| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > releqd | Structured version Visualization version GIF version | ||
| Description: Equality deduction for the relation predicate. (Contributed by NM, 8-Mar-2014.) |
| Ref | Expression |
|---|---|
| releqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| releqd | ⊢ (𝜑 → (Rel 𝐴 ↔ Rel 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | releqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | releq 5742 | . 2 ⊢ (𝐴 = 𝐵 → (Rel 𝐴 ↔ Rel 𝐵)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (Rel 𝐴 ↔ Rel 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 Rel wrel 5646 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2722 df-ss 3934 df-rel 5648 |
| This theorem is referenced by: dftpos3 8226 tposfo2 8231 tposf12 8233 relexp0rel 15010 relexprelg 15011 relexpreld 15013 relexpaddg 15026 imasaddfnlem 17498 imasvscafn 17507 cicer 17775 joindmss 18345 meetdmss 18359 mattpostpos 22348 cnextrel 23957 perpln1 28644 perpln2 28645 erler 33223 opprabs 33460 relfae 34244 satfrel 35361 dibvalrel 41164 dicvalrelN 41186 diclspsn 41195 dihvalrel 41280 dih1 41287 dihmeetlem4preN 41307 relcic 49038 oppfvalg 49119 oppfvallem 49128 funcoppc3 49140 uptposlem 49190 reldmprcof1 49374 reldmprcof2 49375 reldmlan2 49610 reldmran2 49611 rellan 49616 relran 49617 |
| Copyright terms: Public domain | W3C validator |