![]() |
Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nfiundg | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for indexed union. Usage of this theorem is discouraged because it depends on ax-13 2366, see nfiund 48420 for a weaker version that does not require it. (Contributed by Emmett Weisz, 6-Dec-2019.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nfiundg.1 | ⊢ Ⅎ𝑥𝜑 |
nfiundg.2 | ⊢ (𝜑 → Ⅎ𝑦𝐴) |
nfiundg.3 | ⊢ (𝜑 → Ⅎ𝑦𝐵) |
Ref | Expression |
---|---|
nfiundg | ⊢ (𝜑 → Ⅎ𝑦∪ 𝑥 ∈ 𝐴 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-iun 5003 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵} | |
2 | nfv 1910 | . . 3 ⊢ Ⅎ𝑧𝜑 | |
3 | nfiundg.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
4 | nfiundg.2 | . . . 4 ⊢ (𝜑 → Ⅎ𝑦𝐴) | |
5 | nfiundg.3 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑦𝐵) | |
6 | 5 | nfcrd 2885 | . . . 4 ⊢ (𝜑 → Ⅎ𝑦 𝑧 ∈ 𝐵) |
7 | 3, 4, 6 | nfrexd 3357 | . . 3 ⊢ (𝜑 → Ⅎ𝑦∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵) |
8 | 2, 7 | nfabd 2918 | . 2 ⊢ (𝜑 → Ⅎ𝑦{𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵}) |
9 | 1, 8 | nfcxfrd 2891 | 1 ⊢ (𝜑 → Ⅎ𝑦∪ 𝑥 ∈ 𝐴 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Ⅎwnf 1778 ∈ wcel 2099 {cab 2703 Ⅎwnfc 2876 ∃wrex 3060 ∪ ciun 5001 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-13 2366 ax-ext 2697 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-tru 1537 df-ex 1775 df-nf 1779 df-sb 2061 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ral 3052 df-rex 3061 df-iun 5003 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |