MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xnn0xr Structured version   Visualization version   GIF version

Theorem xnn0xr 11960
Description: An extended nonnegative integer is an extended real. (Contributed by AV, 10-Dec-2020.)
Assertion
Ref Expression
xnn0xr (𝐴 ∈ ℕ0*𝐴 ∈ ℝ*)

Proof of Theorem xnn0xr
StepHypRef Expression
1 elxnn0 11957 . 2 (𝐴 ∈ ℕ0* ↔ (𝐴 ∈ ℕ0𝐴 = +∞))
2 nn0re 11894 . . . 4 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
32rexrd 10680 . . 3 (𝐴 ∈ ℕ0𝐴 ∈ ℝ*)
4 pnfxr 10684 . . . 4 +∞ ∈ ℝ*
5 eleq1 2877 . . . 4 (𝐴 = +∞ → (𝐴 ∈ ℝ* ↔ +∞ ∈ ℝ*))
64, 5mpbiri 261 . . 3 (𝐴 = +∞ → 𝐴 ∈ ℝ*)
73, 6jaoi 854 . 2 ((𝐴 ∈ ℕ0𝐴 = +∞) → 𝐴 ∈ ℝ*)
81, 7sylbi 220 1 (𝐴 ∈ ℕ0*𝐴 ∈ ℝ*)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 844   = wceq 1538  wcel 2111  +∞cpnf 10661  *cxr 10663  0cn0 11885  0*cxnn0 11955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-i2m1 10594  ax-1ne0 10595  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-pnf 10666  df-xr 10668  df-nn 11626  df-n0 11886  df-xnn0 11956
This theorem is referenced by:  xnn0xrnemnf  11967  tayl0  24957  umgrislfupgrlem  26915  vtxdlfgrval  27275  p1evtxdeq  27303  vtxdginducedm1  27333  ewlkle  27395  upgrewlkle2  27396  upgr2pthnlp  27521  nn0xmulclb  30522  usgrcyclgt2v  32491  cusgracyclt3v  32516
  Copyright terms: Public domain W3C validator