MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnne0s Structured version   Visualization version   GIF version

Theorem nnne0s 28121
Description: A surreal positive integer is non-zero. (Contributed by Scott Fenton, 15-Apr-2025.)
Assertion
Ref Expression
nnne0s (𝐴 ∈ ℕs𝐴 ≠ 0s )

Proof of Theorem nnne0s
StepHypRef Expression
1 eldifsni 4785 . 2 (𝐴 ∈ (ℕ0s ∖ { 0s }) → 𝐴 ≠ 0s )
2 df-nns 28104 . 2 s = (ℕ0s ∖ { 0s })
31, 2eleq2s 2843 1 (𝐴 ∈ ℕs𝐴 ≠ 0s )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2098  wne 2932  cdif 3937  {csn 4620   0s c0s 27671  0scnn0s 28101  scnns 28102
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ne 2933  df-v 3468  df-dif 3943  df-sn 4621  df-nns 28104
This theorem is referenced by:  nnsgt0  28123  recut  28140  0reno  28141  renegscl  28142  readdscl  28143  remulscllem1  28144  remulscl  28146
  Copyright terms: Public domain W3C validator