Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > nn0nepnf | Structured version Visualization version GIF version |
Description: No standard nonnegative integer equals positive infinity. (Contributed by AV, 10-Dec-2020.) |
Ref | Expression |
---|---|
nn0nepnf | ⊢ (𝐴 ∈ ℕ0 → 𝐴 ≠ +∞) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pnfnre 10904 | . . . . 5 ⊢ +∞ ∉ ℝ | |
2 | 1 | neli 3051 | . . . 4 ⊢ ¬ +∞ ∈ ℝ |
3 | nn0re 12129 | . . . 4 ⊢ (+∞ ∈ ℕ0 → +∞ ∈ ℝ) | |
4 | 2, 3 | mto 200 | . . 3 ⊢ ¬ +∞ ∈ ℕ0 |
5 | eleq1 2827 | . . 3 ⊢ (𝐴 = +∞ → (𝐴 ∈ ℕ0 ↔ +∞ ∈ ℕ0)) | |
6 | 4, 5 | mtbiri 330 | . 2 ⊢ (𝐴 = +∞ → ¬ 𝐴 ∈ ℕ0) |
7 | 6 | necon2ai 2973 | 1 ⊢ (𝐴 ∈ ℕ0 → 𝐴 ≠ +∞) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ wcel 2112 ≠ wne 2943 ℝcr 10758 +∞cpnf 10894 ℕ0cn0 12120 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2160 ax-12 2177 ax-ext 2710 ax-sep 5209 ax-nul 5216 ax-pr 5339 ax-un 7545 ax-resscn 10816 ax-1cn 10817 ax-icn 10818 ax-addcl 10819 ax-addrcl 10820 ax-mulcl 10821 ax-mulrcl 10822 ax-i2m1 10827 ax-1ne0 10828 ax-rnegex 10830 ax-rrecex 10831 ax-cnre 10832 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2073 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2818 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-reu 3071 df-rab 3073 df-v 3425 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4255 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5153 df-tr 5179 df-id 5472 df-eprel 5478 df-po 5486 df-so 5487 df-fr 5527 df-we 5529 df-xp 5575 df-rel 5576 df-cnv 5577 df-co 5578 df-dm 5579 df-rn 5580 df-res 5581 df-ima 5582 df-pred 6179 df-ord 6237 df-on 6238 df-lim 6239 df-suc 6240 df-iota 6359 df-fun 6403 df-fn 6404 df-f 6405 df-f1 6406 df-fo 6407 df-f1o 6408 df-fv 6409 df-ov 7238 df-om 7667 df-wrecs 8071 df-recs 8132 df-rdg 8170 df-pnf 10899 df-nn 11861 df-n0 12121 |
This theorem is referenced by: nn0nepnfd 12202 xnn0n0n1ge2b 12753 |
Copyright terms: Public domain | W3C validator |