Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfrexdw | Structured version Visualization version GIF version |
Description: Deduction version of nfrexw 3292. (Contributed by Mario Carneiro, 14-Oct-2016.) Add disjoint variable condition to avoid ax-13 2370. See nfrexdg 3339 for a less restrictive version requiring more axioms. (Revised by Gino Giotto, 20-Jan-2024.) |
Ref | Expression |
---|---|
nfraldw.1 | ⊢ Ⅎ𝑦𝜑 |
nfraldw.2 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
nfraldw.3 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Ref | Expression |
---|---|
nfrexdw | ⊢ (𝜑 → Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrex2 3073 | . 2 ⊢ (∃𝑦 ∈ 𝐴 𝜓 ↔ ¬ ∀𝑦 ∈ 𝐴 ¬ 𝜓) | |
2 | nfraldw.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
3 | nfraldw.2 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
4 | nfraldw.3 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
5 | 4 | nfnd 1859 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 ¬ 𝜓) |
6 | 2, 3, 5 | nfraldw 3288 | . . 3 ⊢ (𝜑 → Ⅎ𝑥∀𝑦 ∈ 𝐴 ¬ 𝜓) |
7 | 6 | nfnd 1859 | . 2 ⊢ (𝜑 → Ⅎ𝑥 ¬ ∀𝑦 ∈ 𝐴 ¬ 𝜓) |
8 | 1, 7 | nfxfrd 1854 | 1 ⊢ (𝜑 → Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 Ⅎwnf 1783 Ⅎwnfc 2884 ∀wral 3061 ∃wrex 3070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-10 2135 ax-11 2152 ax-12 2169 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-ex 1780 df-nf 1784 df-clel 2814 df-nfc 2886 df-ral 3062 df-rex 3071 |
This theorem is referenced by: nfrexw 3292 nfunid 4850 nfttrcld 9516 nfiund 46624 |
Copyright terms: Public domain | W3C validator |