| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfrmow | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for restricted uniqueness. Version of nfrmo 3418 with a disjoint variable condition, which does not require ax-13 2377. (Contributed by NM, 16-Jun-2017.) Avoid ax-13 2377. (Revised by GG, 10-Jan-2024.) Avoid ax-9 2119, ax-ext 2708. (Revised by Wolf Lammen, 21-Nov-2024.) |
| Ref | Expression |
|---|---|
| nfrmow.1 | ⊢ Ⅎ𝑥𝐴 |
| nfrmow.2 | ⊢ Ⅎ𝑥𝜑 |
| Ref | Expression |
|---|---|
| nfrmow | ⊢ Ⅎ𝑥∃*𝑦 ∈ 𝐴 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rmo 3364 | . 2 ⊢ (∃*𝑦 ∈ 𝐴 𝜑 ↔ ∃*𝑦(𝑦 ∈ 𝐴 ∧ 𝜑)) | |
| 2 | nfrmow.1 | . . . . 5 ⊢ Ⅎ𝑥𝐴 | |
| 3 | 2 | nfcri 2891 | . . . 4 ⊢ Ⅎ𝑥 𝑦 ∈ 𝐴 |
| 4 | nfrmow.2 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 5 | 3, 4 | nfan 1899 | . . 3 ⊢ Ⅎ𝑥(𝑦 ∈ 𝐴 ∧ 𝜑) |
| 6 | 5 | nfmov 2560 | . 2 ⊢ Ⅎ𝑥∃*𝑦(𝑦 ∈ 𝐴 ∧ 𝜑) |
| 7 | 1, 6 | nfxfr 1853 | 1 ⊢ Ⅎ𝑥∃*𝑦 ∈ 𝐴 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 Ⅎwnf 1783 ∈ wcel 2109 ∃*wmo 2538 Ⅎwnfc 2884 ∃*wrmo 3363 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-10 2142 ax-11 2158 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-mo 2540 df-clel 2810 df-nfc 2886 df-rmo 3364 |
| This theorem is referenced by: 2rmorex 3742 2reurex 3748 |
| Copyright terms: Public domain | W3C validator |