Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > xnn0xr | Structured version Visualization version GIF version |
Description: An extended nonnegative integer is an extended real. (Contributed by AV, 10-Dec-2020.) |
Ref | Expression |
---|---|
xnn0xr | ⊢ (𝐴 ∈ ℕ0* → 𝐴 ∈ ℝ*) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxnn0 12021 | . 2 ⊢ (𝐴 ∈ ℕ0* ↔ (𝐴 ∈ ℕ0 ∨ 𝐴 = +∞)) | |
2 | nn0re 11956 | . . . 4 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ) | |
3 | 2 | rexrd 10742 | . . 3 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ*) |
4 | pnfxr 10746 | . . . 4 ⊢ +∞ ∈ ℝ* | |
5 | eleq1 2839 | . . . 4 ⊢ (𝐴 = +∞ → (𝐴 ∈ ℝ* ↔ +∞ ∈ ℝ*)) | |
6 | 4, 5 | mpbiri 261 | . . 3 ⊢ (𝐴 = +∞ → 𝐴 ∈ ℝ*) |
7 | 3, 6 | jaoi 854 | . 2 ⊢ ((𝐴 ∈ ℕ0 ∨ 𝐴 = +∞) → 𝐴 ∈ ℝ*) |
8 | 1, 7 | sylbi 220 | 1 ⊢ (𝐴 ∈ ℕ0* → 𝐴 ∈ ℝ*) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 844 = wceq 1538 ∈ wcel 2111 +∞cpnf 10723 ℝ*cxr 10725 ℕ0cn0 11947 ℕ0*cxnn0 12019 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 ax-cnex 10644 ax-1cn 10646 ax-icn 10647 ax-addcl 10648 ax-addrcl 10649 ax-mulcl 10650 ax-mulrcl 10651 ax-i2m1 10656 ax-1ne0 10657 ax-rnegex 10659 ax-rrecex 10660 ax-cnre 10661 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-tr 5143 df-id 5434 df-eprel 5439 df-po 5447 df-so 5448 df-fr 5487 df-we 5489 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-pred 6131 df-ord 6177 df-on 6178 df-lim 6179 df-suc 6180 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-ov 7159 df-om 7586 df-wrecs 7963 df-recs 8024 df-rdg 8062 df-pnf 10728 df-xr 10730 df-nn 11688 df-n0 11948 df-xnn0 12020 |
This theorem is referenced by: xnn0xrnemnf 12031 tayl0 25070 umgrislfupgrlem 27028 vtxdlfgrval 27388 p1evtxdeq 27416 vtxdginducedm1 27446 ewlkle 27508 upgrewlkle2 27509 upgr2pthnlp 27634 nn0xmulclb 30631 usgrcyclgt2v 32622 cusgracyclt3v 32647 |
Copyright terms: Public domain | W3C validator |