Proof of Theorem xnn0xadd0
Step | Hyp | Ref
| Expression |
1 | | elxnn0 12008 |
. . . 4
⊢ (𝐴 ∈
ℕ0* ↔ (𝐴 ∈ ℕ0 ∨ 𝐴 = +∞)) |
2 | | elxnn0 12008 |
. . . . . . 7
⊢ (𝐵 ∈
ℕ0* ↔ (𝐵 ∈ ℕ0 ∨ 𝐵 = +∞)) |
3 | | nn0re 11943 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ ℕ0
→ 𝐴 ∈
ℝ) |
4 | | nn0re 11943 |
. . . . . . . . . . . . 13
⊢ (𝐵 ∈ ℕ0
→ 𝐵 ∈
ℝ) |
5 | | rexadd 12666 |
. . . . . . . . . . . . 13
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐵) = (𝐴 + 𝐵)) |
6 | 3, 4, 5 | syl2an 598 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0) → (𝐴 +𝑒 𝐵) = (𝐴 + 𝐵)) |
7 | 6 | eqeq1d 2760 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0) → ((𝐴 +𝑒 𝐵) = 0 ↔ (𝐴 + 𝐵) = 0)) |
8 | | nn0ge0 11959 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ ℕ0
→ 0 ≤ 𝐴) |
9 | 3, 8 | jca 515 |
. . . . . . . . . . . 12
⊢ (𝐴 ∈ ℕ0
→ (𝐴 ∈ ℝ
∧ 0 ≤ 𝐴)) |
10 | | nn0ge0 11959 |
. . . . . . . . . . . . 13
⊢ (𝐵 ∈ ℕ0
→ 0 ≤ 𝐵) |
11 | 4, 10 | jca 515 |
. . . . . . . . . . . 12
⊢ (𝐵 ∈ ℕ0
→ (𝐵 ∈ ℝ
∧ 0 ≤ 𝐵)) |
12 | | add20 11190 |
. . . . . . . . . . . 12
⊢ (((𝐴 ∈ ℝ ∧ 0 ≤
𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 + 𝐵) = 0 ↔ (𝐴 = 0 ∧ 𝐵 = 0))) |
13 | 9, 11, 12 | syl2an 598 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0) → ((𝐴 + 𝐵) = 0 ↔ (𝐴 = 0 ∧ 𝐵 = 0))) |
14 | 7, 13 | bitrd 282 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0) → ((𝐴 +𝑒 𝐵) = 0 ↔ (𝐴 = 0 ∧ 𝐵 = 0))) |
15 | 14 | biimpd 232 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℕ0
∧ 𝐵 ∈
ℕ0) → ((𝐴 +𝑒 𝐵) = 0 → (𝐴 = 0 ∧ 𝐵 = 0))) |
16 | 15 | expcom 417 |
. . . . . . . 8
⊢ (𝐵 ∈ ℕ0
→ (𝐴 ∈
ℕ0 → ((𝐴 +𝑒 𝐵) = 0 → (𝐴 = 0 ∧ 𝐵 = 0)))) |
17 | | oveq2 7158 |
. . . . . . . . . . . . 13
⊢ (𝐵 = +∞ → (𝐴 +𝑒 𝐵) = (𝐴 +𝑒
+∞)) |
18 | 17 | eqeq1d 2760 |
. . . . . . . . . . . 12
⊢ (𝐵 = +∞ → ((𝐴 +𝑒 𝐵) = 0 ↔ (𝐴 +𝑒 +∞) =
0)) |
19 | 18 | adantr 484 |
. . . . . . . . . . 11
⊢ ((𝐵 = +∞ ∧ 𝐴 ∈ ℕ0)
→ ((𝐴
+𝑒 𝐵) =
0 ↔ (𝐴
+𝑒 +∞) = 0)) |
20 | | nn0xnn0 12010 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈ ℕ0
→ 𝐴 ∈
ℕ0*) |
21 | | xnn0xrnemnf 12018 |
. . . . . . . . . . . . . 14
⊢ (𝐴 ∈
ℕ0* → (𝐴 ∈ ℝ* ∧ 𝐴 ≠
-∞)) |
22 | | xaddpnf1 12660 |
. . . . . . . . . . . . . 14
⊢ ((𝐴 ∈ ℝ*
∧ 𝐴 ≠ -∞)
→ (𝐴
+𝑒 +∞) = +∞) |
23 | 20, 21, 22 | 3syl 18 |
. . . . . . . . . . . . 13
⊢ (𝐴 ∈ ℕ0
→ (𝐴
+𝑒 +∞) = +∞) |
24 | 23 | adantl 485 |
. . . . . . . . . . . 12
⊢ ((𝐵 = +∞ ∧ 𝐴 ∈ ℕ0)
→ (𝐴
+𝑒 +∞) = +∞) |
25 | 24 | eqeq1d 2760 |
. . . . . . . . . . 11
⊢ ((𝐵 = +∞ ∧ 𝐴 ∈ ℕ0)
→ ((𝐴
+𝑒 +∞) = 0 ↔ +∞ = 0)) |
26 | 19, 25 | bitrd 282 |
. . . . . . . . . 10
⊢ ((𝐵 = +∞ ∧ 𝐴 ∈ ℕ0)
→ ((𝐴
+𝑒 𝐵) =
0 ↔ +∞ = 0)) |
27 | | 0re 10681 |
. . . . . . . . . . . . 13
⊢ 0 ∈
ℝ |
28 | | renepnf 10727 |
. . . . . . . . . . . . 13
⊢ (0 ∈
ℝ → 0 ≠ +∞) |
29 | 27, 28 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ 0 ≠
+∞ |
30 | 29 | nesymi 3008 |
. . . . . . . . . . 11
⊢ ¬
+∞ = 0 |
31 | 30 | pm2.21i 119 |
. . . . . . . . . 10
⊢ (+∞
= 0 → (𝐴 = 0 ∧
𝐵 = 0)) |
32 | 26, 31 | syl6bi 256 |
. . . . . . . . 9
⊢ ((𝐵 = +∞ ∧ 𝐴 ∈ ℕ0)
→ ((𝐴
+𝑒 𝐵) =
0 → (𝐴 = 0 ∧ 𝐵 = 0))) |
33 | 32 | ex 416 |
. . . . . . . 8
⊢ (𝐵 = +∞ → (𝐴 ∈ ℕ0
→ ((𝐴
+𝑒 𝐵) =
0 → (𝐴 = 0 ∧ 𝐵 = 0)))) |
34 | 16, 33 | jaoi 854 |
. . . . . . 7
⊢ ((𝐵 ∈ ℕ0 ∨
𝐵 = +∞) → (𝐴 ∈ ℕ0
→ ((𝐴
+𝑒 𝐵) =
0 → (𝐴 = 0 ∧ 𝐵 = 0)))) |
35 | 2, 34 | sylbi 220 |
. . . . . 6
⊢ (𝐵 ∈
ℕ0* → (𝐴 ∈ ℕ0 → ((𝐴 +𝑒 𝐵) = 0 → (𝐴 = 0 ∧ 𝐵 = 0)))) |
36 | 35 | com12 32 |
. . . . 5
⊢ (𝐴 ∈ ℕ0
→ (𝐵 ∈
ℕ0* → ((𝐴 +𝑒 𝐵) = 0 → (𝐴 = 0 ∧ 𝐵 = 0)))) |
37 | | oveq1 7157 |
. . . . . . . . 9
⊢ (𝐴 = +∞ → (𝐴 +𝑒 𝐵) = (+∞
+𝑒 𝐵)) |
38 | 37 | eqeq1d 2760 |
. . . . . . . 8
⊢ (𝐴 = +∞ → ((𝐴 +𝑒 𝐵) = 0 ↔ (+∞
+𝑒 𝐵) =
0)) |
39 | | xnn0xrnemnf 12018 |
. . . . . . . . . 10
⊢ (𝐵 ∈
ℕ0* → (𝐵 ∈ ℝ* ∧ 𝐵 ≠
-∞)) |
40 | | xaddpnf2 12661 |
. . . . . . . . . 10
⊢ ((𝐵 ∈ ℝ*
∧ 𝐵 ≠ -∞)
→ (+∞ +𝑒 𝐵) = +∞) |
41 | 39, 40 | syl 17 |
. . . . . . . . 9
⊢ (𝐵 ∈
ℕ0* → (+∞ +𝑒 𝐵) = +∞) |
42 | 41 | eqeq1d 2760 |
. . . . . . . 8
⊢ (𝐵 ∈
ℕ0* → ((+∞ +𝑒 𝐵) = 0 ↔ +∞ =
0)) |
43 | 38, 42 | sylan9bb 513 |
. . . . . . 7
⊢ ((𝐴 = +∞ ∧ 𝐵 ∈
ℕ0*) → ((𝐴 +𝑒 𝐵) = 0 ↔ +∞ = 0)) |
44 | 43, 31 | syl6bi 256 |
. . . . . 6
⊢ ((𝐴 = +∞ ∧ 𝐵 ∈
ℕ0*) → ((𝐴 +𝑒 𝐵) = 0 → (𝐴 = 0 ∧ 𝐵 = 0))) |
45 | 44 | ex 416 |
. . . . 5
⊢ (𝐴 = +∞ → (𝐵 ∈
ℕ0* → ((𝐴 +𝑒 𝐵) = 0 → (𝐴 = 0 ∧ 𝐵 = 0)))) |
46 | 36, 45 | jaoi 854 |
. . . 4
⊢ ((𝐴 ∈ ℕ0 ∨
𝐴 = +∞) → (𝐵 ∈
ℕ0* → ((𝐴 +𝑒 𝐵) = 0 → (𝐴 = 0 ∧ 𝐵 = 0)))) |
47 | 1, 46 | sylbi 220 |
. . 3
⊢ (𝐴 ∈
ℕ0* → (𝐵 ∈ ℕ0*
→ ((𝐴
+𝑒 𝐵) =
0 → (𝐴 = 0 ∧ 𝐵 = 0)))) |
48 | 47 | imp 410 |
. 2
⊢ ((𝐴 ∈
ℕ0* ∧ 𝐵 ∈ ℕ0*)
→ ((𝐴
+𝑒 𝐵) =
0 → (𝐴 = 0 ∧ 𝐵 = 0))) |
49 | | oveq12 7159 |
. . 3
⊢ ((𝐴 = 0 ∧ 𝐵 = 0) → (𝐴 +𝑒 𝐵) = (0 +𝑒
0)) |
50 | | 0xr 10726 |
. . . 4
⊢ 0 ∈
ℝ* |
51 | | xaddid1 12675 |
. . . 4
⊢ (0 ∈
ℝ* → (0 +𝑒 0) = 0) |
52 | 50, 51 | ax-mp 5 |
. . 3
⊢ (0
+𝑒 0) = 0 |
53 | 49, 52 | eqtrdi 2809 |
. 2
⊢ ((𝐴 = 0 ∧ 𝐵 = 0) → (𝐴 +𝑒 𝐵) = 0) |
54 | 48, 53 | impbid1 228 |
1
⊢ ((𝐴 ∈
ℕ0* ∧ 𝐵 ∈ ℕ0*)
→ ((𝐴
+𝑒 𝐵) =
0 ↔ (𝐴 = 0 ∧ 𝐵 = 0))) |