MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2rmorex Structured version   Visualization version   GIF version

Theorem 2rmorex 3708
Description: Double restricted quantification with "at most one", analogous to 2moex 2635. (Contributed by Alexander van der Vekens, 17-Jun-2017.)
Assertion
Ref Expression
2rmorex (∃*𝑥𝐴𝑦𝐵 𝜑 → ∀𝑦𝐵 ∃*𝑥𝐴 𝜑)
Distinct variable groups:   𝑦,𝐴   𝑥,𝐵   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑦)

Proof of Theorem 2rmorex
StepHypRef Expression
1 nfcv 2894 . . 3 𝑦𝐴
2 nfre1 3257 . . 3 𝑦𝑦𝐵 𝜑
31, 2nfrmow 3375 . 2 𝑦∃*𝑥𝐴𝑦𝐵 𝜑
4 rmoim 3694 . . 3 (∀𝑥𝐴 (𝜑 → ∃𝑦𝐵 𝜑) → (∃*𝑥𝐴𝑦𝐵 𝜑 → ∃*𝑥𝐴 𝜑))
5 rspe 3222 . . . . 5 ((𝑦𝐵𝜑) → ∃𝑦𝐵 𝜑)
65ex 412 . . . 4 (𝑦𝐵 → (𝜑 → ∃𝑦𝐵 𝜑))
76ralrimivw 3128 . . 3 (𝑦𝐵 → ∀𝑥𝐴 (𝜑 → ∃𝑦𝐵 𝜑))
84, 7syl11 33 . 2 (∃*𝑥𝐴𝑦𝐵 𝜑 → (𝑦𝐵 → ∃*𝑥𝐴 𝜑))
93, 8ralrimi 3230 1 (∃*𝑥𝐴𝑦𝐵 𝜑 → ∀𝑦𝐵 ∃*𝑥𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  wral 3047  wrex 3056  ∃*wrmo 3345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-10 2144  ax-11 2160  ax-12 2180
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-nf 1785  df-mo 2535  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rmo 3346
This theorem is referenced by:  2reu2  3844
  Copyright terms: Public domain W3C validator