![]() |
Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > usgrcyclgt2v | Structured version Visualization version GIF version |
Description: A simple graph with a non-trivial cycle must have at least 3 vertices. (Contributed by BTernaryTau, 5-Oct-2023.) |
Ref | Expression |
---|---|
usgrcyclgt2v.1 | β’ π = (VtxβπΊ) |
Ref | Expression |
---|---|
usgrcyclgt2v | β’ ((πΊ β USGraph β§ πΉ(CyclesβπΊ)π β§ πΉ β β ) β 2 < (β―βπ)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 2re 12282 | . . . 4 β’ 2 β β | |
2 | 1 | rexri 11268 | . . 3 β’ 2 β β* |
3 | 2 | a1i 11 | . 2 β’ ((πΊ β USGraph β§ πΉ(CyclesβπΊ)π β§ πΉ β β ) β 2 β β*) |
4 | cycliswlk 29044 | . . . . 5 β’ (πΉ(CyclesβπΊ)π β πΉ(WalksβπΊ)π) | |
5 | wlkcl 28861 | . . . . 5 β’ (πΉ(WalksβπΊ)π β (β―βπΉ) β β0) | |
6 | 4, 5 | syl 17 | . . . 4 β’ (πΉ(CyclesβπΊ)π β (β―βπΉ) β β0) |
7 | nn0xnn0 12544 | . . . 4 β’ ((β―βπΉ) β β0 β (β―βπΉ) β β0*) | |
8 | xnn0xr 12545 | . . . 4 β’ ((β―βπΉ) β β0* β (β―βπΉ) β β*) | |
9 | 6, 7, 8 | 3syl 18 | . . 3 β’ (πΉ(CyclesβπΊ)π β (β―βπΉ) β β*) |
10 | 9 | 3ad2ant2 1134 | . 2 β’ ((πΊ β USGraph β§ πΉ(CyclesβπΊ)π β§ πΉ β β ) β (β―βπΉ) β β*) |
11 | usgrcyclgt2v.1 | . . . . 5 β’ π = (VtxβπΊ) | |
12 | 11 | fvexi 6902 | . . . 4 β’ π β V |
13 | hashxnn0 14295 | . . . 4 β’ (π β V β (β―βπ) β β0*) | |
14 | xnn0xr 12545 | . . . 4 β’ ((β―βπ) β β0* β (β―βπ) β β*) | |
15 | 12, 13, 14 | mp2b 10 | . . 3 β’ (β―βπ) β β* |
16 | 15 | a1i 11 | . 2 β’ ((πΊ β USGraph β§ πΉ(CyclesβπΊ)π β§ πΉ β β ) β (β―βπ) β β*) |
17 | usgrgt2cycl 34109 | . 2 β’ ((πΊ β USGraph β§ πΉ(CyclesβπΊ)π β§ πΉ β β ) β 2 < (β―βπΉ)) | |
18 | cyclispth 29043 | . . . 4 β’ (πΉ(CyclesβπΊ)π β πΉ(PathsβπΊ)π) | |
19 | 11 | pthhashvtx 34106 | . . . 4 β’ (πΉ(PathsβπΊ)π β (β―βπΉ) β€ (β―βπ)) |
20 | 18, 19 | syl 17 | . . 3 β’ (πΉ(CyclesβπΊ)π β (β―βπΉ) β€ (β―βπ)) |
21 | 20 | 3ad2ant2 1134 | . 2 β’ ((πΊ β USGraph β§ πΉ(CyclesβπΊ)π β§ πΉ β β ) β (β―βπΉ) β€ (β―βπ)) |
22 | 3, 10, 16, 17, 21 | xrltletrd 13136 | 1 β’ ((πΊ β USGraph β§ πΉ(CyclesβπΊ)π β§ πΉ β β ) β 2 < (β―βπ)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ w3a 1087 = wceq 1541 β wcel 2106 β wne 2940 Vcvv 3474 β c0 4321 class class class wbr 5147 βcfv 6540 β*cxr 11243 < clt 11244 β€ cle 11245 2c2 12263 β0cn0 12468 β0*cxnn0 12540 β―chash 14286 Vtxcvtx 28245 USGraphcusgr 28398 Walkscwlks 28842 Pathscpths 28958 Cyclesccycls 29031 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-ifp 1062 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-2o 8463 df-oadd 8466 df-er 8699 df-map 8818 df-pm 8819 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-dju 9892 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-n0 12469 df-xnn0 12541 df-z 12555 df-uz 12819 df-fz 13481 df-fzo 13624 df-hash 14287 df-word 14461 df-edg 28297 df-uhgr 28307 df-upgr 28331 df-umgr 28332 df-uspgr 28399 df-usgr 28400 df-wlks 28845 df-trls 28938 df-pths 28962 df-crcts 29032 df-cycls 29033 |
This theorem is referenced by: acycgr2v 34129 cusgracyclt3v 34135 |
Copyright terms: Public domain | W3C validator |