Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > releqd | Structured version Visualization version GIF version |
Description: Equality deduction for the relation predicate. (Contributed by NM, 8-Mar-2014.) |
Ref | Expression |
---|---|
releqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
releqd | ⊢ (𝜑 → (Rel 𝐴 ↔ Rel 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | releqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | releq 5689 | . 2 ⊢ (𝐴 = 𝐵 → (Rel 𝐴 ↔ Rel 𝐵)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (Rel 𝐴 ↔ Rel 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 Rel wrel 5596 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3433 df-in 3895 df-ss 3905 df-rel 5598 |
This theorem is referenced by: dftpos3 8058 tposfo2 8063 tposf12 8065 relexp0rel 14746 relexprelg 14747 relexpreld 14749 relexpaddg 14762 imasaddfnlem 17237 imasvscafn 17246 cicer 17516 joindmss 18095 meetdmss 18109 mattpostpos 21601 cnextrel 23212 perpln1 27069 perpln2 27070 relfae 32212 satfrel 33326 dibvalrel 39174 dicvalrelN 39196 diclspsn 39205 dihvalrel 39290 dih1 39297 dihmeetlem4preN 39317 |
Copyright terms: Public domain | W3C validator |