Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  usgrcyclgt2v Structured version   Visualization version   GIF version

Theorem usgrcyclgt2v 35099
Description: A simple graph with a non-trivial cycle must have at least 3 vertices. (Contributed by BTernaryTau, 5-Oct-2023.)
Hypothesis
Ref Expression
usgrcyclgt2v.1 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
usgrcyclgt2v ((𝐺 ∈ USGraph ∧ 𝐹(Cycles‘𝐺)𝑃𝐹 ≠ ∅) → 2 < (♯‘𝑉))

Proof of Theorem usgrcyclgt2v
StepHypRef Expression
1 2re 12367 . . . 4 2 ∈ ℝ
21rexri 11348 . . 3 2 ∈ ℝ*
32a1i 11 . 2 ((𝐺 ∈ USGraph ∧ 𝐹(Cycles‘𝐺)𝑃𝐹 ≠ ∅) → 2 ∈ ℝ*)
4 cycliswlk 29834 . . . 4 (𝐹(Cycles‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
5 wlkcl 29651 . . . 4 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0)
6 nn0xnn0 12629 . . . 4 ((♯‘𝐹) ∈ ℕ0 → (♯‘𝐹) ∈ ℕ0*)
7 xnn0xr 12630 . . . 4 ((♯‘𝐹) ∈ ℕ0* → (♯‘𝐹) ∈ ℝ*)
84, 5, 6, 74syl 19 . . 3 (𝐹(Cycles‘𝐺)𝑃 → (♯‘𝐹) ∈ ℝ*)
983ad2ant2 1134 . 2 ((𝐺 ∈ USGraph ∧ 𝐹(Cycles‘𝐺)𝑃𝐹 ≠ ∅) → (♯‘𝐹) ∈ ℝ*)
10 usgrcyclgt2v.1 . . . . 5 𝑉 = (Vtx‘𝐺)
1110fvexi 6934 . . . 4 𝑉 ∈ V
12 hashxnn0 14388 . . . 4 (𝑉 ∈ V → (♯‘𝑉) ∈ ℕ0*)
13 xnn0xr 12630 . . . 4 ((♯‘𝑉) ∈ ℕ0* → (♯‘𝑉) ∈ ℝ*)
1411, 12, 13mp2b 10 . . 3 (♯‘𝑉) ∈ ℝ*
1514a1i 11 . 2 ((𝐺 ∈ USGraph ∧ 𝐹(Cycles‘𝐺)𝑃𝐹 ≠ ∅) → (♯‘𝑉) ∈ ℝ*)
16 usgrgt2cycl 35098 . 2 ((𝐺 ∈ USGraph ∧ 𝐹(Cycles‘𝐺)𝑃𝐹 ≠ ∅) → 2 < (♯‘𝐹))
17 cyclispth 29833 . . . 4 (𝐹(Cycles‘𝐺)𝑃𝐹(Paths‘𝐺)𝑃)
1810pthhashvtx 35095 . . . 4 (𝐹(Paths‘𝐺)𝑃 → (♯‘𝐹) ≤ (♯‘𝑉))
1917, 18syl 17 . . 3 (𝐹(Cycles‘𝐺)𝑃 → (♯‘𝐹) ≤ (♯‘𝑉))
20193ad2ant2 1134 . 2 ((𝐺 ∈ USGraph ∧ 𝐹(Cycles‘𝐺)𝑃𝐹 ≠ ∅) → (♯‘𝐹) ≤ (♯‘𝑉))
213, 9, 15, 16, 20xrltletrd 13223 1 ((𝐺 ∈ USGraph ∧ 𝐹(Cycles‘𝐺)𝑃𝐹 ≠ ∅) → 2 < (♯‘𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1087   = wceq 1537  wcel 2108  wne 2946  Vcvv 3488  c0 4352   class class class wbr 5166  cfv 6573  *cxr 11323   < clt 11324  cle 11325  2c2 12348  0cn0 12553  0*cxnn0 12625  chash 14379  Vtxcvtx 29031  USGraphcusgr 29184  Walkscwlks 29632  Pathscpths 29748  Cyclesccycls 29821
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-ifp 1064  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-dju 9970  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-n0 12554  df-xnn0 12626  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-hash 14380  df-word 14563  df-edg 29083  df-uhgr 29093  df-upgr 29117  df-umgr 29118  df-uspgr 29185  df-usgr 29186  df-wlks 29635  df-trls 29728  df-pths 29752  df-crcts 29822  df-cycls 29823
This theorem is referenced by:  acycgr2v  35118  cusgracyclt3v  35124
  Copyright terms: Public domain W3C validator