Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > releqd | Structured version Visualization version GIF version |
Description: Equality deduction for the relation predicate. (Contributed by NM, 8-Mar-2014.) |
Ref | Expression |
---|---|
releqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
releqd | ⊢ (𝜑 → (Rel 𝐴 ↔ Rel 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | releqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | releq 5687 | . 2 ⊢ (𝐴 = 𝐵 → (Rel 𝐴 ↔ Rel 𝐵)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (Rel 𝐴 ↔ Rel 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 Rel wrel 5594 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-v 3434 df-in 3894 df-ss 3904 df-rel 5596 |
This theorem is referenced by: dftpos3 8060 tposfo2 8065 tposf12 8067 relexp0rel 14748 relexprelg 14749 relexpreld 14751 relexpaddg 14764 imasaddfnlem 17239 imasvscafn 17248 cicer 17518 joindmss 18097 meetdmss 18111 mattpostpos 21603 cnextrel 23214 perpln1 27071 perpln2 27072 relfae 32215 satfrel 33329 dibvalrel 39177 dicvalrelN 39199 diclspsn 39208 dihvalrel 39293 dih1 39300 dihmeetlem4preN 39320 |
Copyright terms: Public domain | W3C validator |