| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfrexdw | Structured version Visualization version GIF version | ||
| Description: Deduction version of nfrexw 3297. (Contributed by Mario Carneiro, 14-Oct-2016.) Add disjoint variable condition to avoid ax-13 2377. See nfrexd 3357 for a less restrictive version requiring more axioms. (Revised by GG, 20-Jan-2024.) |
| Ref | Expression |
|---|---|
| nfraldw.1 | ⊢ Ⅎ𝑦𝜑 |
| nfraldw.2 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
| nfraldw.3 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
| Ref | Expression |
|---|---|
| nfrexdw | ⊢ (𝜑 → Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrex2 3064 | . 2 ⊢ (∃𝑦 ∈ 𝐴 𝜓 ↔ ¬ ∀𝑦 ∈ 𝐴 ¬ 𝜓) | |
| 2 | nfraldw.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
| 3 | nfraldw.2 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
| 4 | nfraldw.3 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
| 5 | 4 | nfnd 1858 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 ¬ 𝜓) |
| 6 | 2, 3, 5 | nfraldw 3293 | . . 3 ⊢ (𝜑 → Ⅎ𝑥∀𝑦 ∈ 𝐴 ¬ 𝜓) |
| 7 | 6 | nfnd 1858 | . 2 ⊢ (𝜑 → Ⅎ𝑥 ¬ ∀𝑦 ∈ 𝐴 ¬ 𝜓) |
| 8 | 1, 7 | nfxfrd 1854 | 1 ⊢ (𝜑 → Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 Ⅎwnf 1783 Ⅎwnfc 2884 ∀wral 3052 ∃wrex 3061 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-10 2142 ax-11 2158 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1780 df-nf 1784 df-clel 2810 df-nfc 2886 df-ral 3053 df-rex 3062 |
| This theorem is referenced by: nfrexw 3297 nfunid 4894 nfttrcld 9729 nfiund 49505 |
| Copyright terms: Public domain | W3C validator |