| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfrmow | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for restricted uniqueness. Version of nfrmo 3393 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by NM, 16-Jun-2017.) Avoid ax-13 2372. (Revised by GG, 10-Jan-2024.) Avoid ax-9 2121, ax-ext 2703. (Revised by Wolf Lammen, 21-Nov-2024.) |
| Ref | Expression |
|---|---|
| nfrmow.1 | ⊢ Ⅎ𝑥𝐴 |
| nfrmow.2 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nfrmow | ⊢ Ⅎ𝑥∃*𝑦 ∈ 𝐴 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rmo 3346 | . 2 ⊢ (∃*𝑦 ∈ 𝐴 𝜑 ↔ ∃*𝑦(𝑦 ∈ 𝐴 ∧ 𝜑)) | |
| 2 | nfrmow.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 2 | nfcri 2886 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
| 4 | nfrmow.2 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 5 | 3, 4 | nfan 1900 | . . 3 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝜑) |
| 6 | 5 | nfmov 2555 | . 2 ⊢ Ⅎ𝑥∃*𝑦(𝑦 ∈ 𝐴 ∧ 𝜑) |
| 7 | 1, 6 | nfxfr 1854 | 1 ⊢ Ⅎ𝑥∃*𝑦 ∈ 𝐴 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 Ⅎwnf 1784 ∈ wcel 2111 ∃*wmo 2533 Ⅎwnfc 2879 ∃*wrmo 3345 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-10 2144 ax-11 2160 ax-12 2180 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-mo 2535 df-clel 2806 df-nfc 2881 df-rmo 3346 |
| This theorem is referenced by: 2rmorex 3713 2reurex 3719 |
| Copyright terms: Public domain | W3C validator |