| Mathbox for BTernaryTau |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > usgrcyclgt2v | Structured version Visualization version GIF version | ||
| Description: A simple graph with a non-trivial cycle must have at least 3 vertices. (Contributed by BTernaryTau, 5-Oct-2023.) |
| Ref | Expression |
|---|---|
| usgrcyclgt2v.1 | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| usgrcyclgt2v | ⊢ ((𝐺 ∈ USGraph ∧ 𝐹(Cycles‘𝐺)𝑃 ∧ 𝐹 ≠ ∅) → 2 < (♯‘𝑉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2re 12191 | . . . 4 ⊢ 2 ∈ ℝ | |
| 2 | 1 | rexri 11162 | . . 3 ⊢ 2 ∈ ℝ* |
| 3 | 2 | a1i 11 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ 𝐹(Cycles‘𝐺)𝑃 ∧ 𝐹 ≠ ∅) → 2 ∈ ℝ*) |
| 4 | cycliswlk 29769 | . . . 4 ⊢ (𝐹(Cycles‘𝐺)𝑃 → 𝐹(Walks‘𝐺)𝑃) | |
| 5 | wlkcl 29587 | . . . 4 ⊢ (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0) | |
| 6 | nn0xnn0 12450 | . . . 4 ⊢ ((♯‘𝐹) ∈ ℕ0 → (♯‘𝐹) ∈ ℕ0*) | |
| 7 | xnn0xr 12451 | . . . 4 ⊢ ((♯‘𝐹) ∈ ℕ0* → (♯‘𝐹) ∈ ℝ*) | |
| 8 | 4, 5, 6, 7 | 4syl 19 | . . 3 ⊢ (𝐹(Cycles‘𝐺)𝑃 → (♯‘𝐹) ∈ ℝ*) |
| 9 | 8 | 3ad2ant2 1134 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ 𝐹(Cycles‘𝐺)𝑃 ∧ 𝐹 ≠ ∅) → (♯‘𝐹) ∈ ℝ*) |
| 10 | usgrcyclgt2v.1 | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 11 | 10 | fvexi 6831 | . . . 4 ⊢ 𝑉 ∈ V |
| 12 | hashxnn0 14238 | . . . 4 ⊢ (𝑉 ∈ V → (♯‘𝑉) ∈ ℕ0*) | |
| 13 | xnn0xr 12451 | . . . 4 ⊢ ((♯‘𝑉) ∈ ℕ0* → (♯‘𝑉) ∈ ℝ*) | |
| 14 | 11, 12, 13 | mp2b 10 | . . 3 ⊢ (♯‘𝑉) ∈ ℝ* |
| 15 | 14 | a1i 11 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ 𝐹(Cycles‘𝐺)𝑃 ∧ 𝐹 ≠ ∅) → (♯‘𝑉) ∈ ℝ*) |
| 16 | usgrgt2cycl 35142 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ 𝐹(Cycles‘𝐺)𝑃 ∧ 𝐹 ≠ ∅) → 2 < (♯‘𝐹)) | |
| 17 | cyclispth 29768 | . . . 4 ⊢ (𝐹(Cycles‘𝐺)𝑃 → 𝐹(Paths‘𝐺)𝑃) | |
| 18 | 10 | pthhashvtx 35140 | . . . 4 ⊢ (𝐹(Paths‘𝐺)𝑃 → (♯‘𝐹) ≤ (♯‘𝑉)) |
| 19 | 17, 18 | syl 17 | . . 3 ⊢ (𝐹(Cycles‘𝐺)𝑃 → (♯‘𝐹) ≤ (♯‘𝑉)) |
| 20 | 19 | 3ad2ant2 1134 | . 2 ⊢ ((𝐺 ∈ USGraph ∧ 𝐹(Cycles‘𝐺)𝑃 ∧ 𝐹 ≠ ∅) → (♯‘𝐹) ≤ (♯‘𝑉)) |
| 21 | 3, 9, 15, 16, 20 | xrltletrd 13052 | 1 ⊢ ((𝐺 ∈ USGraph ∧ 𝐹(Cycles‘𝐺)𝑃 ∧ 𝐹 ≠ ∅) → 2 < (♯‘𝑉)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1541 ∈ wcel 2110 ≠ wne 2926 Vcvv 3434 ∅c0 4281 class class class wbr 5089 ‘cfv 6477 ℝ*cxr 11137 < clt 11138 ≤ cle 11139 2c2 12172 ℕ0cn0 12373 ℕ0*cxnn0 12446 ♯chash 14229 Vtxcvtx 28967 USGraphcusgr 29120 Walkscwlks 29568 Pathscpths 29681 Cyclesccycls 29756 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-resscn 11055 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-mulcom 11062 ax-addass 11063 ax-mulass 11064 ax-distr 11065 ax-i2m1 11066 ax-1ne0 11067 ax-1rid 11068 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 ax-pre-lttri 11072 ax-pre-lttrn 11073 ax-pre-ltadd 11074 ax-pre-mulgt0 11075 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-int 4896 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-om 7792 df-1st 7916 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-oadd 8384 df-er 8617 df-map 8747 df-pm 8748 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-dju 9786 df-card 9824 df-pnf 11140 df-mnf 11141 df-xr 11142 df-ltxr 11143 df-le 11144 df-sub 11338 df-neg 11339 df-nn 12118 df-2 12180 df-n0 12374 df-xnn0 12447 df-z 12461 df-uz 12725 df-fz 13400 df-fzo 13547 df-hash 14230 df-word 14413 df-edg 29019 df-uhgr 29029 df-upgr 29053 df-umgr 29054 df-uspgr 29121 df-usgr 29122 df-wlks 29571 df-trls 29662 df-pths 29685 df-crcts 29757 df-cycls 29758 |
| This theorem is referenced by: acycgr2v 35162 cusgracyclt3v 35168 |
| Copyright terms: Public domain | W3C validator |