| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > releqd | Structured version Visualization version GIF version | ||
| Description: Equality deduction for the relation predicate. (Contributed by NM, 8-Mar-2014.) |
| Ref | Expression |
|---|---|
| releqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| releqd | ⊢ (𝜑 → (Rel 𝐴 ↔ Rel 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | releqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | releq 5755 | . 2 ⊢ (𝐴 = 𝐵 → (Rel 𝐴 ↔ Rel 𝐵)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (Rel 𝐴 ↔ Rel 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 Rel wrel 5659 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2727 df-ss 3943 df-rel 5661 |
| This theorem is referenced by: dftpos3 8243 tposfo2 8248 tposf12 8250 relexp0rel 15056 relexprelg 15057 relexpreld 15059 relexpaddg 15072 imasaddfnlem 17542 imasvscafn 17551 cicer 17819 joindmss 18389 meetdmss 18403 mattpostpos 22392 cnextrel 24001 perpln1 28689 perpln2 28690 erler 33260 opprabs 33497 relfae 34278 satfrel 35389 dibvalrel 41182 dicvalrelN 41204 diclspsn 41213 dihvalrel 41298 dih1 41305 dihmeetlem4preN 41325 relcic 49012 oppfvalg 49074 oppfvallem 49081 funcoppc3 49090 uptposlem 49130 reldmprcof1 49291 reldmprcof2 49292 reldmlan2 49492 reldmran2 49493 rellan 49498 relran 49499 |
| Copyright terms: Public domain | W3C validator |