| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nn0nepnfd | Structured version Visualization version GIF version | ||
| Description: No standard nonnegative integer equals positive infinity, deduction form. (Contributed by AV, 10-Dec-2020.) |
| Ref | Expression |
|---|---|
| nn0xnn0d.1 | ⊢ (𝜑 → 𝐴 ∈ ℕ0) |
| Ref | Expression |
|---|---|
| nn0nepnfd | ⊢ (𝜑 → 𝐴 ≠ +∞) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0xnn0d.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℕ0) | |
| 2 | nn0nepnf 12590 | . 2 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ≠ +∞) | |
| 3 | 1, 2 | syl 17 | 1 ⊢ (𝜑 → 𝐴 ≠ +∞) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 ≠ wne 2931 +∞cpnf 11274 ℕ0cn0 12509 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 ax-un 7737 ax-resscn 11194 ax-1cn 11195 ax-icn 11196 ax-addcl 11197 ax-addrcl 11198 ax-mulcl 11199 ax-mulrcl 11200 ax-i2m1 11205 ax-1ne0 11206 ax-rnegex 11208 ax-rrecex 11209 ax-cnre 11210 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-iun 4973 df-br 5124 df-opab 5186 df-mpt 5206 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-pred 6301 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6543 df-fn 6544 df-f 6545 df-f1 6546 df-fo 6547 df-f1o 6548 df-fv 6549 df-ov 7416 df-om 7870 df-2nd 7997 df-frecs 8288 df-wrecs 8319 df-recs 8393 df-rdg 8432 df-pnf 11279 df-nn 12249 df-n0 12510 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |