MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xnn0xadd0 Structured version   Visualization version   GIF version

Theorem xnn0xadd0 13208
Description: The sum of two extended nonnegative integers is 0 iff each of the two extended nonnegative integers is 0. (Contributed by AV, 14-Dec-2020.)
Assertion
Ref Expression
xnn0xadd0 ((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) → ((𝐴 +𝑒 𝐵) = 0 ↔ (𝐴 = 0 ∧ 𝐵 = 0)))

Proof of Theorem xnn0xadd0
StepHypRef Expression
1 elxnn0 12528 . . . 4 (𝐴 ∈ ℕ0* ↔ (𝐴 ∈ ℕ0𝐴 = +∞))
2 elxnn0 12528 . . . . . . 7 (𝐵 ∈ ℕ0* ↔ (𝐵 ∈ ℕ0𝐵 = +∞))
3 nn0re 12463 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
4 nn0re 12463 . . . . . . . . . . . . 13 (𝐵 ∈ ℕ0𝐵 ∈ ℝ)
5 rexadd 13193 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐵) = (𝐴 + 𝐵))
63, 4, 5syl2an 596 . . . . . . . . . . . 12 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 +𝑒 𝐵) = (𝐴 + 𝐵))
76eqeq1d 2733 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐴 +𝑒 𝐵) = 0 ↔ (𝐴 + 𝐵) = 0))
8 nn0ge0 12479 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ0 → 0 ≤ 𝐴)
93, 8jca 512 . . . . . . . . . . . 12 (𝐴 ∈ ℕ0 → (𝐴 ∈ ℝ ∧ 0 ≤ 𝐴))
10 nn0ge0 12479 . . . . . . . . . . . . 13 (𝐵 ∈ ℕ0 → 0 ≤ 𝐵)
114, 10jca 512 . . . . . . . . . . . 12 (𝐵 ∈ ℕ0 → (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵))
12 add20 11708 . . . . . . . . . . . 12 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → ((𝐴 + 𝐵) = 0 ↔ (𝐴 = 0 ∧ 𝐵 = 0)))
139, 11, 12syl2an 596 . . . . . . . . . . 11 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐴 + 𝐵) = 0 ↔ (𝐴 = 0 ∧ 𝐵 = 0)))
147, 13bitrd 278 . . . . . . . . . 10 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐴 +𝑒 𝐵) = 0 ↔ (𝐴 = 0 ∧ 𝐵 = 0)))
1514biimpd 228 . . . . . . . . 9 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐴 +𝑒 𝐵) = 0 → (𝐴 = 0 ∧ 𝐵 = 0)))
1615expcom 414 . . . . . . . 8 (𝐵 ∈ ℕ0 → (𝐴 ∈ ℕ0 → ((𝐴 +𝑒 𝐵) = 0 → (𝐴 = 0 ∧ 𝐵 = 0))))
17 oveq2 7401 . . . . . . . . . . . . 13 (𝐵 = +∞ → (𝐴 +𝑒 𝐵) = (𝐴 +𝑒 +∞))
1817eqeq1d 2733 . . . . . . . . . . . 12 (𝐵 = +∞ → ((𝐴 +𝑒 𝐵) = 0 ↔ (𝐴 +𝑒 +∞) = 0))
1918adantr 481 . . . . . . . . . . 11 ((𝐵 = +∞ ∧ 𝐴 ∈ ℕ0) → ((𝐴 +𝑒 𝐵) = 0 ↔ (𝐴 +𝑒 +∞) = 0))
20 nn0xnn0 12530 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ0𝐴 ∈ ℕ0*)
21 xnn0xrnemnf 12538 . . . . . . . . . . . . . 14 (𝐴 ∈ ℕ0* → (𝐴 ∈ ℝ*𝐴 ≠ -∞))
22 xaddpnf1 13187 . . . . . . . . . . . . . 14 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) → (𝐴 +𝑒 +∞) = +∞)
2320, 21, 223syl 18 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ0 → (𝐴 +𝑒 +∞) = +∞)
2423adantl 482 . . . . . . . . . . . 12 ((𝐵 = +∞ ∧ 𝐴 ∈ ℕ0) → (𝐴 +𝑒 +∞) = +∞)
2524eqeq1d 2733 . . . . . . . . . . 11 ((𝐵 = +∞ ∧ 𝐴 ∈ ℕ0) → ((𝐴 +𝑒 +∞) = 0 ↔ +∞ = 0))
2619, 25bitrd 278 . . . . . . . . . 10 ((𝐵 = +∞ ∧ 𝐴 ∈ ℕ0) → ((𝐴 +𝑒 𝐵) = 0 ↔ +∞ = 0))
27 0re 11198 . . . . . . . . . . . . 13 0 ∈ ℝ
28 renepnf 11244 . . . . . . . . . . . . 13 (0 ∈ ℝ → 0 ≠ +∞)
2927, 28ax-mp 5 . . . . . . . . . . . 12 0 ≠ +∞
3029nesymi 2997 . . . . . . . . . . 11 ¬ +∞ = 0
3130pm2.21i 119 . . . . . . . . . 10 (+∞ = 0 → (𝐴 = 0 ∧ 𝐵 = 0))
