| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnne0s | Structured version Visualization version GIF version | ||
| Description: A surreal positive integer is non-zero. (Contributed by Scott Fenton, 15-Apr-2025.) |
| Ref | Expression |
|---|---|
| nnne0s | ⊢ (𝐴 ∈ ℕs → 𝐴 ≠ 0s ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifsni 4741 | . 2 ⊢ (𝐴 ∈ (ℕ0s ∖ { 0s }) → 𝐴 ≠ 0s ) | |
| 2 | df-nns 28246 | . 2 ⊢ ℕs = (ℕ0s ∖ { 0s }) | |
| 3 | 1, 2 | eleq2s 2851 | 1 ⊢ (𝐴 ∈ ℕs → 𝐴 ≠ 0s ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 ≠ wne 2929 ∖ cdif 3895 {csn 4575 0s c0s 27767 ℕ0scnn0s 28243 ℕscnns 28244 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ne 2930 df-v 3439 df-dif 3901 df-sn 4576 df-nns 28246 |
| This theorem is referenced by: nnsgt0 28268 2ne0s 28344 expsnnval 28350 recut 28399 0reno 28400 renegscl 28401 readdscl 28402 remulscllem1 28403 remulscl 28405 |
| Copyright terms: Public domain | W3C validator |