| Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > usgrcyclgt2v | Structured version Visualization version GIF version | ||
| Description: A simple graph with a non-trivial cycle must have at least 3 vertices. (Contributed by BTernaryTau, 5-Oct-2023.) |
| Ref | Expression |
|---|---|
| usgrcyclgt2v.1 | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| usgrcyclgt2v | ⊢ ((𝐺 ∈ USGraph ∧ 𝐹(Cycles‘𝐺)𝑃 ∧ 𝐹 ≠ ∅) → 2 < (♯‘𝑉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2re 12205 | . . . 4 ⊢ 2 ∈ ℝ | |
| 2 | 1 | rexri 11176 | . . 3 ⊢ 2 ∈ ℝ* |
| 3 | 2 | a1i 11 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ 𝐹(Cycles‘𝐺)𝑃 ∧ 𝐹 ≠ ∅) → 2 ∈ ℝ*) |
| 4 | cycliswlk 29783 | . . . 4 ⊢ (𝐹(Cycles‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) | |
| 5 | wlkcl 29601 | . . . 4 ⊢ (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0) | |
| 6 | nn0xnn0 12464 | . . . 4 ⊢ ((♯‘𝐹) ∈ ℕ0 → (♯‘𝐹) ∈ ℕ0*) | |
| 7 | xnn0xr 12465 | . . . 4 ⊢ ((♯‘𝐹) ∈ ℕ0* → (♯‘𝐹) ∈ ℝ*) | |
| 8 | 4, 5, 6, 7 | 4syl 19 | . . 3 ⊢ (𝐹(Cycles‘𝐺)𝑃 → (♯‘𝐹) ∈ ℝ*) |
| 9 | 8 | 3ad2ant2 1134 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ 𝐹(Cycles‘𝐺)𝑃 ∧ 𝐹 ≠ ∅) → (♯‘𝐹) ∈ ℝ*) |
| 10 | usgrcyclgt2v.1 | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 11 | 10 | fvexi 6842 | . . . 4 ⊢ 𝑉 ∈ V |
| 12 | hashxnn0 14252 | . . . 4 ⊢ (𝑉 ∈ V → (♯‘𝑉) ∈ ℕ0*) | |
| 13 | xnn0xr 12465 | . . . 4 ⊢ ((♯‘𝑉) ∈ ℕ0* → (♯‘𝑉) ∈ ℝ*) | |
| 14 | 11, 12, 13 | mp2b 10 | . . 3 ⊢ (♯‘𝑉) ∈ ℝ* |
| 15 | 14 | a1i 11 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ 𝐹(Cycles‘𝐺)𝑃 ∧ 𝐹 ≠ ∅) → (♯‘𝑉) ∈ ℝ*) |
| 16 | usgrgt2cycl 35181 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ 𝐹(Cycles‘𝐺)𝑃 ∧ 𝐹 ≠ ∅) → 2 < (♯‘𝐹)) | |
| 17 | cyclispth 29782 | . . . 4 ⊢ (𝐹(Cycles‘𝐺)𝑃 → 𝐹(Paths‘𝐺)𝑃) | |
| 18 | 10 | pthhashvtx 35179 | . . . 4 ⊢ (𝐹(Paths‘𝐺)𝑃 → (♯‘𝐹) ≤ (♯‘𝑉)) |
| 19 | 17, 18 | syl 17 | . . 3 ⊢ (𝐹(Cycles‘𝐺)𝑃 → (♯‘𝐹) ≤ (♯‘𝑉)) |
| 20 | 19 | 3ad2ant2 1134 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ 𝐹(Cycles‘𝐺)𝑃 ∧ 𝐹 ≠ ∅) → (♯‘𝐹) ≤ (♯‘𝑉)) |
| 21 | 3, 9, 15, 16, 20 | xrltletrd 13066 | 1 ⊢ ((𝐺 ∈ USGraph ∧ 𝐹(Cycles‘𝐺)𝑃 ∧ 𝐹 ≠ ∅) → 2 < (♯‘𝑉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 Vcvv 3436 ∅c0 4282 class class class wbr 5093 ‘cfv 6487 ℝ*cxr 11151 < clt 11152 ≤ cle 11153 2c2 12186 ℕ0cn0 12387 ℕ0*cxnn0 12460 ♯chash 14243 Vtxcvtx 28981 USGraphcusgr 29134 Walkscwlks 29582 Pathscpths 29695 Cyclesccycls 29770 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11068 ax-resscn 11069 ax-1cn 11070 ax-icn 11071 ax-addcl 11072 ax-addrcl 11073 ax-mulcl 11074 ax-mulrcl 11075 ax-mulcom 11076 ax-addass 11077 ax-mulass 11078 ax-distr 11079 ax-i2m1 11080 ax-1ne0 11081 ax-1rid 11082 ax-rnegex 11083 ax-rrecex 11084 ax-cnre 11085 ax-pre-lttri 11086 ax-pre-lttrn 11087 ax-pre-ltadd 11088 ax-pre-mulgt0 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-2o 8392 df-oadd 8395 df-er 8628 df-map 8758 df-pm 8759 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-dju 9800 df-card 9838 df-pnf 11154 df-mnf 11155 df-xr 11156 df-ltxr 11157 df-le 11158 df-sub 11352 df-neg 11353 df-nn 12132 df-2 12194 df-n0 12388 df-xnn0 12461 df-z 12475 df-uz 12739 df-fz 13414 df-fzo 13561 df-hash 14244 df-word 14427 df-edg 29033 df-uhgr 29043 df-upgr 29067 df-umgr 29068 df-uspgr 29135 df-usgr 29136 df-wlks 29585 df-trls 29676 df-pths 29699 df-crcts 29771 df-cycls 29772 |
| This theorem is referenced by: acycgr2v 35201 cusgracyclt3v 35207 |
| Copyright terms: Public domain | W3C validator |