ([𝐴 / 𝑥]Rel 𝑅 ↔ [𝐴 / 𝑥]𝑅 ⊆ (V × V)) |
| 7 | df-rel 5626 | . 2 ⊢ (Rel ⦋𝐴 / 𝑥⦌𝑅 ↔ ⦋𝐴 / 𝑥⦌𝑅 ⊆ (V × V)) | |
| 8 | 4, 6, 7 | 3bitr4g 314 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]Rel 𝑅 ↔ Rel ⦋𝐴 / 𝑥⦌𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2113 Vcvv 3437 [wsbc 3737 ⦋csb 3846 ⊆ wss 3898 × cxp 5617 Rel wrel 5624 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-ss 3915 df-nul 4283 df-rel 5626 |
| This theorem is referenced by: sbcfung 6510 |
| Copyright terms: Public domain | W3C validator |