Mathbox for Emmett Weisz |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > nfiundg | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for indexed union. Usage of this theorem is discouraged because it depends on ax-13 2372, see nfiund 46079 for a weaker version that does not require it. (Contributed by Emmett Weisz, 6-Dec-2019.) (New usage is discouraged.) |
Ref | Expression |
---|---|
nfiundg.1 | ⊢ Ⅎ𝑥𝜑 |
nfiundg.2 | ⊢ (𝜑 → Ⅎ𝑦𝐴) |
nfiundg.3 | ⊢ (𝜑 → Ⅎ𝑦𝐵) |
Ref | Expression |
---|---|
nfiundg | ⊢ (𝜑 → Ⅎ𝑦∪ 𝑥 ∈ 𝐴 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-iun 4920 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 𝐵 = {𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵} | |
2 | nfv 1922 | . . 3 ⊢ Ⅎ𝑧𝜑 | |
3 | nfiundg.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
4 | nfiundg.2 | . . . 4 ⊢ (𝜑 → Ⅎ𝑦𝐴) | |
5 | nfiundg.3 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑦𝐵) | |
6 | 5 | nfcrd 2894 | . . . 4 ⊢ (𝜑 → Ⅎ𝑦 𝑧 ∈ 𝐵) |
7 | 3, 4, 6 | nfrexdg 3235 | . . 3 ⊢ (𝜑 → Ⅎ𝑦∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵) |
8 | 2, 7 | nfabd 2930 | . 2 ⊢ (𝜑 → Ⅎ𝑦{𝑧 ∣ ∃𝑥 ∈ 𝐴 𝑧 ∈ 𝐵}) |
9 | 1, 8 | nfcxfrd 2904 | 1 ⊢ (𝜑 → Ⅎ𝑦∪ 𝑥 ∈ 𝐴 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 Ⅎwnf 1791 ∈ wcel 2111 {cab 2715 Ⅎwnfc 2885 ∃wrex 3063 ∪ ciun 4918 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-13 2372 ax-ext 2709 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-tru 1546 df-ex 1788 df-nf 1792 df-sb 2072 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ral 3067 df-rex 3068 df-iun 4920 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |