MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  releqd Structured version   Visualization version   GIF version

Theorem releqd 5718
Description: Equality deduction for the relation predicate. (Contributed by NM, 8-Mar-2014.)
Hypothesis
Ref Expression
releqd.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
releqd (𝜑 → (Rel 𝐴 ↔ Rel 𝐵))

Proof of Theorem releqd
StepHypRef Expression
1 releqd.1 . 2 (𝜑𝐴 = 𝐵)
2 releq 5716 . 2 (𝐴 = 𝐵 → (Rel 𝐴 ↔ Rel 𝐵))
31, 2syl 17 1 (𝜑 → (Rel 𝐴 ↔ Rel 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  Rel wrel 5619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-9 2121  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1781  df-cleq 2723  df-ss 3914  df-rel 5621
This theorem is referenced by:  dftpos3  8174  tposfo2  8179  tposf12  8181  relexp0rel  14944  relexprelg  14945  relexpreld  14947  relexpaddg  14960  imasaddfnlem  17432  imasvscafn  17441  cicer  17713  joindmss  18283  meetdmss  18297  mattpostpos  22369  cnextrel  23978  perpln1  28688  perpln2  28689  erler  33232  opprabs  33447  relfae  34260  satfrel  35411  dibvalrel  41210  dicvalrelN  41232  diclspsn  41241  dihvalrel  41326  dih1  41333  dihmeetlem4preN  41353  relcic  49085  oppfvalg  49166  oppfvallem  49175  funcoppc3  49187  uptposlem  49237  reldmprcof1  49421  reldmprcof2  49422  reldmlan2  49657  reldmran2  49658  rellan  49663  relran  49664
  Copyright terms: Public domain W3C validator