MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xnn0xaddcl Structured version   Visualization version   GIF version

Theorem xnn0xaddcl 12445
Description: The extended nonnegative integers are closed under extended addition. (Contributed by AV, 10-Dec-2020.)
Assertion
Ref Expression
xnn0xaddcl ((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) → (𝐴 +𝑒 𝐵) ∈ ℕ0*)

Proof of Theorem xnn0xaddcl
StepHypRef Expression
1 nn0addcl 11744 . . . . 5 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 + 𝐵) ∈ ℕ0)
21nn0xnn0d 11788 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 + 𝐵) ∈ ℕ0*)
3 nn0re 11717 . . . . 5 (𝐴 ∈ ℕ0𝐴 ∈ ℝ)
4 nn0re 11717 . . . . 5 (𝐵 ∈ ℕ0𝐵 ∈ ℝ)
5 rexadd 12442 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 +𝑒 𝐵) = (𝐴 + 𝐵))
65eleq1d 2850 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 +𝑒 𝐵) ∈ ℕ0* ↔ (𝐴 + 𝐵) ∈ ℕ0*))
73, 4, 6syl2an 586 . . . 4 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐴 +𝑒 𝐵) ∈ ℕ0* ↔ (𝐴 + 𝐵) ∈ ℕ0*))
82, 7mpbird 249 . . 3 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → (𝐴 +𝑒 𝐵) ∈ ℕ0*)
98a1d 25 . 2 ((𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) → (𝐴 +𝑒 𝐵) ∈ ℕ0*))
10 ianor 964 . . 3 (¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0) ↔ (¬ 𝐴 ∈ ℕ0 ∨ ¬ 𝐵 ∈ ℕ0))
11 xnn0nnn0pnf 11792 . . . . . . . . . 10 ((𝐴 ∈ ℕ0* ∧ ¬ 𝐴 ∈ ℕ0) → 𝐴 = +∞)
12 oveq1 6983 . . . . . . . . . . . 12 (𝐴 = +∞ → (𝐴 +𝑒 𝐵) = (+∞ +𝑒 𝐵))
13 xnn0xrnemnf 11791 . . . . . . . . . . . . 13 (𝐵 ∈ ℕ0* → (𝐵 ∈ ℝ*𝐵 ≠ -∞))
14 xaddpnf2 12437 . . . . . . . . . . . . 13 ((𝐵 ∈ ℝ*𝐵 ≠ -∞) → (+∞ +𝑒 𝐵) = +∞)
1513, 14syl 17 . . . . . . . . . . . 12 (𝐵 ∈ ℕ0* → (+∞ +𝑒 𝐵) = +∞)
1612, 15sylan9eq 2834 . . . . . . . . . . 11 ((𝐴 = +∞ ∧ 𝐵 ∈ ℕ0*) → (𝐴 +𝑒 𝐵) = +∞)
1716ex 405 . . . . . . . . . 10 (𝐴 = +∞ → (𝐵 ∈ ℕ0* → (𝐴 +𝑒 𝐵) = +∞))
1811, 17syl 17 . . . . . . . . 9 ((𝐴 ∈ ℕ0* ∧ ¬ 𝐴 ∈ ℕ0) → (𝐵 ∈ ℕ0* → (𝐴 +𝑒 𝐵) = +∞))
1918expcom 406 . . . . . . . 8 𝐴 ∈ ℕ0 → (𝐴 ∈ ℕ0* → (𝐵 ∈ ℕ0* → (𝐴 +𝑒 𝐵) = +∞)))
2019impd 402 . . . . . . 7 𝐴 ∈ ℕ0 → ((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) → (𝐴 +𝑒 𝐵) = +∞))
21 xnn0nnn0pnf 11792 . . . . . . . . . 10 ((𝐵 ∈ ℕ0* ∧ ¬ 𝐵 ∈ ℕ0) → 𝐵 = +∞)
22 oveq2 6984 . . . . . . . . . . . 12 (𝐵 = +∞ → (𝐴 +𝑒 𝐵) = (𝐴 +𝑒 +∞))
23 xnn0xrnemnf 11791 . . . . . . . . . . . . 13 (𝐴 ∈ ℕ0* → (𝐴 ∈ ℝ*𝐴 ≠ -∞))
24 xaddpnf1 12436 . . . . . . . . . . . . 13 ((𝐴 ∈ ℝ*𝐴 ≠ -∞) → (𝐴 +𝑒 +∞) = +∞)
2523, 24syl 17 . . . . . . . . . . . 12 (𝐴 ∈ ℕ0* → (𝐴 +𝑒 +∞) = +∞)
2622, 25sylan9eq 2834 . . . . . . . . . . 11 ((𝐵 = +∞ ∧ 𝐴 ∈ ℕ0*) → (𝐴 +𝑒 𝐵) = +∞)
2726ex 405 . . . . . . . . . 10 (𝐵 = +∞ → (𝐴 ∈ ℕ0* → (𝐴 +𝑒 𝐵) = +∞))
2821, 27syl 17 . . . . . . . . 9 ((𝐵 ∈ ℕ0* ∧ ¬ 𝐵 ∈ ℕ0) → (𝐴 ∈ ℕ0* → (𝐴 +𝑒 𝐵) = +∞))
