MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfrmow Structured version   Visualization version   GIF version

Theorem nfrmow 3407
Description: Bound-variable hypothesis builder for restricted uniqueness. Version of nfrmo 3428 with a disjoint variable condition, which does not require ax-13 2366. (Contributed by NM, 16-Jun-2017.) Avoid ax-13 2366. (Revised by Gino Giotto, 10-Jan-2024.) Avoid ax-9 2108, ax-ext 2699. (Revised by Wolf Lammen, 21-Nov-2024.)
Hypotheses
Ref Expression
nfrmow.1 𝑥𝐴
nfrmow.2 𝑥𝜑
Assertion
Ref Expression
nfrmow 𝑥∃*𝑦𝐴 𝜑
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥,𝑦)

Proof of Theorem nfrmow
StepHypRef Expression
1 df-rmo 3374 . 2 (∃*𝑦𝐴 𝜑 ↔ ∃*𝑦(𝑦𝐴𝜑))
2 nfrmow.1 . . . . 5 𝑥𝐴
32nfcri 2886 . . . 4 𝑥 𝑦𝐴
4 nfrmow.2 . . . 4 𝑥𝜑
53, 4nfan 1894 . . 3 𝑥(𝑦𝐴𝜑)
65nfmov 2549 . 2 𝑥∃*𝑦(𝑦𝐴𝜑)
71, 6nfxfr 1847 1 𝑥∃*𝑦𝐴 𝜑
Colors of variables: wff setvar class
Syntax hints:  wa 394  wnf 1777  wcel 2098  ∃*wmo 2527  wnfc 2879  ∃*wrmo 3373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-10 2129  ax-11 2146  ax-12 2166
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-tru 1536  df-ex 1774  df-nf 1778  df-mo 2529  df-clel 2806  df-nfc 2881  df-rmo 3374
This theorem is referenced by:  2rmorex  3751  2reurex  3757
  Copyright terms: Public domain W3C validator