| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > releqd | Structured version Visualization version GIF version | ||
| Description: Equality deduction for the relation predicate. (Contributed by NM, 8-Mar-2014.) |
| Ref | Expression |
|---|---|
| releqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| releqd | ⊢ (𝜑 → (Rel 𝐴 ↔ Rel 𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | releqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | releq 5720 | . 2 ⊢ (𝐴 = 𝐵 → (Rel 𝐴 ↔ Rel 𝐵)) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (Rel 𝐴 ↔ Rel 𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 Rel wrel 5624 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ss 3920 df-rel 5626 |
| This theorem is referenced by: dftpos3 8177 tposfo2 8182 tposf12 8184 relexp0rel 14944 relexprelg 14945 relexpreld 14947 relexpaddg 14960 imasaddfnlem 17432 imasvscafn 17441 cicer 17713 joindmss 18283 meetdmss 18297 mattpostpos 22339 cnextrel 23948 perpln1 28655 perpln2 28656 erler 33205 opprabs 33419 relfae 34214 satfrel 35340 dibvalrel 41142 dicvalrelN 41164 diclspsn 41173 dihvalrel 41258 dih1 41265 dihmeetlem4preN 41285 relcic 49030 oppfvalg 49111 oppfvallem 49120 funcoppc3 49132 uptposlem 49182 reldmprcof1 49366 reldmprcof2 49367 reldmlan2 49602 reldmran2 49603 rellan 49608 relran 49609 |
| Copyright terms: Public domain | W3C validator |