MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xnn0xaddcl Structured version   Visualization version   GIF version

Theorem xnn0xaddcl 13146
Description: The extended nonnegative integers are closed under extended addition. (Contributed by AV, 10-Dec-2020.)
Assertion
Ref Expression
xnn0xaddcl ((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) → (𝐴 +𝑒 𝐵) ∈ ℕ0*)

Proof of Theorem xnn0xaddcl
StepHypRef Expression
1 nn0addcl 12444 . . . . 5 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 + 𝐵) ∈ ℕ0)
21nn0xnn0d 12490 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 + 𝐵) ∈ ℕ0*)
3 nn0re 12418 . . . . 5 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
4 nn0re 12418 . . . . 5 (𝐵 ∈ ℕ0𝐵 ∈ ℝ)
5 rexadd 13143 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐵) = (𝐴 + 𝐵))
65eleq1d 2822 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 +𝑒 𝐵) ∈ ℕ0* ↔ (𝐴 + 𝐵) ∈ ℕ0*))
73, 4, 6syl2an 596 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐴 +𝑒 𝐵) ∈ ℕ0* ↔ (𝐴 + 𝐵) ∈ ℕ0*))
82, 7mpbird 256 . . 3 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 +𝑒 𝐵) ∈ ℕ0*)
98a1d 25 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) → (𝐴 +𝑒 𝐵) ∈ ℕ0*))
10 ianor 980 . . 3 (¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ↔ (¬ 𝐴 ∈ ℕ0 ∨ ¬ 𝐵 ∈ ℕ0))
11 xnn0nnn0pnf 12494 . . . . . . . . . 10 ((𝐴 ∈ ℕ0* ∧ ¬ 𝐴 ∈ ℕ0) → 𝐴 = +∞)
12 oveq1 7360 . . . . . . . . . . . 12 (𝐴 = +∞ → (𝐴 +𝑒 𝐵) = (+∞ +𝑒 𝐵))
13 xnn0xrnemnf 12493 . . . . . . . . . . . . 13 (𝐵 ∈ ℕ0* → (𝐵 ∈ ℝ*𝐵 ≠ -∞))
14 xaddpnf2 13138 . . . . . . . . . . . . 13 ((𝐵 ∈ ℝ*𝐵 ≠ -∞) → (+∞ +𝑒 𝐵) = +∞)
1513, 14syl 17 . . . . . . . . . . . 12 (𝐵 ∈ ℕ0* → (+∞ +𝑒 𝐵) = +∞)
1612, 15sylan9eq 2796 . . . . . . . . . . 11 ((𝐴 = +∞ ∧ 𝐵 ∈ ℕ0*) → (𝐴 +𝑒 𝐵) = +∞)
1716ex 413 . . . . . . . . . 10 (𝐴 = +∞ → (𝐵 ∈ ℕ0* → (𝐴 +𝑒 𝐵) = +∞))
1811, 17syl 17 . . . . . . . . 9 ((𝐴 ∈ ℕ0* ∧ ¬ 𝐴 ∈ ℕ0) → (𝐵 ∈ ℕ0* → (𝐴 +𝑒 𝐵) = +∞))
1918expcom 414 . . . . . . . 8 𝐴 ∈ ℕ0 → (𝐴 ∈ ℕ0* → (𝐵 ∈ ℕ0* → (𝐴 +𝑒 𝐵) = +∞)))
2019impd 411 . . . . . . 7 𝐴 ∈ ℕ0 → ((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) → (𝐴 +𝑒 𝐵) = +∞))
21 xnn0nnn0pnf 12494 . . . . . . . . . 10 ((𝐵 ∈ ℕ0* ∧ ¬ 𝐵 ∈ ℕ0) → 𝐵 = +∞)
22 oveq2 7361 . . . . . . . . . . . 12 (𝐵 = +∞ → (𝐴 +𝑒 𝐵) = (𝐴 +𝑒 +∞))
23 xnn0xrnemnf 12493 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ0* → (𝐴 ∈ ℝ*𝐴 ≠ -∞))
24 xaddpnf1 13137 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) → (𝐴 +𝑒 +∞) = +∞)
2523, 24syl 17 . . . . . . . . . . . 12 (𝐴 ∈ ℕ0* → (𝐴 +𝑒 +∞) = +∞)
2622, 25sylan9eq 2796 . . . . . . . . . . 11 ((𝐵 = +∞ ∧ 𝐴 ∈ ℕ0*) → (𝐴 +𝑒 𝐵) = +∞)
2726ex 413 . . . . . . . . . 10 (𝐵 = +∞ → (𝐴 ∈ ℕ0* → (𝐴 +𝑒 𝐵) = +∞))
2821, 27syl 17 . . . . . . . . 9 ((𝐵 ∈ ℕ0* ∧ ¬ 𝐵 ∈ ℕ0) → (𝐴 ∈ ℕ0* → (𝐴 +𝑒 𝐵) = +∞))
