| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frgrregorufrg | Structured version Visualization version GIF version | ||
| Description: If there is a vertex having degree 𝑘 for each nonnegative integer 𝑘 in a friendship graph, then there is a universal friend. This corresponds to claim 2 in [Huneke] p. 2: "Suppose there is a vertex of degree k > 1. ... all vertices have degree k, unless there is a universal friend. ... It follows that G is k-regular, i.e., the degree of every vertex is k". Variant of frgrregorufr 30311 with generalization. (Contributed by Alexander van der Vekens, 6-Sep-2018.) (Revised by AV, 26-May-2021.) (Proof shortened by AV, 12-Jan-2022.) |
| Ref | Expression |
|---|---|
| frgrregorufrg.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| frgrregorufrg.e | ⊢ 𝐸 = (Edg‘𝐺) |
| Ref | Expression |
|---|---|
| frgrregorufrg | ⊢ (𝐺 ∈ FriendGraph → ∀𝑘 ∈ ℕ0 (∃𝑎 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑎) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frgrregorufrg.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | frgrregorufrg.e | . . . . 5 ⊢ 𝐸 = (Edg‘𝐺) | |
| 3 | eqid 2736 | . . . . 5 ⊢ (VtxDeg‘𝐺) = (VtxDeg‘𝐺) | |
| 4 | 1, 2, 3 | frgrregorufr 30311 | . . . 4 ⊢ (𝐺 ∈ FriendGraph → (∃𝑎 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑎) = 𝑘 → (∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝑘 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))) |
| 5 | 4 | adantr 480 | . . 3 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑘 ∈ ℕ0) → (∃𝑎 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑎) = 𝑘 → (∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝑘 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))) |
| 6 | frgrusgr 30247 | . . . . 5 ⊢ (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph) | |
| 7 | nn0xnn0 12583 | . . . . 5 ⊢ (𝑘 ∈ ℕ0 → 𝑘 ∈ ℕ0*) | |
| 8 | 1, 3 | usgreqdrusgr 29553 | . . . . . 6 ⊢ ((𝐺 ∈ USGraph ∧ 𝑘 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝑘) → 𝐺 RegUSGraph 𝑘) |
| 9 | 8 | 3expia 1121 | . . . . 5 ⊢ ((𝐺 ∈ USGraph ∧ 𝑘 ∈ ℕ0*) → (∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝑘 → 𝐺 RegUSGraph 𝑘)) |
| 10 | 6, 7, 9 | syl2an 596 | . . . 4 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑘 ∈ ℕ0) → (∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝑘 → 𝐺 RegUSGraph 𝑘)) |
| 11 | 10 | orim1d 967 | . . 3 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑘 ∈ ℕ0) → ((∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝑘 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸) → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))) |
| 12 | 5, 11 | syld 47 | . 2 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑘 ∈ ℕ0) → (∃𝑎 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑎) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))) |
| 13 | 12 | ralrimiva 3133 | 1 ⊢ (𝐺 ∈ FriendGraph → ∀𝑘 ∈ ℕ0 (∃𝑎 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑎) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∀wral 3052 ∃wrex 3061 ∖ cdif 3928 {csn 4606 {cpr 4608 class class class wbr 5124 ‘cfv 6536 ℕ0cn0 12506 ℕ0*cxnn0 12579 Vtxcvtx 28980 Edgcedg 29031 USGraphcusgr 29133 VtxDegcvtxdg 29450 RegUSGraph crusgr 29541 FriendGraph cfrgr 30244 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-oadd 8489 df-er 8724 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-dju 9920 df-card 9958 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-n0 12507 df-xnn0 12580 df-z 12594 df-uz 12858 df-xadd 13134 df-fz 13530 df-hash 14354 df-edg 29032 df-uhgr 29042 df-ushgr 29043 df-upgr 29066 df-umgr 29067 df-uspgr 29134 df-usgr 29135 df-nbgr 29317 df-vtxdg 29451 df-rgr 29542 df-rusgr 29543 df-frgr 30245 |
| This theorem is referenced by: friendshipgt3 30384 |
| Copyright terms: Public domain | W3C validator |