![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > releqd | Structured version Visualization version GIF version |
Description: Equality deduction for the relation predicate. (Contributed by NM, 8-Mar-2014.) |
Ref | Expression |
---|---|
releqd.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
Ref | Expression |
---|---|
releqd | ⊢ (𝜑 → (Rel 𝐴 ↔ Rel 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | releqd.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
2 | releq 5800 | . 2 ⊢ (𝐴 = 𝐵 → (Rel 𝐴 ↔ Rel 𝐵)) | |
3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → (Rel 𝐴 ↔ Rel 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 Rel wrel 5705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-ss 3993 df-rel 5707 |
This theorem is referenced by: dftpos3 8285 tposfo2 8290 tposf12 8292 relexp0rel 15086 relexprelg 15087 relexpreld 15089 relexpaddg 15102 imasaddfnlem 17588 imasvscafn 17597 cicer 17867 joindmss 18449 meetdmss 18463 mattpostpos 22481 cnextrel 24092 perpln1 28736 perpln2 28737 erler 33237 opprabs 33475 relfae 34211 satfrel 35335 dibvalrel 41120 dicvalrelN 41142 diclspsn 41151 dihvalrel 41236 dih1 41243 dihmeetlem4preN 41263 |
Copyright terms: Public domain | W3C validator |