Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nfiundg Structured version   Visualization version   GIF version

Theorem nfiundg 47206
Description: Bound-variable hypothesis builder for indexed union. Usage of this theorem is discouraged because it depends on ax-13 2371, see nfiund 47205 for a weaker version that does not require it. (Contributed by Emmett Weisz, 6-Dec-2019.) (New usage is discouraged.)
Hypotheses
Ref Expression
nfiundg.1 𝑥𝜑
nfiundg.2 (𝜑𝑦𝐴)
nfiundg.3 (𝜑𝑦𝐵)
Assertion
Ref Expression
nfiundg (𝜑𝑦 𝑥𝐴 𝐵)

Proof of Theorem nfiundg
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-iun 4957 . 2 𝑥𝐴 𝐵 = {𝑧 ∣ ∃𝑥𝐴 𝑧𝐵}
2 nfv 1918 . . 3 𝑧𝜑
3 nfiundg.1 . . . 4 𝑥𝜑
4 nfiundg.2 . . . 4 (𝜑𝑦𝐴)
5 nfiundg.3 . . . . 5 (𝜑𝑦𝐵)
65nfcrd 2893 . . . 4 (𝜑 → Ⅎ𝑦 𝑧𝐵)
73, 4, 6nfrexd 3345 . . 3 (𝜑 → Ⅎ𝑦𝑥𝐴 𝑧𝐵)
82, 7nfabd 2929 . 2 (𝜑𝑦{𝑧 ∣ ∃𝑥𝐴 𝑧𝐵})
91, 8nfcxfrd 2903 1 (𝜑𝑦 𝑥𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wnf 1786  wcel 2107  {cab 2710  wnfc 2884  wrex 3070   ciun 4955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-13 2371  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-tru 1545  df-ex 1783  df-nf 1787  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ral 3062  df-rex 3071  df-iun 4957
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator