MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xnn0xadd0 Structured version   Visualization version   GIF version

Theorem xnn0xadd0 13207
Description: The sum of two extended nonnegative integers is 0 iff each of the two extended nonnegative integers is 0. (Contributed by AV, 14-Dec-2020.)
Assertion
Ref Expression
xnn0xadd0 ((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) → ((𝐴 +𝑒 𝐵) = 0 ↔ (𝐴 = 0 ∧ 𝐵 = 0)))

Proof of Theorem xnn0xadd0
StepHypRef Expression
1 elxnn0 12517 . . . 4 (𝐴 ∈ ℕ0* ↔ (𝐴 ∈ ℕ0𝐴 = +∞))
2 elxnn0 12517 . . . . . . 7 (𝐵 ∈ ℕ0* ↔ (𝐵 ∈ ℕ0𝐵 = +∞))
3 nn0re 12451 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
4 nn0re 12451 . . . . . . . . . . . . 13 (𝐵 ∈ ℕ0𝐵 ∈ ℝ)
5 rexadd 13192 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐵) = (𝐴 + 𝐵))
63, 4, 5syl2an 596 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 +𝑒 𝐵) = (𝐴 + 𝐵))
76eqeq1d 2731 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐴 +𝑒 𝐵) = 0 ↔ (𝐴 + 𝐵) = 0))
8 nn0ge0 12467 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ0 → 0 ≤ 𝐴)
93, 8jca 511 . . . . . . . . . . . 12 (𝐴 ∈ ℕ0 → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
10 nn0ge0 12467 . . . . . . . . . . . . 13 (𝐵 ∈ ℕ0 → 0 ≤ 𝐵)
114, 10jca 511 . . . . . . . . . . . 12 (𝐵 ∈ ℕ0 → (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵))
12 add20 11690 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 + 𝐵) = 0 ↔ (𝐴 = 0 ∧ 𝐵 = 0)))
139, 11, 12syl2an 596 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐴 + 𝐵) = 0 ↔ (𝐴 = 0 ∧ 𝐵 = 0)))
147, 13bitrd 279 . . . . . . . . . 10 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐴 +𝑒 𝐵) = 0 ↔ (𝐴 = 0 ∧ 𝐵 = 0)))
1514biimpd 229 . . . . . . . . 9 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐴 +𝑒 𝐵) = 0 → (𝐴 = 0 ∧ 𝐵 = 0)))
1615expcom 413 . . . . . . . 8 (𝐵 ∈ ℕ0 → (𝐴 ∈ ℕ0 → ((𝐴 +𝑒 𝐵) = 0 → (𝐴 = 0 ∧ 𝐵 = 0))))
17 oveq2 7395 . . . . . . . . . . . . 13 (𝐵 = +∞ → (𝐴 +𝑒 𝐵) = (𝐴 +𝑒 +∞))
1817eqeq1d 2731 . . . . . . . . . . . 12 (𝐵 = +∞ → ((𝐴 +𝑒 𝐵) = 0 ↔ (𝐴 +𝑒 +∞) = 0))
1918adantr 480 . . . . . . . . . . 11 ((𝐵 = +∞ ∧ 𝐴 ∈ ℕ0) → ((𝐴 +𝑒 𝐵) = 0 ↔ (𝐴 +𝑒 +∞) = 0))
20 nn0xnn0 12519 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ0𝐴 ∈ ℕ0*)
21 xnn0xrnemnf 12527 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ0* → (𝐴 ∈ ℝ*𝐴 ≠ -∞))
22 xaddpnf1 13186 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) → (𝐴 +𝑒 +∞) = +∞)
2320, 21, 223syl 18 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ0 → (𝐴 +𝑒 +∞) = +∞)
2423adantl 481 . . . . . . . . . . . 12 ((𝐵 = +∞ ∧ 𝐴 ∈ ℕ0) → (𝐴 +𝑒 +∞) = +∞)
2524eqeq1d 2731 . . . . . . . . . . 11 ((𝐵 = +∞ ∧ 𝐴 ∈ ℕ0) → ((𝐴 +𝑒 +∞) = 0 ↔ +∞ = 0))
2619, 25bitrd 279 . . . . . . . . . 10 ((𝐵 = +∞ ∧ 𝐴 ∈ ℕ0) → ((𝐴 +𝑒 𝐵) = 0 ↔ +∞ = 0))
27 0re 11176 . . . . . . . . . . . . 13 0 ∈ ℝ
28 renepnf 11222 . . . . . . . . . . . . 13 (0 ∈ ℝ → 0 ≠ +∞)
2927, 28ax-mp 5 . . . . . . . . . . . 12 0 ≠ +∞
3029nesymi 2982 . . . . . . . . . . 11 ¬ +∞ = 0
3130pm2.21i 119 . . . . . . . . . 10 (+∞ = 0 → (𝐴 = 0 ∧ 𝐵 = 0))
3226, 31biimtrdi 253 . . . . . . . . 9 ((𝐵 = +∞ ∧ 𝐴 ∈ ℕ0) → ((𝐴 +𝑒 𝐵) = 0 → (𝐴 = 0 ∧ 𝐵 = 0)))
3332ex 412 . . . . . . . 8 (𝐵 = +∞ → (𝐴 ∈ ℕ0 → ((𝐴 +𝑒 𝐵) = 0 → (𝐴 = 0 ∧ 𝐵 = 0))))
3416, 33jaoi 857 . . . . . . 7 ((𝐵 ∈ ℕ0𝐵 = +∞) → (𝐴 ∈ ℕ0 → ((𝐴 +𝑒 𝐵) = 0 → (𝐴 = 0 ∧ 𝐵 = 0))))
352, 34sylbi 217 . . . . . 6 (𝐵 ∈ ℕ0* → (𝐴 ∈ ℕ0 → ((𝐴 +𝑒 𝐵) = 0 → (𝐴 = 0 ∧ 𝐵 = 0))))
3635com12 32 . . . . 5 (𝐴 ∈ ℕ0 → (𝐵 ∈ ℕ0* → ((𝐴 +𝑒 𝐵) = 0 → (𝐴 = 0 ∧ 𝐵 = 0))))
37 oveq1 7394 . . . . . . . . 9 (𝐴 = +∞ → (𝐴 +𝑒 𝐵) = (+∞ +𝑒 𝐵))
3837eqeq1d 2731 . . . . . . . 8 (𝐴 = +∞ → ((𝐴 +𝑒 𝐵) = 0 ↔ (+∞ +𝑒 𝐵) = 0))
39 xnn0xrnemnf 12527 . . . . . . . . . 10 (𝐵 ∈ ℕ0* → (𝐵 ∈ ℝ*𝐵 ≠ -∞))
40 xaddpnf2 13187 . . . . . . . . . 10 ((𝐵 ∈ ℝ*𝐵 ≠ -∞) → (+∞ +𝑒 𝐵) = +∞)
4139, 40syl 17 . . . . . . . . 9 (𝐵 ∈ ℕ0* → (+∞ +𝑒 𝐵) = +∞)
4241eqeq1d 2731 . . . . . . . 8 (𝐵 ∈ ℕ0* → ((+∞ +𝑒 𝐵) = 0 ↔ +∞ = 0))
4338, 42sylan9bb 509 . . . . . . 7 ((𝐴 = +∞ ∧ 𝐵 ∈ ℕ0*) → ((𝐴 +𝑒 𝐵) = 0 ↔ +∞ = 0))
4443, 31biimtrdi 253 . . . . . 6 ((𝐴 = +∞ ∧ 𝐵 ∈ ℕ0*) → ((𝐴 +𝑒 𝐵) = 0 → (𝐴 = 0 ∧ 𝐵 = 0)))
4544ex 412 . . . . 5 (𝐴 = +∞ → (𝐵 ∈ ℕ0* → ((𝐴 +𝑒 𝐵) = 0 → (𝐴 = 0 ∧ 𝐵 = 0))))
4636, 45jaoi 857 . . . 4 ((𝐴 ∈ ℕ0𝐴 = +∞) → (𝐵 ∈ ℕ0* → ((𝐴 +𝑒 𝐵) = 0 → (𝐴 = 0 ∧ 𝐵 = 0))))
471, 46sylbi 217 . . 3 (𝐴 ∈ ℕ0* → (𝐵 ∈ ℕ0* → ((𝐴 +𝑒 𝐵) = 0 → (𝐴 = 0 ∧ 𝐵 = 0))))
4847imp 406 . 2 ((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) → ((𝐴 +𝑒 𝐵) = 0 → (𝐴 = 0 ∧ 𝐵 = 0)))
49 oveq12 7396 . . 3 ((𝐴 = 0 ∧ 𝐵 = 0) → (𝐴 +𝑒 𝐵) = (0 +𝑒 0))
50 0xr 11221 . . . 4 0 ∈ ℝ*
51 xaddrid 13201 . . . 4 (0 ∈ ℝ* → (0 +𝑒 0) = 0)
5250, 51ax-mp 5 . . 3 (0 +𝑒 0) = 0
5349, 52eqtrdi 2780 . 2 ((𝐴 = 0 ∧ 𝐵 = 0) → (𝐴 +𝑒 𝐵) = 0)
5448, 53impbid1 225 1 ((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) → ((𝐴 +𝑒 𝐵) = 0 ↔ (𝐴 = 0 ∧ 𝐵 = 0)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847   = wceq 1540  wcel 2109  wne 2925   class class class wbr 5107  (class class class)co 7387  cr 11067  0cc0 11068   + caddc 11071  +∞cpnf 11205  -∞cmnf 11206  *cxr 11207  cle 11209  0cn0 12442  0*cxnn0 12515   +𝑒 cxad 13070
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-n0 12443  df-xnn0 12516  df-xadd 13073
This theorem is referenced by:  vtxd0nedgb  29416
  Copyright terms: Public domain W3C validator