MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfrexdw Structured version   Visualization version   GIF version

Theorem nfrexdw 3316
Description: Deduction version of nfrexw 3319. (Contributed by Mario Carneiro, 14-Oct-2016.) Add disjoint variable condition to avoid ax-13 2380. See nfrexd 3381 for a less restrictive version requiring more axioms. (Revised by GG, 20-Jan-2024.)
Hypotheses
Ref Expression
nfraldw.1 𝑦𝜑
nfraldw.2 (𝜑𝑥𝐴)
nfraldw.3 (𝜑 → Ⅎ𝑥𝜓)
Assertion
Ref Expression
nfrexdw (𝜑 → Ⅎ𝑥𝑦𝐴 𝜓)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem nfrexdw
StepHypRef Expression
1 dfrex2 3079 . 2 (∃𝑦𝐴 𝜓 ↔ ¬ ∀𝑦𝐴 ¬ 𝜓)
2 nfraldw.1 . . . 4 𝑦𝜑
3 nfraldw.2 . . . 4 (𝜑𝑥𝐴)
4 nfraldw.3 . . . . 5 (𝜑 → Ⅎ𝑥𝜓)
54nfnd 1857 . . . 4 (𝜑 → Ⅎ𝑥 ¬ 𝜓)
62, 3, 5nfraldw 3315 . . 3 (𝜑 → Ⅎ𝑥𝑦𝐴 ¬ 𝜓)
76nfnd 1857 . 2 (𝜑 → Ⅎ𝑥 ¬ ∀𝑦𝐴 ¬ 𝜓)
81, 7nfxfrd 1852 1 (𝜑 → Ⅎ𝑥𝑦𝐴 𝜓)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wnf 1781  wnfc 2893  wral 3067  wrex 3076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-10 2141  ax-11 2158  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-ex 1778  df-nf 1782  df-clel 2819  df-nfc 2895  df-ral 3068  df-rex 3077
This theorem is referenced by:  nfrexw  3319  nfunid  4937  nfttrcld  9779  nfiund  48766
  Copyright terms: Public domain W3C validator