MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xnn0xaddcl Structured version   Visualization version   GIF version

Theorem xnn0xaddcl 13219
Description: The extended nonnegative integers are closed under extended addition. (Contributed by AV, 10-Dec-2020.)
Assertion
Ref Expression
xnn0xaddcl ((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) → (𝐴 +𝑒 𝐵) ∈ ℕ0*)

Proof of Theorem xnn0xaddcl
StepHypRef Expression
1 nn0addcl 12512 . . . . 5 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 + 𝐵) ∈ ℕ0)
21nn0xnn0d 12558 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 + 𝐵) ∈ ℕ0*)
3 nn0re 12486 . . . . 5 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
4 nn0re 12486 . . . . 5 (𝐵 ∈ ℕ0𝐵 ∈ ℝ)
5 rexadd 13216 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐵) = (𝐴 + 𝐵))
65eleq1d 2817 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 +𝑒 𝐵) ∈ ℕ0* ↔ (𝐴 + 𝐵) ∈ ℕ0*))
73, 4, 6syl2an 595 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐴 +𝑒 𝐵) ∈ ℕ0* ↔ (𝐴 + 𝐵) ∈ ℕ0*))
82, 7mpbird 257 . . 3 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 +𝑒 𝐵) ∈ ℕ0*)
98a1d 25 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) → (𝐴 +𝑒 𝐵) ∈ ℕ0*))
10 ianor 979 . . 3 (¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ↔ (¬ 𝐴 ∈ ℕ0 ∨ ¬ 𝐵 ∈ ℕ0))
11 xnn0nnn0pnf 12562 . . . . . . . . . 10 ((𝐴 ∈ ℕ0* ∧ ¬ 𝐴 ∈ ℕ0) → 𝐴 = +∞)
12 oveq1 7419 . . . . . . . . . . . 12 (𝐴 = +∞ → (𝐴 +𝑒 𝐵) = (+∞ +𝑒 𝐵))
13 xnn0xrnemnf 12561 . . . . . . . . . . . . 13 (𝐵 ∈ ℕ0* → (𝐵 ∈ ℝ*𝐵 ≠ -∞))
14 xaddpnf2 13211 . . . . . . . . . . . . 13 ((𝐵 ∈ ℝ*𝐵 ≠ -∞) → (+∞ +𝑒 𝐵) = +∞)
1513, 14syl 17 . . . . . . . . . . . 12 (𝐵 ∈ ℕ0* → (+∞ +𝑒 𝐵) = +∞)
1612, 15sylan9eq 2791 . . . . . . . . . . 11 ((𝐴 = +∞ ∧ 𝐵 ∈ ℕ0*) → (𝐴 +𝑒 𝐵) = +∞)
1716ex 412 . . . . . . . . . 10 (𝐴 = +∞ → (𝐵 ∈ ℕ0* → (𝐴 +𝑒 𝐵) = +∞))
1811, 17syl 17 . . . . . . . . 9 ((𝐴 ∈ ℕ0* ∧ ¬ 𝐴 ∈ ℕ0) → (𝐵 ∈ ℕ0* → (𝐴 +𝑒 𝐵) = +∞))
1918expcom 413 . . . . . . . 8 𝐴 ∈ ℕ0 → (𝐴 ∈ ℕ0* → (𝐵 ∈ ℕ0* → (𝐴 +𝑒 𝐵) = +∞)))
2019impd 410 . . . . . . 7 𝐴 ∈ ℕ0 → ((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) → (𝐴 +𝑒 𝐵) = +∞))
21 xnn0nnn0pnf 12562 . . . . . . . . . 10 ((𝐵 ∈ ℕ0* ∧ ¬ 𝐵 ∈ ℕ0) → 𝐵 = +∞)
22 oveq2 7420 . . . . . . . . . . . 12 (𝐵 = +∞ → (𝐴 +𝑒 𝐵) = (𝐴 +𝑒 +∞))
23 xnn0xrnemnf 12561 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ0* → (𝐴 ∈ ℝ*𝐴 ≠ -∞))
24 xaddpnf1 13210 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) → (𝐴 +𝑒 +∞) = +∞)
2523, 24syl 17 . . . . . . . . . . . 12 (𝐴 ∈ ℕ0* → (𝐴 +𝑒 +∞) = +∞)
2622, 25sylan9eq 2791 . . . . . . . . . . 11 ((𝐵 = +∞ ∧ 𝐴 ∈ ℕ0*) → (𝐴 +𝑒 𝐵) = +∞)
2726ex 412 . . . . . . . . . 10 (𝐵 = +∞ → (𝐴 ∈ ℕ0* → (𝐴 +𝑒 𝐵) = +∞))
2821, 27syl 17 . . . . . . . . 9 ((𝐵 ∈ ℕ0* ∧ ¬ 𝐵 ∈ ℕ0) → (𝐴 ∈ ℕ0* → (𝐴 +𝑒 𝐵) = +∞))
2928expcom 413 . . . . . . . 8 𝐵 ∈ ℕ0 → (𝐵 ∈ ℕ0* → (𝐴 ∈ ℕ0* → (𝐴 +𝑒 𝐵) = +∞)))
3029impcomd 411 . . . . . . 7 𝐵 ∈ ℕ0 → ((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) → (𝐴 +𝑒 𝐵) = +∞))
3120, 30jaoi 854 . . . . . 6 ((¬ 𝐴 ∈ ℕ0 ∨ ¬ 𝐵 ∈ ℕ0) → ((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) → (𝐴 +𝑒 𝐵) = +∞))
3231imp 406 . . . . 5 (((¬ 𝐴 ∈ ℕ0 ∨ ¬ 𝐵 ∈ ℕ0) ∧ (𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*)) → (𝐴 +𝑒 𝐵) = +∞)
33 pnf0xnn0 12556 . . . . 5 +∞ ∈ ℕ0*
3432, 33eqeltrdi 2840 . . . 4 (((¬ 𝐴 ∈ ℕ0 ∨ ¬ 𝐵 ∈ ℕ0) ∧ (𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*)) → (𝐴 +𝑒 𝐵) ∈ ℕ0*)
3534ex 412 . . 3 ((¬ 𝐴 ∈ ℕ0 ∨ ¬ 𝐵 ∈ ℕ0) → ((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) → (𝐴 +𝑒 𝐵) ∈ ℕ0*))
3610, 35sylbi 216 . 2 (¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) → (𝐴 +𝑒 𝐵) ∈ ℕ0*))
379, 36pm2.61i 182 1 ((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) → (𝐴 +𝑒 𝐵) ∈ ℕ0*)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 844   = wceq 1540  wcel 2105  wne 2939  (class class class)co 7412  cr 11113   + caddc 11117  +∞cpnf 11250  -∞cmnf 11251  *cxr 11252  0cn0 12477  0*cxnn0 12549   +𝑒 cxad 13095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7729  ax-cnex 11170  ax-resscn 11171  ax-1cn 11172  ax-icn 11173  ax-addcl 11174  ax-addrcl 11175  ax-mulcl 11176  ax-mulrcl 11177  ax-mulcom 11178  ax-addass 11179  ax-mulass 11180  ax-distr 11181  ax-i2m1 11182  ax-1ne0 11183  ax-1rid 11184  ax-rnegex 11185  ax-rrecex 11186  ax-cnre 11187  ax-pre-lttri 11188  ax-pre-lttrn 11189  ax-pre-ltadd 11190
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7415  df-oprab 7416  df-mpo 7417  df-om 7860  df-2nd 7980  df-frecs 8270  df-wrecs 8301  df-recs 8375  df-rdg 8414  df-er 8707  df-en 8944  df-dom 8945  df-sdom 8946  df-pnf 11255  df-mnf 11256  df-xr 11257  df-ltxr 11258  df-nn 12218  df-n0 12478  df-xnn0 12550  df-xadd 13098
This theorem is referenced by:  vtxdgf  28996  vtxdginducedm1  29068
  Copyright terms: Public domain W3C validator