MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrregorufrg Structured version   Visualization version   GIF version

Theorem frgrregorufrg 30306
Description: If there is a vertex having degree 𝑘 for each nonnegative integer 𝑘 in a friendship graph, then there is a universal friend. This corresponds to claim 2 in [Huneke] p. 2: "Suppose there is a vertex of degree k > 1. ... all vertices have degree k, unless there is a universal friend. ... It follows that G is k-regular, i.e., the degree of every vertex is k". Variant of frgrregorufr 30305 with generalization. (Contributed by Alexander van der Vekens, 6-Sep-2018.) (Revised by AV, 26-May-2021.) (Proof shortened by AV, 12-Jan-2022.)
Hypotheses
Ref Expression
frgrregorufrg.v 𝑉 = (Vtx‘𝐺)
frgrregorufrg.e 𝐸 = (Edg‘𝐺)
Assertion
Ref Expression
frgrregorufrg (𝐺 ∈ FriendGraph → ∀𝑘 ∈ ℕ0 (∃𝑎𝑉 ((VtxDeg‘𝐺)‘𝑎) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)))
Distinct variable groups:   𝐺,𝑎,𝑘,𝑣,𝑤   𝐸,𝑎,𝑣   𝑉,𝑎,𝑣,𝑤   𝑘,𝑎,𝑣,𝑤
Allowed substitution hints:   𝐸(𝑤,𝑘)   𝑉(𝑘)

Proof of Theorem frgrregorufrg
StepHypRef Expression
1 frgrregorufrg.v . . . . 5 𝑉 = (Vtx‘𝐺)
2 frgrregorufrg.e . . . . 5 𝐸 = (Edg‘𝐺)
3 eqid 2731 . . . . 5 (VtxDeg‘𝐺) = (VtxDeg‘𝐺)
41, 2, 3frgrregorufr 30305 . . . 4 (𝐺 ∈ FriendGraph → (∃𝑎𝑉 ((VtxDeg‘𝐺)‘𝑎) = 𝑘 → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)))
54adantr 480 . . 3 ((𝐺 ∈ FriendGraph ∧ 𝑘 ∈ ℕ0) → (∃𝑎𝑉 ((VtxDeg‘𝐺)‘𝑎) = 𝑘 → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)))
6 frgrusgr 30241 . . . . 5 (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph)
7 nn0xnn0 12458 . . . . 5 (𝑘 ∈ ℕ0𝑘 ∈ ℕ0*)
81, 3usgreqdrusgr 29547 . . . . . 6 ((𝐺 ∈ USGraph ∧ 𝑘 ∈ ℕ0* ∧ ∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝑘) → 𝐺 RegUSGraph 𝑘)
983expia 1121 . . . . 5 ((𝐺 ∈ USGraph ∧ 𝑘 ∈ ℕ0*) → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝑘𝐺 RegUSGraph 𝑘))
106, 7, 9syl2an 596 . . . 4 ((𝐺 ∈ FriendGraph ∧ 𝑘 ∈ ℕ0) → (∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝑘𝐺 RegUSGraph 𝑘))
1110orim1d 967 . . 3 ((𝐺 ∈ FriendGraph ∧ 𝑘 ∈ ℕ0) → ((∀𝑣𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸) → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)))
125, 11syld 47 . 2 ((𝐺 ∈ FriendGraph ∧ 𝑘 ∈ ℕ0) → (∃𝑎𝑉 ((VtxDeg‘𝐺)‘𝑎) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)))
1312ralrimiva 3124 1 (𝐺 ∈ FriendGraph → ∀𝑘 ∈ ℕ0 (∃𝑎𝑉 ((VtxDeg‘𝐺)‘𝑎) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847   = wceq 1541  wcel 2111  wral 3047  wrex 3056  cdif 3894  {csn 4573  {cpr 4575   class class class wbr 5089  cfv 6481  0cn0 12381  0*cxnn0 12454  Vtxcvtx 28974  Edgcedg 29025  USGraphcusgr 29127  VtxDegcvtxdg 29444   RegUSGraph crusgr 29535   FriendGraph cfrgr 30238
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-dju 9794  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-n0 12382  df-xnn0 12455  df-z 12469  df-uz 12733  df-xadd 13012  df-fz 13408  df-hash 14238  df-edg 29026  df-uhgr 29036  df-ushgr 29037  df-upgr 29060  df-umgr 29061  df-uspgr 29128  df-usgr 29129  df-nbgr 29311  df-vtxdg 29445  df-rgr 29536  df-rusgr 29537  df-frgr 30239
This theorem is referenced by:  friendshipgt3  30378
  Copyright terms: Public domain W3C validator