3226, 31syl6bi 252 . . . . . . . . 9 ((𝐵 = +∞ ∧ 𝐴 ∈ ℕ0) → ((𝐴 +𝑒 𝐵) = 0 → (𝐴 = 0 ∧ 𝐵 = 0)))
3332ex 413 . . . . . . . 8 (𝐵 = +∞ → (𝐴 ∈ ℕ0 → ((𝐴 +𝑒 𝐵) = 0 → (𝐴 = 0 ∧ 𝐵 = 0))))
3416, 33jaoi 855 . . . . . . 7 ((𝐵 ∈ ℕ0𝐵 = +∞) → (𝐴 ∈ ℕ0 → ((𝐴 +𝑒 𝐵) = 0 → (𝐴 = 0 ∧ 𝐵 = 0))))
352, 34sylbi 216 . . . . . 6 (𝐵 ∈ ℕ0* → (𝐴 ∈ ℕ0 → ((𝐴 +𝑒 𝐵) = 0 → (𝐴 = 0 ∧ 𝐵 = 0))))
3635com12 32 . . . . 5 (𝐴 ∈ ℕ0 → (𝐵 ∈ ℕ0* → ((𝐴 +𝑒 𝐵) = 0 → (𝐴 = 0 ∧ 𝐵 = 0))))
37 oveq1 7400 . . . . . . . . 9 (𝐴 = +∞ → (𝐴 +𝑒 𝐵) = (+∞ +𝑒 𝐵))
3837eqeq1d 2733 . . . . . . . 8 (𝐴 = +∞ → ((𝐴 +𝑒 𝐵) = 0 ↔ (+∞ +𝑒 𝐵) = 0))
39 xnn0xrnemnf 12538 . . . . . . . . . 10 (𝐵 ∈ ℕ0* → (𝐵 ∈ ℝ*𝐵 ≠ -∞))
40 xaddpnf2 13188 . . . . . . . . . 10 ((𝐵 ∈ ℝ*𝐵 ≠ -∞) → (+∞ +𝑒 𝐵) = +∞)
4139, 40syl 17 . . . . . . . . 9 (𝐵 ∈ ℕ0* → (+∞ +𝑒 𝐵) = +∞)
4241eqeq1d 2733 . . . . . . . 8 (𝐵 ∈ ℕ0* → ((+∞ +𝑒 𝐵) = 0 ↔ +∞ = 0))
4338, 42sylan9bb 510 . . . . . . 7 ((𝐴 = +∞ ∧ 𝐵 ∈ ℕ0*) → ((𝐴 +𝑒 𝐵) = 0 ↔ +∞ = 0))
4443, 31syl6bi 252 . . . . . 6 ((𝐴 = +∞ ∧ 𝐵 ∈ ℕ0*) → ((𝐴 +𝑒 𝐵) = 0 → (𝐴 = 0 ∧ 𝐵 = 0)))
4544ex 413 . . . . 5 (𝐴 = +∞ → (𝐵 ∈ ℕ0* → ((𝐴 +𝑒 𝐵) = 0 → (𝐴 = 0 ∧ 𝐵 = 0))))
4636, 45jaoi 855 . . . 4 ((𝐴 ∈ ℕ0𝐴 = +∞) → (𝐵 ∈ ℕ0* → ((𝐴 +𝑒 𝐵) = 0 → (𝐴 = 0 ∧ 𝐵 = 0))))
471, 46sylbi 216 . . 3 (𝐴 ∈ ℕ0* → (𝐵 ∈ ℕ0* → ((𝐴 +𝑒 𝐵) = 0 → (𝐴 = 0 ∧ 𝐵 = 0))))
4847imp 407 . 2 ((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) → ((𝐴 +𝑒 𝐵) = 0 → (𝐴 = 0 ∧ 𝐵 = 0)))
49 oveq12 7402 . . 3 ((𝐴 = 0 ∧ 𝐵 = 0) → (𝐴 +𝑒 𝐵) = (0 +𝑒 0))
50 0xr 11243 . . . 4 0 ∈ ℝ*
51 xaddrid 13202 . . . 4 (0 ∈ ℝ* → (0 +𝑒 0) = 0)
5250, 51ax-mp 5 . . 3 (0 +𝑒 0) = 0
5349, 52eqtrdi 2787 . 2 ((𝐴 = 0 ∧ 𝐵 = 0) → (𝐴 +𝑒 𝐵) = 0)
5448, 53impbid1 224 1 ((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) → ((𝐴 +𝑒 𝐵) = 0 ↔ (𝐴 = 0 ∧ 𝐵 = 0)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 845   = wceq 1541  wcel 2106  wne 2939   class class class wbr 5141  (class class class)co 7393  cr 11091  0cc0 11092   + caddc 11095  +∞cpnf 11227  -∞cmnf 11228  *cxr 11229  cle 11231  0cn0 12454  0*cxnn0 12526   +𝑒 cxad 13072
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-cnex 11148  ax-resscn 11149  ax-1cn 11150  ax-icn 11151  ax-addcl 11152  ax-addrcl 11153  ax-mulcl 11154  ax-mulrcl 11155  ax-mulcom 11156  ax-addass 11157  ax-mulass 11158  ax-distr 11159  ax-i2m1 11160  ax-1ne0 11161  ax-1rid 11162  ax-rnegex 11163  ax-rrecex 11164  ax-cnre 11165  ax-pre-lttri 11166  ax-pre-lttrn 11167  ax-pre-ltadd 11168  ax-pre-mulgt0 11169
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6289  df-ord 6356  df-on 6357  df-lim 6358  df-suc 6359  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-riota 7349  df-ov 7396  df-oprab 7397  df-mpo 7398  df-om 7839  df-2nd 7958  df-frecs 8248  df-wrecs 8279  df-recs 8353  df-rdg 8392  df-er 8686  df-en 8923  df-dom 8924  df-sdom 8925  df-pnf 11232  df-mnf 11233  df-xr 11234  df-ltxr 11235  df-le 11236  df-sub 11428  df-neg 11429  df-nn 12195  df-n0 12455  df-xnn0 12527  df-xadd 13075
This theorem is referenced by:  vtxd0nedgb  28610
  Copyright terms: Public domain W3C validator