| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > xnn0xr | Structured version Visualization version GIF version | ||
| Description: An extended nonnegative integer is an extended real. (Contributed by AV, 10-Dec-2020.) |
| Ref | Expression |
|---|---|
| xnn0xr | ⊢ (𝐴 ∈ ℕ0* → 𝐴 ∈ ℝ*) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxnn0 12448 | . 2 ⊢ (𝐴 ∈ ℕ0* ↔ (𝐴 ∈ ℕ0 ∨ 𝐴 = +∞)) | |
| 2 | nn0re 12382 | . . . 4 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ) | |
| 3 | 2 | rexrd 11154 | . . 3 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ∈ ℝ*) |
| 4 | pnfxr 11158 | . . . 4 ⊢ +∞ ∈ ℝ* | |
| 5 | eleq1 2817 | . . . 4 ⊢ (𝐴 = +∞ → (𝐴 ∈ ℝ* ↔ +∞ ∈ ℝ*)) | |
| 6 | 4, 5 | mpbiri 258 | . . 3 ⊢ (𝐴 = +∞ → 𝐴 ∈ ℝ*) |
| 7 | 3, 6 | jaoi 857 | . 2 ⊢ ((𝐴 ∈ ℕ0 ∨ 𝐴 = +∞) → 𝐴 ∈ ℝ*) |
| 8 | 1, 7 | sylbi 217 | 1 ⊢ (𝐴 ∈ ℕ0* → 𝐴 ∈ ℝ*) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∨ wo 847 = wceq 1541 ∈ wcel 2110 +∞cpnf 11135 ℝ*cxr 11137 ℕ0cn0 12373 ℕ0*cxnn0 12446 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 ax-cnex 11054 ax-1cn 11056 ax-icn 11057 ax-addcl 11058 ax-addrcl 11059 ax-mulcl 11060 ax-mulrcl 11061 ax-i2m1 11066 ax-1ne0 11067 ax-rnegex 11069 ax-rrecex 11070 ax-cnre 11071 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-reu 3345 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-pss 3920 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6244 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6433 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-fv 6485 df-ov 7344 df-om 7792 df-2nd 7917 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-pnf 11140 df-xr 11142 df-nn 12118 df-n0 12374 df-xnn0 12447 |
| This theorem is referenced by: xnn0xrnemnf 12458 tayl0 26289 umgrislfupgrlem 29093 vtxdlfgrval 29457 p1evtxdeq 29485 vtxdginducedm1 29515 ewlkle 29577 upgrewlkle2 29578 upgr2pthnlp 29703 nn0xmulclb 32744 lvecendof1f1o 33636 fldextrspundglemul 33682 constrext2chnlem 33753 usgrcyclgt2v 35143 cusgracyclt3v 35168 aks6d1c6lem3 42184 |
| Copyright terms: Public domain | W3C validator |