Users' Mathboxes Mathbox for BTernaryTau < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  usgrcyclgt2v Structured version   Visualization version   GIF version

Theorem usgrcyclgt2v 33392
Description: A simple graph with a non-trivial cycle must have at least 3 vertices. (Contributed by BTernaryTau, 5-Oct-2023.)
Hypothesis
Ref Expression
usgrcyclgt2v.1 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
usgrcyclgt2v ((𝐺 ∈ USGraph ∧ 𝐹(Cycles‘𝐺)𝑃𝐹 ≠ ∅) → 2 < (♯‘𝑉))

Proof of Theorem usgrcyclgt2v
StepHypRef Expression
1 2re 12148 . . . 4 2 ∈ ℝ
21rexri 11134 . . 3 2 ∈ ℝ*
32a1i 11 . 2 ((𝐺 ∈ USGraph ∧ 𝐹(Cycles‘𝐺)𝑃𝐹 ≠ ∅) → 2 ∈ ℝ*)
4 cycliswlk 28454 . . . . 5 (𝐹(Cycles‘𝐺)𝑃𝐹(Walks‘𝐺)𝑃)
5 wlkcl 28271 . . . . 5 (𝐹(Walks‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0)
64, 5syl 17 . . . 4 (𝐹(Cycles‘𝐺)𝑃 → (♯‘𝐹) ∈ ℕ0)
7 nn0xnn0 12410 . . . 4 ((♯‘𝐹) ∈ ℕ0 → (♯‘𝐹) ∈ ℕ0*)
8 xnn0xr 12411 . . . 4 ((♯‘𝐹) ∈ ℕ0* → (♯‘𝐹) ∈ ℝ*)
96, 7, 83syl 18 . . 3 (𝐹(Cycles‘𝐺)𝑃 → (♯‘𝐹) ∈ ℝ*)
1093ad2ant2 1133 . 2 ((𝐺 ∈ USGraph ∧ 𝐹(Cycles‘𝐺)𝑃𝐹 ≠ ∅) → (♯‘𝐹) ∈ ℝ*)
11 usgrcyclgt2v.1 . . . . 5 𝑉 = (Vtx‘𝐺)
1211fvexi 6839 . . . 4 𝑉 ∈ V
13 hashxnn0 14154 . . . 4 (𝑉 ∈ V → (♯‘𝑉) ∈ ℕ0*)
14 xnn0xr 12411 . . . 4 ((♯‘𝑉) ∈ ℕ0* → (♯‘𝑉) ∈ ℝ*)
1512, 13, 14mp2b 10 . . 3 (♯‘𝑉) ∈ ℝ*
1615a1i 11 . 2 ((𝐺 ∈ USGraph ∧ 𝐹(Cycles‘𝐺)𝑃𝐹 ≠ ∅) → (♯‘𝑉) ∈ ℝ*)
17 usgrgt2cycl 33391 . 2 ((𝐺 ∈ USGraph ∧ 𝐹(Cycles‘𝐺)𝑃𝐹 ≠ ∅) → 2 < (♯‘𝐹))
18 cyclispth 28453 . . . 4 (𝐹(Cycles‘𝐺)𝑃𝐹(Paths‘𝐺)𝑃)
1911pthhashvtx 33388 . . . 4 (𝐹(Paths‘𝐺)𝑃 → (♯‘𝐹) ≤ (♯‘𝑉))
2018, 19syl 17 . . 3 (𝐹(Cycles‘𝐺)𝑃 → (♯‘𝐹) ≤ (♯‘𝑉))
21203ad2ant2 1133 . 2 ((𝐺 ∈ USGraph ∧ 𝐹(Cycles‘𝐺)𝑃𝐹 ≠ ∅) → (♯‘𝐹) ≤ (♯‘𝑉))
223, 10, 16, 17, 21xrltletrd 12996 1 ((𝐺 ∈ USGraph ∧ 𝐹(Cycles‘𝐺)𝑃𝐹 ≠ ∅) → 2 < (♯‘𝑉))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1540  wcel 2105  wne 2940  Vcvv 3441  c0 4269   class class class wbr 5092  cfv 6479  *cxr 11109   < clt 11110  cle 11111  2c2 12129  0cn0 12334  0*cxnn0 12406  chash 14145  Vtxcvtx 27655  USGraphcusgr 27808  Walkscwlks 28252  Pathscpths 28368  Cyclesccycls 28441
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-rep 5229  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650  ax-cnex 11028  ax-resscn 11029  ax-1cn 11030  ax-icn 11031  ax-addcl 11032  ax-addrcl 11033  ax-mulcl 11034  ax-mulrcl 11035  ax-mulcom 11036  ax-addass 11037  ax-mulass 11038  ax-distr 11039  ax-i2m1 11040  ax-1ne0 11041  ax-1rid 11042  ax-rnegex 11043  ax-rrecex 11044  ax-cnre 11045  ax-pre-lttri 11046  ax-pre-lttrn 11047  ax-pre-ltadd 11048  ax-pre-mulgt0 11049
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-ifp 1061  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-int 4895  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5176  df-tr 5210  df-id 5518  df-eprel 5524  df-po 5532  df-so 5533  df-fr 5575  df-we 5577  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-pred 6238  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-riota 7293  df-ov 7340  df-oprab 7341  df-mpo 7342  df-om 7781  df-1st 7899  df-2nd 7900  df-frecs 8167  df-wrecs 8198  df-recs 8272  df-rdg 8311  df-1o 8367  df-2o 8368  df-oadd 8371  df-er 8569  df-map 8688  df-pm 8689  df-en 8805  df-dom 8806  df-sdom 8807  df-fin 8808  df-dju 9758  df-card 9796  df-pnf 11112  df-mnf 11113  df-xr 11114  df-ltxr 11115  df-le 11116  df-sub 11308  df-neg 11309  df-nn 12075  df-2 12137  df-n0 12335  df-xnn0 12407  df-z 12421  df-uz 12684  df-fz 13341  df-fzo 13484  df-hash 14146  df-word 14318  df-edg 27707  df-uhgr 27717  df-upgr 27741  df-umgr 27742  df-uspgr 27809  df-usgr 27810  df-wlks 28255  df-trls 28348  df-pths 28372  df-crcts 28442  df-cycls 28443
This theorem is referenced by:  acycgr2v  33411  cusgracyclt3v  33417
  Copyright terms: Public domain W3C validator