| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frgrregorufrg | Structured version Visualization version GIF version | ||
| Description: If there is a vertex having degree 𝑘 for each nonnegative integer 𝑘 in a friendship graph, then there is a universal friend. This corresponds to claim 2 in [Huneke] p. 2: "Suppose there is a vertex of degree k > 1. ... all vertices have degree k, unless there is a universal friend. ... It follows that G is k-regular, i.e., the degree of every vertex is k". Variant of frgrregorufr 30304 with generalization. (Contributed by Alexander van der Vekens, 6-Sep-2018.) (Revised by AV, 26-May-2021.) (Proof shortened by AV, 12-Jan-2022.) |
| Ref | Expression |
|---|---|
| frgrregorufrg.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| frgrregorufrg.e | ⊢ 𝐸 = (Edg‘𝐺) |
| Ref | Expression |
|---|---|
| frgrregorufrg | ⊢ (𝐺 ∈ FriendGraph → ∀𝑘 ∈ ℕ0 (∃𝑎 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑎) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frgrregorufrg.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | frgrregorufrg.e | . . . . 5 ⊢ 𝐸 = (Edg‘𝐺) | |
| 3 | eqid 2729 | . . . . 5 ⊢ (VtxDeg‘𝐺) = (VtxDeg‘𝐺) | |
| 4 | 1, 2, 3 | frgrregorufr 30304 | . . . 4 ⊢ (𝐺 ∈ FriendGraph → (∃𝑎 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑎) = 𝑘 → (∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝑘 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))) |
| 5 | 4 | adantr 480 | . . 3 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑘 ∈ ℕ0) → (∃𝑎 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑎) = 𝑘 → (∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝑘 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))) |
| 6 | frgrusgr 30240 | . . . . 5 ⊢ (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph) | |
| 7 | nn0xnn0 12495 | . . . . 5 ⊢ (𝑘 ∈ ℕ0 → 𝑘 ∈ ℕ0*) | |
| 8 | 1, 3 | usgreqdrusgr 29549 | . . . . . 6 ⊢ ((𝐺 ∈ USGraph ∧ 𝑘 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝑘) → 𝐺 RegUSGraph 𝑘) |
| 9 | 8 | 3expia 1121 | . . . . 5 ⊢ ((𝐺 ∈ USGraph ∧ 𝑘 ∈ ℕ0*) → (∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝑘 → 𝐺 RegUSGraph 𝑘)) |
| 10 | 6, 7, 9 | syl2an 596 | . . . 4 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑘 ∈ ℕ0) → (∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝑘 → 𝐺 RegUSGraph 𝑘)) |
| 11 | 10 | orim1d 967 | . . 3 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑘 ∈ ℕ0) → ((∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝑘 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸) → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))) |
| 12 | 5, 11 | syld 47 | . 2 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑘 ∈ ℕ0) → (∃𝑎 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑎) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))) |
| 13 | 12 | ralrimiva 3125 | 1 ⊢ (𝐺 ∈ FriendGraph → ∀𝑘 ∈ ℕ0 (∃𝑎 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑎) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 ∖ cdif 3908 {csn 4585 {cpr 4587 class class class wbr 5102 ‘cfv 6499 ℕ0cn0 12418 ℕ0*cxnn0 12491 Vtxcvtx 28976 Edgcedg 29027 USGraphcusgr 29129 VtxDegcvtxdg 29446 RegUSGraph crusgr 29537 FriendGraph cfrgr 30237 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-oadd 8415 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-dju 9830 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-n0 12419 df-xnn0 12492 df-z 12506 df-uz 12770 df-xadd 13049 df-fz 13445 df-hash 14272 df-edg 29028 df-uhgr 29038 df-ushgr 29039 df-upgr 29062 df-umgr 29063 df-uspgr 29130 df-usgr 29131 df-nbgr 29313 df-vtxdg 29447 df-rgr 29538 df-rusgr 29539 df-frgr 30238 |
| This theorem is referenced by: friendshipgt3 30377 |
| Copyright terms: Public domain | W3C validator |