| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > wlk1ewlk | Structured version Visualization version GIF version | ||
| Description: A walk is an s-walk "on the edge level" (with s=1) according to Aksoy et al. (Contributed by AV, 5-Jan-2021.) |
| Ref | Expression |
|---|---|
| wlk1ewlk | ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝐹 ∈ (𝐺 EdgWalks 1)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . 3 ⊢ (iEdg‘𝐺) = (iEdg‘𝐺) | |
| 2 | 1 | wlkf 29594 | . 2 ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝐹 ∈ Word dom (iEdg‘𝐺)) |
| 3 | 1 | wlk1walk 29618 | . 2 ⊢ (𝐹(Walks‘𝐺)𝑃 → ∀𝑘 ∈ (1..^(♯‘𝐹))1 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹‘𝑘))))) |
| 4 | wlkv 29592 | . . . 4 ⊢ (𝐹(Walks‘𝐺)𝑃 → (𝐺 ∈ V ∧ 𝐹 ∈ V ∧ 𝑃 ∈ V)) | |
| 5 | 4 | simp1d 1142 | . . 3 ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝐺 ∈ V) |
| 6 | 1nn0 12397 | . . . 4 ⊢ 1 ∈ ℕ0 | |
| 7 | nn0xnn0 12458 | . . . 4 ⊢ (1 ∈ ℕ0 → 1 ∈ ℕ0*) | |
| 8 | 6, 7 | mp1i 13 | . . 3 ⊢ (𝐹(Walks‘𝐺)𝑃 → 1 ∈ ℕ0*) |
| 9 | 1 | isewlk 29582 | . . 3 ⊢ ((𝐺 ∈ V ∧ 1 ∈ ℕ0* ∧ 𝐹 ∈ Word dom (iEdg‘𝐺)) → (𝐹 ∈ (𝐺 EdgWalks 1) ↔ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (1..^(♯‘𝐹))1 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹‘𝑘))))))) |
| 10 | 5, 8, 2, 9 | syl3anc 1373 | . 2 ⊢ (𝐹(Walks‘𝐺)𝑃 → (𝐹 ∈ (𝐺 EdgWalks 1) ↔ (𝐹 ∈ Word dom (iEdg‘𝐺) ∧ ∀𝑘 ∈ (1..^(♯‘𝐹))1 ≤ (♯‘(((iEdg‘𝐺)‘(𝐹‘(𝑘 − 1))) ∩ ((iEdg‘𝐺)‘(𝐹‘𝑘))))))) |
| 11 | 2, 3, 10 | mpbir2and 713 | 1 ⊢ (𝐹(Walks‘𝐺)𝑃 → 𝐹 ∈ (𝐺 EdgWalks 1)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2111 ∀wral 3047 Vcvv 3436 ∩ cin 3901 class class class wbr 5091 dom cdm 5616 ‘cfv 6481 (class class class)co 7346 1c1 11007 ≤ cle 11147 − cmin 11344 ℕ0cn0 12381 ℕ0*cxnn0 12454 ..^cfzo 13554 ♯chash 14237 Word cword 14420 iEdgciedg 28976 EdgWalks cewlks 29575 Walkscwlks 29576 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5217 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-int 4898 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-n0 12382 df-xnn0 12455 df-z 12469 df-uz 12733 df-fz 13408 df-fzo 13555 df-hash 14238 df-word 14421 df-ewlks 29578 df-wlks 29579 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |