Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nfrmow | Structured version Visualization version GIF version |
Description: Bound-variable hypothesis builder for restricted uniqueness. Version of nfrmo 3308 with a disjoint variable condition, which does not require ax-13 2374. (Contributed by NM, 16-Jun-2017.) (Revised by Gino Giotto, 10-Jan-2024.) Avoid ax-9 2120, ax-ext 2711. (Revised by Wolf Lammen, 21-Nov-2024.) |
Ref | Expression |
---|---|
nfreuw.1 | ⊢ Ⅎ𝑥𝐴 |
nfreuw.2 | ⊢ Ⅎ𝑥𝜑 |
Ref | Expression |
---|---|
nfrmow | ⊢ Ⅎ𝑥∃*𝑦 ∈ 𝐴 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rmo 3074 | . 2 ⊢ (∃*𝑦 ∈ 𝐴 𝜑 ↔ ∃*𝑦(𝑦 ∈ 𝐴 ∧ 𝜑)) | |
2 | nfreuw.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
3 | 2 | nfcri 2896 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
4 | nfreuw.2 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
5 | 3, 4 | nfan 1906 | . . 3 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝜑) |
6 | 5 | nfmov 2562 | . 2 ⊢ Ⅎ𝑥∃*𝑦(𝑦 ∈ 𝐴 ∧ 𝜑) |
7 | 1, 6 | nfxfr 1859 | 1 ⊢ Ⅎ𝑥∃*𝑦 ∈ 𝐴 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 Ⅎwnf 1790 ∈ wcel 2110 ∃*wmo 2540 Ⅎwnfc 2889 ∃*wrmo 3069 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-10 2141 ax-11 2158 ax-12 2175 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-tru 1545 df-ex 1787 df-nf 1791 df-mo 2542 df-clel 2818 df-nfc 2891 df-rmo 3074 |
This theorem is referenced by: 2rmorex 3693 2reurex 3699 |
Copyright terms: Public domain | W3C validator |