MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xnn0xaddcl Structured version   Visualization version   GIF version

Theorem xnn0xaddcl 12616
Description: The extended nonnegative integers are closed under extended addition. (Contributed by AV, 10-Dec-2020.)
Assertion
Ref Expression
xnn0xaddcl ((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) → (𝐴 +𝑒 𝐵) ∈ ℕ0*)

Proof of Theorem xnn0xaddcl
StepHypRef Expression
1 nn0addcl 11920 . . . . 5 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 + 𝐵) ∈ ℕ0)
21nn0xnn0d 11964 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 + 𝐵) ∈ ℕ0*)
3 nn0re 11894 . . . . 5 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
4 nn0re 11894 . . . . 5 (𝐵 ∈ ℕ0𝐵 ∈ ℝ)
5 rexadd 12613 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐵) = (𝐴 + 𝐵))
65eleq1d 2894 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 +𝑒 𝐵) ∈ ℕ0* ↔ (𝐴 + 𝐵) ∈ ℕ0*))
73, 4, 6syl2an 595 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐴 +𝑒 𝐵) ∈ ℕ0* ↔ (𝐴 + 𝐵) ∈ ℕ0*))
82, 7mpbird 258 . . 3 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 +𝑒 𝐵) ∈ ℕ0*)
98a1d 25 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) → (𝐴 +𝑒 𝐵) ∈ ℕ0*))
10 ianor 975 . . 3 (¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ↔ (¬ 𝐴 ∈ ℕ0 ∨ ¬ 𝐵 ∈ ℕ0))
11 xnn0nnn0pnf 11968 . . . . . . . . . 10 ((𝐴 ∈ ℕ0* ∧ ¬ 𝐴 ∈ ℕ0) → 𝐴 = +∞)
12 oveq1 7152 . . . . . . . . . . . 12 (𝐴 = +∞ → (𝐴 +𝑒 𝐵) = (+∞ +𝑒 𝐵))
13 xnn0xrnemnf 11967 . . . . . . . . . . . . 13 (𝐵 ∈ ℕ0* → (𝐵 ∈ ℝ*𝐵 ≠ -∞))
14 xaddpnf2 12608 . . . . . . . . . . . . 13 ((𝐵 ∈ ℝ*𝐵 ≠ -∞) → (+∞ +𝑒 𝐵) = +∞)
1513, 14syl 17 . . . . . . . . . . . 12 (𝐵 ∈ ℕ0* → (+∞ +𝑒 𝐵) = +∞)
1612, 15sylan9eq 2873 . . . . . . . . . . 11 ((𝐴 = +∞ ∧ 𝐵 ∈ ℕ0*) → (𝐴 +𝑒 𝐵) = +∞)
1716ex 413 . . . . . . . . . 10 (𝐴 = +∞ → (𝐵 ∈ ℕ0* → (𝐴 +𝑒 𝐵) = +∞))
1811, 17syl 17 . . . . . . . . 9 ((𝐴 ∈ ℕ0* ∧ ¬ 𝐴 ∈ ℕ0) → (𝐵 ∈ ℕ0* → (𝐴 +𝑒 𝐵) = +∞))
1918expcom 414 . . . . . . . 8 𝐴 ∈ ℕ0 → (𝐴 ∈ ℕ0* → (𝐵 ∈ ℕ0* → (𝐴 +𝑒 𝐵) = +∞)))
2019impd 411 . . . . . . 7 𝐴 ∈ ℕ0 → ((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) → (𝐴 +𝑒 𝐵) = +∞))
21 xnn0nnn0pnf 11968 . . . . . . . . . 10 ((𝐵 ∈ ℕ0* ∧ ¬ 𝐵 ∈ ℕ0) → 𝐵 = +∞)
22 oveq2 7153 . . . . . . . . . . . 12 (𝐵 = +∞ → (𝐴 +𝑒 𝐵) = (𝐴 +𝑒 +∞))
23 xnn0xrnemnf 11967 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ0* → (𝐴 ∈ ℝ*𝐴 ≠ -∞))
24 xaddpnf1 12607 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) → (𝐴 +𝑒 +∞) = +∞)
2523, 24syl 17 . . . . . . . . . . . 12 (𝐴 ∈ ℕ0* → (𝐴 +𝑒 +∞) = +∞)
2622, 25sylan9eq 2873 . . . . . . . . . . 11 ((𝐵 = +∞ ∧ 𝐴 ∈ ℕ0*) → (𝐴 +𝑒 𝐵) = +∞)
2726ex 413 . . . . . . . . . 10 (𝐵 = +∞ → (𝐴 ∈ ℕ0* → (𝐴 +𝑒 𝐵) = +∞))
2821, 27syl 17 . . . . . . . . 9 ((𝐵 ∈ ℕ0* ∧ ¬ 𝐵 ∈ ℕ0) → (𝐴 ∈ ℕ0* → (𝐴 +𝑒 𝐵) = +∞))
2928expcom 414 . . . . . . . 8 𝐵 ∈ ℕ0 → (𝐵 ∈ ℕ0* → (𝐴 ∈ ℕ0* → (𝐴 +𝑒 𝐵) = +∞)))
3029impcomd 412 . . . . . . 7 𝐵 ∈ ℕ0 → ((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) → (𝐴 +𝑒 𝐵) = +∞))
3120, 30jaoi 851 . . . . . 6 ((¬ 𝐴 ∈ ℕ0 ∨ ¬ 𝐵 ∈ ℕ0) → ((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) → (𝐴 +𝑒 𝐵) = +∞))
3231imp 407 . . . . 5 (((¬ 𝐴 ∈ ℕ0 ∨ ¬ 𝐵 ∈ ℕ0) ∧ (𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*)) → (𝐴 +𝑒 𝐵) = +∞)
33 pnf0xnn0 11962 . . . . 5 +∞ ∈ ℕ0*
3432, 33syl6eqel 2918 . . . 4 (((¬ 𝐴 ∈ ℕ0 ∨ ¬ 𝐵 ∈ ℕ0) ∧ (𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*)) → (𝐴 +𝑒 𝐵) ∈ ℕ0*)
3534ex 413 . . 3 ((¬ 𝐴 ∈ ℕ0 ∨ ¬ 𝐵 ∈ ℕ0) → ((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) → (𝐴 +𝑒 𝐵) ∈ ℕ0*))
3610, 35sylbi 218 . 2 (¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) → (𝐴 +𝑒 𝐵) ∈ ℕ0*))
379, 36pm2.61i 183 1 ((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) → (𝐴 +𝑒 𝐵) ∈ ℕ0*)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  wo 841   = wceq 1528  wcel 2105  wne 3013  (class class class)co 7145  cr 10524   + caddc 10528  +∞cpnf 10660  -∞cmnf 10661  *cxr 10662  0cn0 11885  0*cxnn0 11955   +𝑒 cxad 12493
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450  ax-cnex 10581  ax-resscn 10582  ax-1cn 10583  ax-icn 10584  ax-addcl 10585  ax-addrcl 10586  ax-mulcl 10587  ax-mulrcl 10588  ax-mulcom 10589  ax-addass 10590  ax-mulass 10591  ax-distr 10592  ax-i2m1 10593  ax-1ne0 10594  ax-1rid 10595  ax-rnegex 10596  ax-rrecex 10597  ax-cnre 10598  ax-pre-lttri 10599  ax-pre-lttrn 10600  ax-pre-ltadd 10601
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-nel 3121  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-er 8278  df-en 8498  df-dom 8499  df-sdom 8500  df-pnf 10665  df-mnf 10666  df-xr 10667  df-ltxr 10668  df-nn 11627  df-n0 11886  df-xnn0 11956  df-xadd 12496
This theorem is referenced by:  vtxdgf  27180  vtxdginducedm1  27252
  Copyright terms: Public domain W3C validator