| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnne0s | Structured version Visualization version GIF version | ||
| Description: A surreal positive integer is non-zero. (Contributed by Scott Fenton, 15-Apr-2025.) |
| Ref | Expression |
|---|---|
| nnne0s | ⊢ (𝐴 ∈ ℕs → 𝐴 ≠ 0s ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifsni 4757 | . 2 ⊢ (𝐴 ∈ (ℕ0s ∖ { 0s }) → 𝐴 ≠ 0s ) | |
| 2 | df-nns 28216 | . 2 ⊢ ℕs = (ℕ0s ∖ { 0s }) | |
| 3 | 1, 2 | eleq2s 2847 | 1 ⊢ (𝐴 ∈ ℕs → 𝐴 ≠ 0s ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ≠ wne 2926 ∖ cdif 3914 {csn 4592 0s c0s 27741 ℕ0scnn0s 28213 ℕscnns 28214 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ne 2927 df-v 3452 df-dif 3920 df-sn 4593 df-nns 28216 |
| This theorem is referenced by: nnsgt0 28238 2ne0s 28313 expsnnval 28319 recut 28354 0reno 28355 renegscl 28356 readdscl 28357 remulscllem1 28358 remulscl 28360 |
| Copyright terms: Public domain | W3C validator |