| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > 2rmorex | Structured version Visualization version GIF version | ||
| Description: Double restricted quantification with "at most one", analogous to 2moex 2639. (Contributed by Alexander van der Vekens, 17-Jun-2017.) |
| Ref | Expression |
|---|---|
| 2rmorex | ⊢ (∃*𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → ∀𝑦 ∈ 𝐵 ∃*𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfcv 2898 | . . 3 ⊢ Ⅎ𝑦𝐴 | |
| 2 | nfre1 3267 | . . 3 ⊢ Ⅎ𝑦∃𝑦 ∈ 𝐵 𝜑 | |
| 3 | 1, 2 | nfrmow 3392 | . 2 ⊢ Ⅎ𝑦∃*𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 |
| 4 | rmoim 3723 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 → ∃𝑦 ∈ 𝐵 𝜑) → (∃*𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → ∃*𝑥 ∈ 𝐴 𝜑)) | |
| 5 | rspe 3232 | . . . . 5 ⊢ ((𝑦 ∈ 𝐵 ∧ 𝜑) → ∃𝑦 ∈ 𝐵 𝜑) | |
| 6 | 5 | ex 412 | . . . 4 ⊢ (𝑦 ∈ 𝐵 → (𝜑 → ∃𝑦 ∈ 𝐵 𝜑)) |
| 7 | 6 | ralrimivw 3136 | . . 3 ⊢ (𝑦 ∈ 𝐵 → ∀𝑥 ∈ 𝐴 (𝜑 → ∃𝑦 ∈ 𝐵 𝜑)) |
| 8 | 4, 7 | syl11 33 | . 2 ⊢ (∃*𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → (𝑦 ∈ 𝐵 → ∃*𝑥 ∈ 𝐴 𝜑)) |
| 9 | 3, 8 | ralrimi 3240 | 1 ⊢ (∃*𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 → ∀𝑦 ∈ 𝐵 ∃*𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2108 ∀wral 3051 ∃wrex 3060 ∃*wrmo 3358 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-10 2141 ax-11 2157 ax-12 2177 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-ex 1780 df-nf 1784 df-mo 2539 df-clel 2809 df-nfc 2885 df-ral 3052 df-rex 3061 df-rmo 3359 |
| This theorem is referenced by: 2reu2 3873 |
| Copyright terms: Public domain | W3C validator |