![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nfrexdw | Structured version Visualization version GIF version |
Description: Deduction version of nfrexw 3311. (Contributed by Mario Carneiro, 14-Oct-2016.) Add disjoint variable condition to avoid ax-13 2375. See nfrexd 3371 for a less restrictive version requiring more axioms. (Revised by GG, 20-Jan-2024.) |
Ref | Expression |
---|---|
nfraldw.1 | ⊢ Ⅎ𝑦𝜑 |
nfraldw.2 | ⊢ (𝜑 → Ⅎ𝑥𝐴) |
nfraldw.3 | ⊢ (𝜑 → Ⅎ𝑥𝜓) |
Ref | Expression |
---|---|
nfrexdw | ⊢ (𝜑 → Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrex2 3071 | . 2 ⊢ (∃𝑦 ∈ 𝐴 𝜓 ↔ ¬ ∀𝑦 ∈ 𝐴 ¬ 𝜓) | |
2 | nfraldw.1 | . . . 4 ⊢ Ⅎ𝑦𝜑 | |
3 | nfraldw.2 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
4 | nfraldw.3 | . . . . 5 ⊢ (𝜑 → Ⅎ𝑥𝜓) | |
5 | 4 | nfnd 1856 | . . . 4 ⊢ (𝜑 → Ⅎ𝑥 ¬ 𝜓) |
6 | 2, 3, 5 | nfraldw 3307 | . . 3 ⊢ (𝜑 → Ⅎ𝑥∀𝑦 ∈ 𝐴 ¬ 𝜓) |
7 | 6 | nfnd 1856 | . 2 ⊢ (𝜑 → Ⅎ𝑥 ¬ ∀𝑦 ∈ 𝐴 ¬ 𝜓) |
8 | 1, 7 | nfxfrd 1851 | 1 ⊢ (𝜑 → Ⅎ𝑥∃𝑦 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 Ⅎwnf 1780 Ⅎwnfc 2888 ∀wral 3059 ∃wrex 3068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-10 2139 ax-11 2155 ax-12 2175 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ex 1777 df-nf 1781 df-clel 2814 df-nfc 2890 df-ral 3060 df-rex 3069 |
This theorem is referenced by: nfrexw 3311 nfunid 4918 nfttrcld 9748 nfiund 48905 |
Copyright terms: Public domain | W3C validator |