Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  usgrcyclgt2v Structured version   Visualization version   GIF version

Theorem usgrcyclgt2v 35112
Description: A simple graph with a non-trivial cycle must have at least 3 vertices. (Contributed by BTernaryTau, 5-Oct-2023.)
Hypothesis
Ref Expression
usgrcyclgt2v.1 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
usgrcyclgt2v ((𝐺 ∈ USGraph ∧ 𝐹(Cycles‘𝐺)𝑃𝐹 ≠ ∅) → 2 < (♯‘𝑉))

Proof of Theorem usgrcyclgt2v
StepHypRef Expression
1 2re 12238 . . . 4 2 ∈ ℝ
21rexri 11210 . . 3 2 ∈ ℝ*
32a1i 11 . 2 ((𝐺 ∈ USGraph ∧ 𝐹(Cycles‘𝐺)𝑃𝐹 ≠ ∅) → 2 ∈ ℝ*)
4 cycliswlk 29779 . . . 4 (𝐹(Cycles‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
5 wlkcl 29597 . . . 4 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0)
6 nn0xnn0 12497 . . . 4 ((♯‘𝐹) ∈ ℕ0 → (♯‘𝐹) ∈ ℕ0*)
7 xnn0xr 12498 . . . 4 ((♯‘𝐹) ∈ ℕ0* → (♯‘𝐹) ∈ ℝ*)
84, 5, 6, 74syl 19 . . 3 (𝐹(Cycles‘𝐺)𝑃 → (♯‘𝐹) ∈ ℝ*)
983ad2ant2 1134 . 2 ((𝐺 ∈ USGraph ∧ 𝐹(Cycles‘𝐺)𝑃𝐹 ≠ ∅) → (♯‘𝐹) ∈ ℝ*)
10 usgrcyclgt2v.1 . . . . 5 𝑉 = (Vtx‘𝐺)
1110fvexi 6854 . . . 4 𝑉 ∈ V
12 hashxnn0 14282 . . . 4 (𝑉 ∈ V → (♯‘𝑉) ∈ ℕ0*)
13 xnn0xr 12498 . . . 4 ((♯‘𝑉) ∈ ℕ0* → (♯‘𝑉) ∈ ℝ*)
1411, 12, 13mp2b 10 . . 3 (♯‘𝑉) ∈ ℝ*
1514a1i 11 . 2 ((𝐺 ∈ USGraph ∧ 𝐹(Cycles‘𝐺)𝑃𝐹 ≠ ∅) → (♯‘𝑉) ∈ ℝ*)
16 usgrgt2cycl 35111 . 2 ((𝐺 ∈ USGraph ∧ 𝐹(Cycles‘𝐺)𝑃𝐹 ≠ ∅) → 2 < (♯‘𝐹))
17 cyclispth 29778 . . . 4 (𝐹(Cycles‘𝐺)𝑃𝐹(Paths‘𝐺)𝑃)
1810pthhashvtx 35109 . . . 4 (𝐹(Paths‘𝐺)𝑃 → (♯‘𝐹) ≤ (♯‘𝑉))
1917, 18syl 17 . . 3 (𝐹(Cycles‘𝐺)𝑃 → (♯‘𝐹) ≤ (♯‘𝑉))
20193ad2ant2 1134 . 2 ((𝐺 ∈ USGraph ∧ 𝐹(Cycles‘𝐺)𝑃𝐹 ≠ ∅) → (♯‘𝐹) ≤ (♯‘𝑉))
213, 9, 15, 16, 20xrltletrd 13099 1 ((𝐺 ∈ USGraph ∧ 𝐹(Cycles‘𝐺)𝑃𝐹 ≠ ∅) → 2 < (♯‘𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2109  wne 2925  Vcvv 3444  c0 4292   class class class wbr 5102  cfv 6499  *cxr 11185   < clt 11186  cle 11187  2c2 12219  0cn0 12420  0*cxnn0 12493  chash 14273  Vtxcvtx 28977  USGraphcusgr 29130  Walkscwlks 29578  Pathscpths 29691  Cyclesccycls 29766
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11102  ax-resscn 11103  ax-1cn 11104  ax-icn 11105  ax-addcl 11106  ax-addrcl 11107  ax-mulcl 11108  ax-mulrcl 11109  ax-mulcom 11110  ax-addass 11111  ax-mulass 11112  ax-distr 11113  ax-i2m1 11114  ax-1ne0 11115  ax-1rid 11116  ax-rnegex 11117  ax-rrecex 11118  ax-cnre 11119  ax-pre-lttri 11120  ax-pre-lttrn 11121  ax-pre-ltadd 11122  ax-pre-mulgt0 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-er 8648  df-map 8778  df-pm 8779  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-dju 9832  df-card 9870  df-pnf 11188  df-mnf 11189  df-xr 11190  df-ltxr 11191  df-le 11192  df-sub 11385  df-neg 11386  df-nn 12165  df-2 12227  df-n0 12421  df-xnn0 12494  df-z 12508  df-uz 12772  df-fz 13447  df-fzo 13594  df-hash 14274  df-word 14457  df-edg 29029  df-uhgr 29039  df-upgr 29063  df-umgr 29064  df-uspgr 29131  df-usgr 29132  df-wlks 29581  df-trls 29672  df-pths 29695  df-crcts 29767  df-cycls 29768
This theorem is referenced by:  acycgr2v  35131  cusgracyclt3v  35137
  Copyright terms: Public domain W3C validator