![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frgrregorufrg | Structured version Visualization version GIF version |
Description: If there is a vertex having degree π for each nonnegative integer π in a friendship graph, then there is a universal friend. This corresponds to claim 2 in [Huneke] p. 2: "Suppose there is a vertex of degree k > 1. ... all vertices have degree k, unless there is a universal friend. ... It follows that G is k-regular, i.e., the degree of every vertex is k". Variant of frgrregorufr 29575 with generalization. (Contributed by Alexander van der Vekens, 6-Sep-2018.) (Revised by AV, 26-May-2021.) (Proof shortened by AV, 12-Jan-2022.) |
Ref | Expression |
---|---|
frgrregorufrg.v | β’ π = (VtxβπΊ) |
frgrregorufrg.e | β’ πΈ = (EdgβπΊ) |
Ref | Expression |
---|---|
frgrregorufrg | β’ (πΊ β FriendGraph β βπ β β0 (βπ β π ((VtxDegβπΊ)βπ) = π β (πΊ RegUSGraph π β¨ βπ£ β π βπ€ β (π β {π£}){π£, π€} β πΈ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frgrregorufrg.v | . . . . 5 β’ π = (VtxβπΊ) | |
2 | frgrregorufrg.e | . . . . 5 β’ πΈ = (EdgβπΊ) | |
3 | eqid 2732 | . . . . 5 β’ (VtxDegβπΊ) = (VtxDegβπΊ) | |
4 | 1, 2, 3 | frgrregorufr 29575 | . . . 4 β’ (πΊ β FriendGraph β (βπ β π ((VtxDegβπΊ)βπ) = π β (βπ£ β π ((VtxDegβπΊ)βπ£) = π β¨ βπ£ β π βπ€ β (π β {π£}){π£, π€} β πΈ))) |
5 | 4 | adantr 481 | . . 3 β’ ((πΊ β FriendGraph β§ π β β0) β (βπ β π ((VtxDegβπΊ)βπ) = π β (βπ£ β π ((VtxDegβπΊ)βπ£) = π β¨ βπ£ β π βπ€ β (π β {π£}){π£, π€} β πΈ))) |
6 | frgrusgr 29511 | . . . . 5 β’ (πΊ β FriendGraph β πΊ β USGraph) | |
7 | nn0xnn0 12547 | . . . . 5 β’ (π β β0 β π β β0*) | |
8 | 1, 3 | usgreqdrusgr 28822 | . . . . . 6 β’ ((πΊ β USGraph β§ π β β0* β§ βπ£ β π ((VtxDegβπΊ)βπ£) = π) β πΊ RegUSGraph π) |
9 | 8 | 3expia 1121 | . . . . 5 β’ ((πΊ β USGraph β§ π β β0*) β (βπ£ β π ((VtxDegβπΊ)βπ£) = π β πΊ RegUSGraph π)) |
10 | 6, 7, 9 | syl2an 596 | . . . 4 β’ ((πΊ β FriendGraph β§ π β β0) β (βπ£ β π ((VtxDegβπΊ)βπ£) = π β πΊ RegUSGraph π)) |
11 | 10 | orim1d 964 | . . 3 β’ ((πΊ β FriendGraph β§ π β β0) β ((βπ£ β π ((VtxDegβπΊ)βπ£) = π β¨ βπ£ β π βπ€ β (π β {π£}){π£, π€} β πΈ) β (πΊ RegUSGraph π β¨ βπ£ β π βπ€ β (π β {π£}){π£, π€} β πΈ))) |
12 | 5, 11 | syld 47 | . 2 β’ ((πΊ β FriendGraph β§ π β β0) β (βπ β π ((VtxDegβπΊ)βπ) = π β (πΊ RegUSGraph π β¨ βπ£ β π βπ€ β (π β {π£}){π£, π€} β πΈ))) |
13 | 12 | ralrimiva 3146 | 1 β’ (πΊ β FriendGraph β βπ β β0 (βπ β π ((VtxDegβπΊ)βπ) = π β (πΊ RegUSGraph π β¨ βπ£ β π βπ€ β (π β {π£}){π£, π€} β πΈ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 β¨ wo 845 = wceq 1541 β wcel 2106 βwral 3061 βwrex 3070 β cdif 3945 {csn 4628 {cpr 4630 class class class wbr 5148 βcfv 6543 β0cn0 12471 β0*cxnn0 12543 Vtxcvtx 28253 Edgcedg 28304 USGraphcusgr 28406 VtxDegcvtxdg 28719 RegUSGraph crusgr 28810 FriendGraph cfrgr 29508 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7364 df-ov 7411 df-oprab 7412 df-mpo 7413 df-om 7855 df-1st 7974 df-2nd 7975 df-frecs 8265 df-wrecs 8296 df-recs 8370 df-rdg 8409 df-1o 8465 df-2o 8466 df-oadd 8469 df-er 8702 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-dju 9895 df-card 9933 df-pnf 11249 df-mnf 11250 df-xr 11251 df-ltxr 11252 df-le 11253 df-sub 11445 df-neg 11446 df-nn 12212 df-2 12274 df-n0 12472 df-xnn0 12544 df-z 12558 df-uz 12822 df-xadd 13092 df-fz 13484 df-hash 14290 df-edg 28305 df-uhgr 28315 df-ushgr 28316 df-upgr 28339 df-umgr 28340 df-uspgr 28407 df-usgr 28408 df-nbgr 28587 df-vtxdg 28720 df-rgr 28811 df-rusgr 28812 df-frgr 29509 |
This theorem is referenced by: friendshipgt3 29648 |
Copyright terms: Public domain | W3C validator |