| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > releqd | Structured version Visualization version GIF version | ||
| Description: Equality deduction for the relation predicate. (Contributed by NM, 8-Mar-2014.) |
| Ref | Expression |
|---|---|
| releqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| releqd | ⊢ (𝜑 → (Rel 𝐴 ↔ Rel 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | releqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | releq 5731 | . 2 ⊢ (𝐴 = 𝐵 → (Rel 𝐴 ↔ Rel 𝐵)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (Rel 𝐴 ↔ Rel 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 Rel wrel 5636 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ss 3928 df-rel 5638 |
| This theorem is referenced by: dftpos3 8200 tposfo2 8205 tposf12 8207 relexp0rel 14979 relexprelg 14980 relexpreld 14982 relexpaddg 14995 imasaddfnlem 17467 imasvscafn 17476 cicer 17744 joindmss 18314 meetdmss 18328 mattpostpos 22317 cnextrel 23926 perpln1 28613 perpln2 28614 erler 33189 opprabs 33426 relfae 34210 satfrel 35327 dibvalrel 41130 dicvalrelN 41152 diclspsn 41161 dihvalrel 41246 dih1 41253 dihmeetlem4preN 41273 relcic 49007 oppfvalg 49088 oppfvallem 49097 funcoppc3 49109 uptposlem 49159 reldmprcof1 49343 reldmprcof2 49344 reldmlan2 49579 reldmran2 49580 rellan 49585 relran 49586 |
| Copyright terms: Public domain | W3C validator |