MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xnn0xaddcl Structured version   Visualization version   GIF version

Theorem xnn0xaddcl 13297
Description: The extended nonnegative integers are closed under extended addition. (Contributed by AV, 10-Dec-2020.)
Assertion
Ref Expression
xnn0xaddcl ((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) → (𝐴 +𝑒 𝐵) ∈ ℕ0*)

Proof of Theorem xnn0xaddcl
StepHypRef Expression
1 nn0addcl 12588 . . . . 5 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 + 𝐵) ∈ ℕ0)
21nn0xnn0d 12634 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 + 𝐵) ∈ ℕ0*)
3 nn0re 12562 . . . . 5 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
4 nn0re 12562 . . . . 5 (𝐵 ∈ ℕ0𝐵 ∈ ℝ)
5 rexadd 13294 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐵) = (𝐴 + 𝐵))
65eleq1d 2829 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 +𝑒 𝐵) ∈ ℕ0* ↔ (𝐴 + 𝐵) ∈ ℕ0*))
73, 4, 6syl2an 595 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐴 +𝑒 𝐵) ∈ ℕ0* ↔ (𝐴 + 𝐵) ∈ ℕ0*))
82, 7mpbird 257 . . 3 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 +𝑒 𝐵) ∈ ℕ0*)
98a1d 25 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) → (𝐴 +𝑒 𝐵) ∈ ℕ0*))
10 ianor 982 . . 3 (¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ↔ (¬ 𝐴 ∈ ℕ0 ∨ ¬ 𝐵 ∈ ℕ0))
11 xnn0nnn0pnf 12638 . . . . . . . . . 10 ((𝐴 ∈ ℕ0* ∧ ¬ 𝐴 ∈ ℕ0) → 𝐴 = +∞)
12 oveq1 7455 . . . . . . . . . . . 12 (𝐴 = +∞ → (𝐴 +𝑒 𝐵) = (+∞ +𝑒 𝐵))
13 xnn0xrnemnf 12637 . . . . . . . . . . . . 13 (𝐵 ∈ ℕ0* → (𝐵 ∈ ℝ*𝐵 ≠ -∞))
14 xaddpnf2 13289 . . . . . . . . . . . . 13 ((𝐵 ∈ ℝ*𝐵 ≠ -∞) → (+∞ +𝑒 𝐵) = +∞)
1513, 14syl 17 . . . . . . . . . . . 12 (𝐵 ∈ ℕ0* → (+∞ +𝑒 𝐵) = +∞)
1612, 15sylan9eq 2800 . . . . . . . . . . 11 ((𝐴 = +∞ ∧ 𝐵 ∈ ℕ0*) → (𝐴 +𝑒 𝐵) = +∞)
1716ex 412 . . . . . . . . . 10 (𝐴 = +∞ → (𝐵 ∈ ℕ0* → (𝐴 +𝑒 𝐵) = +∞))
1811, 17syl 17 . . . . . . . . 9 ((𝐴 ∈ ℕ0* ∧ ¬ 𝐴 ∈ ℕ0) → (𝐵 ∈ ℕ0* → (𝐴 +𝑒 𝐵) = +∞))
1918expcom 413 . . . . . . . 8 𝐴 ∈ ℕ0 → (𝐴 ∈ ℕ0* → (𝐵 ∈ ℕ0* → (𝐴 +𝑒 𝐵) = +∞)))
2019impd 410 . . . . . . 7 𝐴 ∈ ℕ0 → ((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) → (𝐴 +𝑒 𝐵) = +∞))
21 xnn0nnn0pnf 12638 . . . . . . . . . 10 ((𝐵 ∈ ℕ0* ∧ ¬ 𝐵 ∈ ℕ0) → 𝐵 = +∞)
22 oveq2 7456 . . . . . . . . . . . 12 (𝐵 = +∞ → (𝐴 +𝑒 𝐵) = (𝐴 +𝑒 +∞))
23 xnn0xrnemnf 12637 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ0* → (𝐴 ∈ ℝ*𝐴 ≠ -∞))
24 xaddpnf1 13288 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) → (𝐴 +𝑒 +∞) = +∞)
2523, 24syl 17 . . . . . . . . . . . 12 (𝐴 ∈ ℕ0* → (𝐴 +𝑒 +∞) = +∞)
2622, 25sylan9eq 2800 . . . . . . . . . . 11 ((𝐵 = +∞ ∧ 𝐴 ∈ ℕ0*) → (𝐴 +𝑒 𝐵) = +∞)
2726ex 412 . . . . . . . . . 10 (𝐵 = +∞ → (𝐴 ∈ ℕ0* → (𝐴 +𝑒 𝐵) = +∞))
2821, 27syl 17 . . . . . . . . 9 ((𝐵 ∈ ℕ0* ∧ ¬ 𝐵 ∈ ℕ0) → (𝐴 ∈ ℕ0* → (𝐴 +𝑒 𝐵) = +∞))
2928expcom 413 . . . . . . . 8 𝐵 ∈ ℕ0 → (𝐵 ∈ ℕ0* → (𝐴 ∈ ℕ0* → (𝐴 +𝑒 𝐵) = +∞)))
3029impcomd 411 . . . . . . 7 𝐵 ∈ ℕ0 → ((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) → (𝐴 +𝑒 𝐵) = +∞))
3120, 30jaoi 856 . . . . . 6 ((¬ 𝐴 ∈ ℕ0 ∨ ¬ 𝐵 ∈ ℕ0) → ((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) → (𝐴 +𝑒 𝐵) = +∞))
3231imp 406 . . . . 5 (((¬ 𝐴 ∈ ℕ0 ∨ ¬ 𝐵 ∈ ℕ0) ∧ (𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*)) → (𝐴 +𝑒 𝐵) = +∞)
33 pnf0xnn0 12632 . . . . 5 +∞ ∈ ℕ0*
3432, 33eqeltrdi 2852 . . . 4 (((¬ 𝐴 ∈ ℕ0 ∨ ¬ 𝐵 ∈ ℕ0) ∧ (𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*)) → (𝐴 +𝑒 𝐵) ∈ ℕ0*)
3534ex 412 . . 3 ((¬ 𝐴 ∈ ℕ0 ∨ ¬ 𝐵 ∈ ℕ0) → ((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) → (𝐴 +𝑒 𝐵) ∈ ℕ0*))
3610, 35sylbi 217 . 2 (¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) → (𝐴 +𝑒 𝐵) ∈ ℕ0*))
379, 36pm2.61i 182 1 ((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) → (𝐴 +𝑒 𝐵) ∈ ℕ0*)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 846   = wceq 1537  wcel 2108  wne 2946  (class class class)co 7448  cr 11183   + caddc 11187  +∞cpnf 11321  -∞cmnf 11322  *cxr 11323  0cn0 12553  0*cxnn0 12625   +𝑒 cxad 13173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-nn 12294  df-n0 12554  df-xnn0 12626  df-xadd 13176
This theorem is referenced by:  vtxdgf  29507  vtxdginducedm1  29579
  Copyright terms: Public domain W3C validator