MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcrel Structured version   Visualization version   GIF version

Theorem sbcrel 5681
Description: Distribute proper substitution through a relation predicate. (Contributed by Alexander van der Vekens, 23-Jul-2017.)
Assertion
Ref Expression
sbcrel (𝐴𝑉 → ([𝐴 / 𝑥]Rel 𝑅 ↔ Rel 𝐴 / 𝑥𝑅))

Proof of Theorem sbcrel
StepHypRef Expression
1 sbcssg 4451 . . 3 (𝐴𝑉 → ([𝐴 / 𝑥]𝑅 ⊆ (V × V) ↔ 𝐴 / 𝑥𝑅𝐴 / 𝑥(V × V)))
2 csbconstg 3847 . . . 4 (𝐴𝑉𝐴 / 𝑥(V × V) = (V × V))
32sseq2d 3949 . . 3 (𝐴𝑉 → (𝐴 / 𝑥𝑅𝐴 / 𝑥(V × V) ↔ 𝐴 / 𝑥𝑅 ⊆ (V × V)))
41, 3bitrd 278 . 2 (𝐴𝑉 → ([𝐴 / 𝑥]𝑅 ⊆ (V × V) ↔ 𝐴 / 𝑥𝑅 ⊆ (V × V)))
5 df-rel 5587 . . 3 (Rel 𝑅𝑅 ⊆ (V × V))
65sbcbii 3772 . 2 ([𝐴 / 𝑥]Rel 𝑅[𝐴 / 𝑥]𝑅 ⊆ (V × V))
7 df-rel 5587 . 2 (Rel 𝐴 / 𝑥𝑅𝐴 / 𝑥𝑅 ⊆ (V × V))
84, 6, 73bitr4g 313 1 (𝐴𝑉 → ([𝐴 / 𝑥]Rel 𝑅 ↔ Rel 𝐴 / 𝑥𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wcel 2108  Vcvv 3422  [wsbc 3711  csb 3828  wss 3883   × cxp 5578  Rel wrel 5585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-in 3890  df-ss 3900  df-nul 4254  df-rel 5587
This theorem is referenced by:  sbcfung  6442
  Copyright terms: Public domain W3C validator