| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frgrregorufrg | Structured version Visualization version GIF version | ||
| Description: If there is a vertex having degree 𝑘 for each nonnegative integer 𝑘 in a friendship graph, then there is a universal friend. This corresponds to claim 2 in [Huneke] p. 2: "Suppose there is a vertex of degree k > 1. ... all vertices have degree k, unless there is a universal friend. ... It follows that G is k-regular, i.e., the degree of every vertex is k". Variant of frgrregorufr 30261 with generalization. (Contributed by Alexander van der Vekens, 6-Sep-2018.) (Revised by AV, 26-May-2021.) (Proof shortened by AV, 12-Jan-2022.) |
| Ref | Expression |
|---|---|
| frgrregorufrg.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| frgrregorufrg.e | ⊢ 𝐸 = (Edg‘𝐺) |
| Ref | Expression |
|---|---|
| frgrregorufrg | ⊢ (𝐺 ∈ FriendGraph → ∀𝑘 ∈ ℕ0 (∃𝑎 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑎) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frgrregorufrg.v | . . . . 5 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | frgrregorufrg.e | . . . . 5 ⊢ 𝐸 = (Edg‘𝐺) | |
| 3 | eqid 2730 | . . . . 5 ⊢ (VtxDeg‘𝐺) = (VtxDeg‘𝐺) | |
| 4 | 1, 2, 3 | frgrregorufr 30261 | . . . 4 ⊢ (𝐺 ∈ FriendGraph → (∃𝑎 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑎) = 𝑘 → (∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝑘 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))) |
| 5 | 4 | adantr 480 | . . 3 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑘 ∈ ℕ0) → (∃𝑎 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑎) = 𝑘 → (∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝑘 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))) |
| 6 | frgrusgr 30197 | . . . . 5 ⊢ (𝐺 ∈ FriendGraph → 𝐺 ∈ USGraph) | |
| 7 | nn0xnn0 12526 | . . . . 5 ⊢ (𝑘 ∈ ℕ0 → 𝑘 ∈ ℕ0*) | |
| 8 | 1, 3 | usgreqdrusgr 29503 | . . . . . 6 ⊢ ((𝐺 ∈ USGraph ∧ 𝑘 ∈ ℕ0* ∧ ∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝑘) → 𝐺 RegUSGraph 𝑘) |
| 9 | 8 | 3expia 1121 | . . . . 5 ⊢ ((𝐺 ∈ USGraph ∧ 𝑘 ∈ ℕ0*) → (∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝑘 → 𝐺 RegUSGraph 𝑘)) |
| 10 | 6, 7, 9 | syl2an 596 | . . . 4 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑘 ∈ ℕ0) → (∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝑘 → 𝐺 RegUSGraph 𝑘)) |
| 11 | 10 | orim1d 967 | . . 3 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑘 ∈ ℕ0) → ((∀𝑣 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑣) = 𝑘 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸) → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))) |
| 12 | 5, 11 | syld 47 | . 2 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑘 ∈ ℕ0) → (∃𝑎 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑎) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))) |
| 13 | 12 | ralrimiva 3126 | 1 ⊢ (𝐺 ∈ FriendGraph → ∀𝑘 ∈ ℕ0 (∃𝑎 ∈ 𝑉 ((VtxDeg‘𝐺)‘𝑎) = 𝑘 → (𝐺 RegUSGraph 𝑘 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ∃wrex 3054 ∖ cdif 3914 {csn 4592 {cpr 4594 class class class wbr 5110 ‘cfv 6514 ℕ0cn0 12449 ℕ0*cxnn0 12522 Vtxcvtx 28930 Edgcedg 28981 USGraphcusgr 29083 VtxDegcvtxdg 29400 RegUSGraph crusgr 29491 FriendGraph cfrgr 30194 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-oadd 8441 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-dju 9861 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-n0 12450 df-xnn0 12523 df-z 12537 df-uz 12801 df-xadd 13080 df-fz 13476 df-hash 14303 df-edg 28982 df-uhgr 28992 df-ushgr 28993 df-upgr 29016 df-umgr 29017 df-uspgr 29084 df-usgr 29085 df-nbgr 29267 df-vtxdg 29401 df-rgr 29492 df-rusgr 29493 df-frgr 30195 |
| This theorem is referenced by: friendshipgt3 30334 |
| Copyright terms: Public domain | W3C validator |