![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > releqd | Structured version Visualization version GIF version |
Description: Equality deduction for the relation predicate. (Contributed by NM, 8-Mar-2014.) |
Ref | Expression |
---|---|
releqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
releqd | ⊢ (𝜑 → (Rel 𝐴 ↔ Rel 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | releqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | releq 5788 | . 2 ⊢ (𝐴 = 𝐵 → (Rel 𝐴 ↔ Rel 𝐵)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (Rel 𝐴 ↔ Rel 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1536 Rel wrel 5693 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1776 df-cleq 2726 df-ss 3979 df-rel 5695 |
This theorem is referenced by: dftpos3 8267 tposfo2 8272 tposf12 8274 relexp0rel 15072 relexprelg 15073 relexpreld 15075 relexpaddg 15088 imasaddfnlem 17574 imasvscafn 17583 cicer 17853 joindmss 18436 meetdmss 18450 mattpostpos 22475 cnextrel 24086 perpln1 28732 perpln2 28733 erler 33251 opprabs 33489 relfae 34227 satfrel 35351 dibvalrel 41145 dicvalrelN 41167 diclspsn 41176 dihvalrel 41261 dih1 41268 dihmeetlem4preN 41288 |
Copyright terms: Public domain | W3C validator |