![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > releqd | Structured version Visualization version GIF version |
Description: Equality deduction for the relation predicate. (Contributed by NM, 8-Mar-2014.) |
Ref | Expression |
---|---|
releqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
releqd | ⊢ (𝜑 → (Rel 𝐴 ↔ Rel 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | releqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | releq 5782 | . 2 ⊢ (𝐴 = 𝐵 → (Rel 𝐴 ↔ Rel 𝐵)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (Rel 𝐴 ↔ Rel 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1534 Rel wrel 5687 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-9 2109 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 395 df-ex 1775 df-cleq 2718 df-ss 3964 df-rel 5689 |
This theorem is referenced by: dftpos3 8259 tposfo2 8264 tposf12 8266 relexp0rel 15042 relexprelg 15043 relexpreld 15045 relexpaddg 15058 imasaddfnlem 17543 imasvscafn 17552 cicer 17822 joindmss 18404 meetdmss 18418 mattpostpos 22447 cnextrel 24058 perpln1 28637 perpln2 28638 erler 33120 opprabs 33357 relfae 34080 satfrel 35195 dibvalrel 40862 dicvalrelN 40884 diclspsn 40893 dihvalrel 40978 dih1 40985 dihmeetlem4preN 41005 |
Copyright terms: Public domain | W3C validator |