Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  2rmorex Structured version   Visualization version   GIF version

Theorem 2rmorex 3731
 Description: Double restricted quantification with "at most one", analogous to 2moex 2728. (Contributed by Alexander van der Vekens, 17-Jun-2017.)
Assertion
Ref Expression
2rmorex (∃*𝑥𝐴𝑦𝐵 𝜑 → ∀𝑦𝐵 ∃*𝑥𝐴 𝜑)
Distinct variable groups:   𝑦,𝐴   𝑥,𝐵   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑦)

Proof of Theorem 2rmorex
StepHypRef Expression
1 nfcv 2982 . . 3 𝑦𝐴
2 nfre1 3298 . . 3 𝑦𝑦𝐵 𝜑
31, 2nfrmow 3366 . 2 𝑦∃*𝑥𝐴𝑦𝐵 𝜑
4 rmoim 3717 . . 3 (∀𝑥𝐴 (𝜑 → ∃𝑦𝐵 𝜑) → (∃*𝑥𝐴𝑦𝐵 𝜑 → ∃*𝑥𝐴 𝜑))
5 rspe 3296 . . . . 5 ((𝑦𝐵𝜑) → ∃𝑦𝐵 𝜑)
65ex 416 . . . 4 (𝑦𝐵 → (𝜑 → ∃𝑦𝐵 𝜑))
76ralrimivw 3178 . . 3 (𝑦𝐵 → ∀𝑥𝐴 (𝜑 → ∃𝑦𝐵 𝜑))
84, 7syl11 33 . 2 (∃*𝑥𝐴𝑦𝐵 𝜑 → (𝑦𝐵 → ∃*𝑥𝐴 𝜑))
93, 8ralrimi 3210 1 (∃*𝑥𝐴𝑦𝐵 𝜑 → ∀𝑦𝐵 ∃*𝑥𝐴 𝜑)
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∈ wcel 2115  ∀wral 3133  ∃wrex 3134  ∃*wrmo 3136 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2117  ax-9 2125  ax-10 2146  ax-11 2162  ax-12 2179  ax-ext 2796 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-tru 1541  df-ex 1782  df-nf 1786  df-mo 2624  df-cleq 2817  df-clel 2896  df-nfc 2964  df-ral 3138  df-rex 3139  df-rmo 3141 This theorem is referenced by:  2reu2  3865
 Copyright terms: Public domain W3C validator