Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  sbcrel Structured version   Visualization version   GIF version

Theorem sbcrel 5642
 Description: Distribute proper substitution through a relation predicate. (Contributed by Alexander van der Vekens, 23-Jul-2017.)
Assertion
Ref Expression
sbcrel (𝐴𝑉 → ([𝐴 / 𝑥]Rel 𝑅 ↔ Rel 𝐴 / 𝑥𝑅))

Proof of Theorem sbcrel
StepHypRef Expression
1 sbcssg 4446 . . 3 (𝐴𝑉 → ([𝐴 / 𝑥]𝑅 ⊆ (V × V) ↔ 𝐴 / 𝑥𝑅𝐴 / 𝑥(V × V)))
2 csbconstg 3885 . . . 4 (𝐴𝑉𝐴 / 𝑥(V × V) = (V × V))
32sseq2d 3985 . . 3 (𝐴𝑉 → (𝐴 / 𝑥𝑅𝐴 / 𝑥(V × V) ↔ 𝐴 / 𝑥𝑅 ⊆ (V × V)))
41, 3bitrd 282 . 2 (𝐴𝑉 → ([𝐴 / 𝑥]𝑅 ⊆ (V × V) ↔ 𝐴 / 𝑥𝑅 ⊆ (V × V)))
5 df-rel 5549 . . 3 (Rel 𝑅𝑅 ⊆ (V × V))
65sbcbii 3814 . 2 ([𝐴 / 𝑥]Rel 𝑅[𝐴 / 𝑥]𝑅 ⊆ (V × V))
7 df-rel 5549 . 2 (Rel 𝐴 / 𝑥𝑅𝐴 / 𝑥𝑅 ⊆ (V × V))
84, 6, 73bitr4g 317 1 (𝐴𝑉 → ([𝐴 / 𝑥]Rel 𝑅 ↔ Rel 𝐴 / 𝑥𝑅))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∈ wcel 2115  Vcvv 3480  [wsbc 3758  ⦋csb 3866   ⊆ wss 3919   × cxp 5540  Rel wrel 5547 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2071  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2964  df-v 3482  df-sbc 3759  df-csb 3867  df-dif 3922  df-in 3926  df-ss 3936  df-nul 4277  df-rel 5549 This theorem is referenced by:  sbcfung  6367
 Copyright terms: Public domain W3C validator