2928expcom 414 . . . . . . . 8 𝐵 ∈ ℕ0 → (𝐵 ∈ ℕ0* → (𝐴 ∈ ℕ0* → (𝐴 +𝑒 𝐵) = +∞)))
3029impcomd 412 . . . . . . 7 𝐵 ∈ ℕ0 → ((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) → (𝐴 +𝑒 𝐵) = +∞))
3120, 30jaoi 855 . . . . . 6 ((¬ 𝐴 ∈ ℕ0 ∨ ¬ 𝐵 ∈ ℕ0) → ((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) → (𝐴 +𝑒 𝐵) = +∞))
3231imp 407 . . . . 5 (((¬ 𝐴 ∈ ℕ0 ∨ ¬ 𝐵 ∈ ℕ0) ∧ (𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*)) → (𝐴 +𝑒 𝐵) = +∞)
33 pnf0xnn0 12488 . . . . 5 +∞ ∈ ℕ0*
3432, 33eqeltrdi 2846 . . . 4 (((¬ 𝐴 ∈ ℕ0 ∨ ¬ 𝐵 ∈ ℕ0) ∧ (𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*)) → (𝐴 +𝑒 𝐵) ∈ ℕ0*)
3534ex 413 . . 3 ((¬ 𝐴 ∈ ℕ0 ∨ ¬ 𝐵 ∈ ℕ0) → ((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) → (𝐴 +𝑒 𝐵) ∈ ℕ0*))
3610, 35sylbi 216 . 2 (¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) → (𝐴 +𝑒 𝐵) ∈ ℕ0*))
379, 36pm2.61i 182 1 ((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) → (𝐴 +𝑒 𝐵) ∈ ℕ0*)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845   = wceq 1541  wcel 2106  wne 2941  (class class class)co 7353  cr 11046   + caddc 11050  +∞cpnf 11182  -∞cmnf 11183  *cxr 11184  0cn0 12409  0*cxnn0 12481   +𝑒 cxad 13023
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5254  ax-nul 5261  ax-pow 5318  ax-pr 5382  ax-un 7668  ax-cnex 11103  ax-resscn 11104  ax-1cn 11105  ax-icn 11106  ax-addcl 11107  ax-addrcl 11108  ax-mulcl 11109  ax-mulrcl 11110  ax-mulcom 11111  ax-addass 11112  ax-mulass 11113  ax-distr 11114  ax-i2m1 11115  ax-1ne0 11116  ax-1rid 11117  ax-rnegex 11118  ax-rrecex 11119  ax-cnre 11120  ax-pre-lttri 11121  ax-pre-lttrn 11122  ax-pre-ltadd 11123
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-reu 3352  df-rab 3406  df-v 3445  df-sbc 3738  df-csb 3854  df-dif 3911  df-un 3913  df-in 3915  df-ss 3925  df-pss 3927  df-nul 4281  df-if 4485  df-pw 4560  df-sn 4585  df-pr 4587  df-op 4591  df-uni 4864  df-iun 4954  df-br 5104  df-opab 5166  df-mpt 5187  df-tr 5221  df-id 5529  df-eprel 5535  df-po 5543  df-so 5544  df-fr 5586  df-we 5588  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6251  df-ord 6318  df-on 6319  df-lim 6320  df-suc 6321  df-iota 6445  df-fun 6495  df-fn 6496  df-f 6497  df-f1 6498  df-fo 6499  df-f1o 6500  df-fv 6501  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7799  df-2nd 7918  df-frecs 8208  df-wrecs 8239  df-recs 8313  df-rdg 8352  df-er 8644  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11187  df-mnf 11188  df-xr 11189  df-ltxr 11190  df-nn 12150  df-n0 12410  df-xnn0 12482  df-xadd 13026
This theorem is referenced by:  vtxdgf  28305  vtxdginducedm1  28377
  Copyright terms: Public domain W3C validator