2928expcom 406 . . . . . . . 8 𝐵 ∈ ℕ0 → (𝐵 ∈ ℕ0* → (𝐴 ∈ ℕ0* → (𝐴 +𝑒 𝐵) = +∞)))
3029impcomd 403 . . . . . . 7 𝐵 ∈ ℕ0 → ((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) → (𝐴 +𝑒 𝐵) = +∞))
3120, 30jaoi 843 . . . . . 6 ((¬ 𝐴 ∈ ℕ0 ∨ ¬ 𝐵 ∈ ℕ0) → ((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) → (𝐴 +𝑒 𝐵) = +∞))
3231imp 398 . . . . 5 (((¬ 𝐴 ∈ ℕ0 ∨ ¬ 𝐵 ∈ ℕ0) ∧ (𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*)) → (𝐴 +𝑒 𝐵) = +∞)
33 pnf0xnn0 11786 . . . . 5 +∞ ∈ ℕ0*
3432, 33syl6eqel 2874 . . . 4 (((¬ 𝐴 ∈ ℕ0 ∨ ¬ 𝐵 ∈ ℕ0) ∧ (𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*)) → (𝐴 +𝑒 𝐵) ∈ ℕ0*)
3534ex 405 . . 3 ((¬ 𝐴 ∈ ℕ0 ∨ ¬ 𝐵 ∈ ℕ0) → ((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) → (𝐴 +𝑒 𝐵) ∈ ℕ0*))
3610, 35sylbi 209 . 2 (¬ (𝐴 ∈ ℕ0𝐵 ∈ ℕ0) → ((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) → (𝐴 +𝑒 𝐵) ∈ ℕ0*))
379, 36pm2.61i 177 1 ((𝐴 ∈ ℕ0*𝐵 ∈ ℕ0*) → (𝐴 +𝑒 𝐵) ∈ ℕ0*)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198  wa 387  wo 833   = wceq 1507  wcel 2050  wne 2967  (class class class)co 6976  cr 10334   + caddc 10338  +∞cpnf 10471  -∞cmnf 10472  *cxr 10473  0cn0 11707  0*cxnn0 11779   +𝑒 cxad 12322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-sep 5060  ax-nul 5067  ax-pow 5119  ax-pr 5186  ax-un 7279  ax-cnex 10391  ax-resscn 10392  ax-1cn 10393  ax-icn 10394  ax-addcl 10395  ax-addrcl 10396  ax-mulcl 10397  ax-mulrcl 10398  ax-mulcom 10399  ax-addass 10400  ax-mulass 10401  ax-distr 10402  ax-i2m1 10403  ax-1ne0 10404  ax-1rid 10405  ax-rnegex 10406  ax-rrecex 10407  ax-cnre 10408  ax-pre-lttri 10409  ax-pre-lttrn 10410  ax-pre-ltadd 10411
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2584  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rab 3097  df-v 3417  df-sbc 3682  df-csb 3787  df-dif 3832  df-un 3834  df-in 3836  df-ss 3843  df-pss 3845  df-nul 4179  df-if 4351  df-pw 4424  df-sn 4442  df-pr 4444  df-tp 4446  df-op 4448  df-uni 4713  df-iun 4794  df-br 4930  df-opab 4992  df-mpt 5009  df-tr 5031  df-id 5312  df-eprel 5317  df-po 5326  df-so 5327  df-fr 5366  df-we 5368  df-xp 5413  df-rel 5414  df-cnv 5415  df-co 5416  df-dm 5417  df-rn 5418  df-res 5419  df-ima 5420  df-pred 5986  df-ord 6032  df-on 6033  df-lim 6034  df-suc 6035  df-iota 6152  df-fun 6190  df-fn 6191  df-f 6192  df-f1 6193  df-fo 6194  df-f1o 6195  df-fv 6196  df-ov 6979  df-oprab 6980  df-mpo 6981  df-om 7397  df-wrecs 7750  df-recs 7812  df-rdg 7850  df-er 8089  df-en 8307  df-dom 8308  df-sdom 8309  df-pnf 10476  df-mnf 10477  df-xr 10478  df-ltxr 10479  df-nn 11440  df-n0 11708  df-xnn0 11780  df-xadd 12325
This theorem is referenced by:  vtxdgf  26956  vtxdginducedm1  27028
  Copyright terms: Public domain W3C validator