| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sbcrel | Structured version Visualization version GIF version | ||
| Description: Distribute proper substitution through a relation predicate. (Contributed by Alexander van der Vekens, 23-Jul-2017.) |
| Ref | Expression |
|---|---|
| sbcrel | ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]Rel 𝑅 ↔ Rel ⦋𝐴 / 𝑥⦌𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbcssg 4500 | . . 3 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝑅 ⊆ (V × V) ↔ ⦋𝐴 / 𝑥⦌𝑅 ⊆ ⦋𝐴 / 𝑥⦌(V × V))) | |
| 2 | csbconstg 3898 | . . . 4 ⊢ (𝐴 ∈ 𝑉 → ⦋𝐴 / 𝑥⦌(V × V) = (V × V)) | |
| 3 | 2 | sseq2d 3996 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (⦋𝐴 / 𝑥⦌𝑅 ⊆ ⦋𝐴 / 𝑥⦌(V × V) ↔ ⦋𝐴 / 𝑥⦌𝑅 ⊆ (V × V))) |
| 4 | 1, 3 | bitrd 279 | . 2 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]𝑅 ⊆ (V × V) ↔ ⦋𝐴 / 𝑥⦌𝑅 ⊆ (V × V))) |
| 5 | df-rel 5666 | . . 3 ⊢ (Rel 𝑅 ↔ 𝑅 ⊆ (V × V)) | |
| 6 | 5 | sbcbii 3827 | . 2 ⊢ ([𝐴 / 𝑥]Rel 𝑅 ↔ [𝐴 / 𝑥]𝑅 ⊆ (V × V)) |
| 7 | df-rel 5666 | . 2 ⊢ (Rel ⦋𝐴 / 𝑥⦌𝑅 ↔ ⦋𝐴 / 𝑥⦌𝑅 ⊆ (V × V)) | |
| 8 | 4, 6, 7 | 3bitr4g 314 | 1 ⊢ (𝐴 ∈ 𝑉 → ([𝐴 / 𝑥]Rel 𝑅 ↔ Rel ⦋𝐴 / 𝑥⦌𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2109 Vcvv 3464 [wsbc 3770 ⦋csb 3879 ⊆ wss 3931 × cxp 5657 Rel wrel 5664 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-ss 3948 df-nul 4314 df-rel 5666 |
| This theorem is referenced by: sbcfung 6565 |
| Copyright terms: Public domain | W3C validator |