| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > releqd | Structured version Visualization version GIF version | ||
| Description: Equality deduction for the relation predicate. (Contributed by NM, 8-Mar-2014.) |
| Ref | Expression |
|---|---|
| releqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| releqd | ⊢ (𝜑 → (Rel 𝐴 ↔ Rel 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | releqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | releq 5739 | . 2 ⊢ (𝐴 = 𝐵 → (Rel 𝐴 ↔ Rel 𝐵)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (Rel 𝐴 ↔ Rel 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 Rel wrel 5643 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ss 3931 df-rel 5645 |
| This theorem is referenced by: dftpos3 8223 tposfo2 8228 tposf12 8230 relexp0rel 15003 relexprelg 15004 relexpreld 15006 relexpaddg 15019 imasaddfnlem 17491 imasvscafn 17500 cicer 17768 joindmss 18338 meetdmss 18352 mattpostpos 22341 cnextrel 23950 perpln1 28637 perpln2 28638 erler 33216 opprabs 33453 relfae 34237 satfrel 35354 dibvalrel 41157 dicvalrelN 41179 diclspsn 41188 dihvalrel 41273 dih1 41280 dihmeetlem4preN 41300 relcic 49034 oppfvalg 49115 oppfvallem 49124 funcoppc3 49136 uptposlem 49186 reldmprcof1 49370 reldmprcof2 49371 reldmlan2 49606 reldmran2 49607 rellan 49612 relran 49613 |
| Copyright terms: Public domain | W3C validator |