![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 2rmorex | Structured version Visualization version GIF version |
Description: Double restricted quantification with "at most one", analogous to 2moex 2697. (Contributed by Alexander van der Vekens, 17-Jun-2017.) |
Ref | Expression |
---|---|
2rmorex | ⊢ (∃*𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → ∀𝑦 ∈ 𝐵 ∃*𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2939 | . . 3 ⊢ Ⅎ𝑦𝐴 | |
2 | nfre1 3183 | . . 3 ⊢ Ⅎ𝑦∃𝑦 ∈ 𝐵 𝜑 | |
3 | 1, 2 | nfrmo 3294 | . 2 ⊢ Ⅎ𝑦∃*𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 |
4 | rmoim 3603 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → ∃𝑦 ∈ 𝐵 𝜑) → (∃*𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → ∃*𝑥 ∈ 𝐴 𝜑)) | |
5 | rspe 3181 | . . . . 5 ⊢ ((𝑦 ∈ 𝐵 ∧ 𝜑) → ∃𝑦 ∈ 𝐵 𝜑) | |
6 | 5 | ex 402 | . . . 4 ⊢ (𝑦 ∈ 𝐵 → (𝜑 → ∃𝑦 ∈ 𝐵 𝜑)) |
7 | 6 | ralrimivw 3146 | . . 3 ⊢ (𝑦 ∈ 𝐵 → ∀𝑥 ∈ 𝐴 (𝜑 → ∃𝑦 ∈ 𝐵 𝜑)) |
8 | 4, 7 | syl11 33 | . 2 ⊢ (∃*𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → (𝑦 ∈ 𝐵 → ∃*𝑥 ∈ 𝐴 𝜑)) |
9 | 3, 8 | ralrimi 3136 | 1 ⊢ (∃*𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → ∀𝑦 ∈ 𝐵 ∃*𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2157 ∀wral 3087 ∃wrex 3088 ∃*wrmo 3090 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-mo 2590 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ral 3092 df-rex 3093 df-rmo 3095 |
This theorem is referenced by: 2reu2 41952 |
Copyright terms: Public domain | W3C validator |