![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nnne0s | Structured version Visualization version GIF version |
Description: A surreal positive integer is non-zero. (Contributed by Scott Fenton, 15-Apr-2025.) |
Ref | Expression |
---|---|
nnne0s | ⊢ (𝐴 ∈ ℕs → 𝐴 ≠ 0s ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifsni 4815 | . 2 ⊢ (𝐴 ∈ (ℕ0s ∖ { 0s }) → 𝐴 ≠ 0s ) | |
2 | df-nns 28339 | . 2 ⊢ ℕs = (ℕ0s ∖ { 0s }) | |
3 | 1, 2 | eleq2s 2862 | 1 ⊢ (𝐴 ∈ ℕs → 𝐴 ≠ 0s ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 ≠ wne 2946 ∖ cdif 3973 {csn 4648 0s c0s 27885 ℕ0scnn0s 28336 ℕscnns 28337 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ne 2947 df-v 3490 df-dif 3979 df-sn 4649 df-nns 28339 |
This theorem is referenced by: nnsgt0 28360 2ne0s 28422 expsnnval 28427 recut 28446 0reno 28447 renegscl 28448 readdscl 28449 remulscllem1 28450 remulscl 28452 |
Copyright terms: Public domain | W3C validator |