| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > releqd | Structured version Visualization version GIF version | ||
| Description: Equality deduction for the relation predicate. (Contributed by NM, 8-Mar-2014.) |
| Ref | Expression |
|---|---|
| releqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| releqd | ⊢ (𝜑 → (Rel 𝐴 ↔ Rel 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | releqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | releq 5716 | . 2 ⊢ (𝐴 = 𝐵 → (Rel 𝐴 ↔ Rel 𝐵)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (Rel 𝐴 ↔ Rel 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 Rel wrel 5619 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-ss 3914 df-rel 5621 |
| This theorem is referenced by: dftpos3 8174 tposfo2 8179 tposf12 8181 relexp0rel 14944 relexprelg 14945 relexpreld 14947 relexpaddg 14960 imasaddfnlem 17432 imasvscafn 17441 cicer 17713 joindmss 18283 meetdmss 18297 mattpostpos 22369 cnextrel 23978 perpln1 28688 perpln2 28689 erler 33232 opprabs 33447 relfae 34260 satfrel 35411 dibvalrel 41210 dicvalrelN 41232 diclspsn 41241 dihvalrel 41326 dih1 41333 dihmeetlem4preN 41353 relcic 49085 oppfvalg 49166 oppfvallem 49175 funcoppc3 49187 uptposlem 49237 reldmprcof1 49421 reldmprcof2 49422 reldmlan2 49657 reldmran2 49658 rellan 49663 relran 49664 |
| Copyright terms: Public domain | W3C validator |