MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnne0s Structured version   Visualization version   GIF version

Theorem nnne0s 28198
Description: A surreal positive integer is non-zero. (Contributed by Scott Fenton, 15-Apr-2025.)
Assertion
Ref Expression
nnne0s (𝐴 ∈ ℕs𝐴 ≠ 0s )

Proof of Theorem nnne0s
StepHypRef Expression
1 eldifsni 4789 . 2 (𝐴 ∈ (ℕ0s ∖ { 0s }) → 𝐴 ≠ 0s )
2 df-nns 28181 . 2 s = (ℕ0s ∖ { 0s })
31, 2eleq2s 2846 1 (𝐴 ∈ ℕs𝐴 ≠ 0s )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2099  wne 2935  cdif 3941  {csn 4624   0s c0s 27748  0scnn0s 28178  scnns 28179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2698
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1537  df-ex 1775  df-sb 2061  df-clab 2705  df-cleq 2719  df-clel 2805  df-ne 2936  df-v 3471  df-dif 3947  df-sn 4625  df-nns 28181
This theorem is referenced by:  nnsgt0  28200  recut  28217  0reno  28218  renegscl  28219  readdscl  28220  remulscllem1  28221  remulscl  28223
  Copyright terms: Public domain W3C validator