| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xnn0xr | Structured version Visualization version GIF version | ||
| Description: An extended nonnegative integer is an extended real. (Contributed by AV, 10-Dec-2020.) |
| Ref | Expression |
|---|---|
| xnn0xr | ⊢ (𝐴 ∈ ℕ0* → 𝐴 ∈ ℝ*) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxnn0 12524 | . 2 ⊢ (𝐴 ∈ ℕ0* ↔ (𝐴 ∈ ℕ0 ∨ 𝐴 = +∞)) | |
| 2 | nn0re 12458 | . . . 4 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ) | |
| 3 | 2 | rexrd 11231 | . . 3 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ*) |
| 4 | pnfxr 11235 | . . . 4 ⊢ +∞ ∈ ℝ* | |
| 5 | eleq1 2817 | . . . 4 ⊢ (𝐴 = +∞ → (𝐴 ∈ ℝ* ↔ +∞ ∈ ℝ*)) | |
| 6 | 4, 5 | mpbiri 258 | . . 3 ⊢ (𝐴 = +∞ → 𝐴 ∈ ℝ*) |
| 7 | 3, 6 | jaoi 857 | . 2 ⊢ ((𝐴 ∈ ℕ0 ∨ 𝐴 = +∞) → 𝐴 ∈ ℝ*) |
| 8 | 1, 7 | sylbi 217 | 1 ⊢ (𝐴 ∈ ℕ0* → 𝐴 ∈ ℝ*) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 = wceq 1540 ∈ wcel 2109 +∞cpnf 11212 ℝ*cxr 11214 ℕ0cn0 12449 ℕ0*cxnn0 12522 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-i2m1 11143 ax-1ne0 11144 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-om 7846 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-pnf 11217 df-xr 11219 df-nn 12194 df-n0 12450 df-xnn0 12523 |
| This theorem is referenced by: xnn0xrnemnf 12534 tayl0 26276 umgrislfupgrlem 29056 vtxdlfgrval 29420 p1evtxdeq 29448 vtxdginducedm1 29478 ewlkle 29540 upgrewlkle2 29541 upgr2pthnlp 29669 nn0xmulclb 32701 lvecendof1f1o 33636 fldextrspundglemul 33681 constrext2chnlem 33747 usgrcyclgt2v 35125 cusgracyclt3v 35150 aks6d1c6lem3 42167 |
| Copyright terms: Public domain | W3C validator |