Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nfiundg Structured version   Visualization version   GIF version

Theorem nfiundg 49654
Description: Bound-variable hypothesis builder for indexed union. Usage of this theorem is discouraged because it depends on ax-13 2371, see nfiund 49653 for a weaker version that does not require it. (Contributed by Emmett Weisz, 6-Dec-2019.) (New usage is discouraged.)
Hypotheses
Ref Expression
nfiundg.1 𝑥𝜑
nfiundg.2 (𝜑𝑦𝐴)
nfiundg.3 (𝜑𝑦𝐵)
Assertion
Ref Expression
nfiundg (𝜑𝑦 𝑥𝐴 𝐵)

Proof of Theorem nfiundg
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 df-iun 4959 . 2 𝑥𝐴 𝐵 = {𝑧 ∣ ∃𝑥𝐴 𝑧𝐵}
2 nfv 1914 . . 3 𝑧𝜑
3 nfiundg.1 . . . 4 𝑥𝜑
4 nfiundg.2 . . . 4 (𝜑𝑦𝐴)
5 nfiundg.3 . . . . 5 (𝜑𝑦𝐵)
65nfcrd 2886 . . . 4 (𝜑 → Ⅎ𝑦 𝑧𝐵)
73, 4, 6nfrexd 3349 . . 3 (𝜑 → Ⅎ𝑦𝑥𝐴 𝑧𝐵)
82, 7nfabd 2915 . 2 (𝜑𝑦{𝑧 ∣ ∃𝑥𝐴 𝑧𝐵})
91, 8nfcxfrd 2891 1 (𝜑𝑦 𝑥𝐴 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wnf 1783  wcel 2109  {cab 2708  wnfc 2877  wrex 3054   ciun 4957
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-13 2371  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ral 3046  df-rex 3055  df-iun 4959
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator