Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfrald | Structured version Visualization version GIF version |
Description: Deduction version of nfral 3150. Usage of this theorem is discouraged because it depends on ax-13 2372. Use the weaker nfraldw 3146 when possible. (Contributed by NM, 15-Feb-2013.) (Revised by Mario Carneiro, 7-Oct-2016.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nfrald.1 | ⊢ Ⅎ𝑦𝜑 |
nfrald.2 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
nfrald.3 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Ref | Expression |
---|---|
nfrald | ⊢ (𝜑 → Ⅎ𝑥∀𝑦 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 3068 | . 2 ⊢ (∀𝑦 ∈ 𝐴 𝜓 ↔ ∀𝑦(𝑦 ∈ 𝐴 → 𝜓)) | |
2 | nfrald.1 | . . 3 ⊢ Ⅎ𝑦𝜑 | |
3 | nfcvf 2935 | . . . . . 6 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → Ⅎ𝑥𝑦) | |
4 | 3 | adantl 481 | . . . . 5 ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝑦) |
5 | nfrald.2 | . . . . . 6 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
6 | 5 | adantr 480 | . . . . 5 ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝐴) |
7 | 4, 6 | nfeld 2917 | . . . 4 ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥 𝑦 ∈ 𝐴) |
8 | nfrald.3 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
9 | 8 | adantr 480 | . . . 4 ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥𝜓) |
10 | 7, 9 | nfimd 1898 | . . 3 ⊢ ((𝜑 ∧ ¬ ∀𝑥 𝑥 = 𝑦) → Ⅎ𝑥(𝑦 ∈ 𝐴 → 𝜓)) |
11 | 2, 10 | nfald2 2445 | . 2 ⊢ (𝜑 → Ⅎ𝑥∀𝑦(𝑦 ∈ 𝐴 → 𝜓)) |
12 | 1, 11 | nfxfrd 1857 | 1 ⊢ (𝜑 → Ⅎ𝑥∀𝑦 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∀wal 1537 Ⅎwnf 1787 ∈ wcel 2108 Ⅎwnfc 2886 ∀wral 3063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-13 2372 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-ex 1784 df-nf 1788 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 |
This theorem is referenced by: nfral 3150 nfrexdg 3236 |
Copyright terms: Public domain | W3C validator |