MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnne0s Structured version   Visualization version   GIF version

Theorem nnne0s 28266
Description: A surreal positive integer is non-zero. (Contributed by Scott Fenton, 15-Apr-2025.)
Assertion
Ref Expression
nnne0s (𝐴 ∈ ℕs𝐴 ≠ 0s )

Proof of Theorem nnne0s
StepHypRef Expression
1 eldifsni 4741 . 2 (𝐴 ∈ (ℕ0s ∖ { 0s }) → 𝐴 ≠ 0s )
2 df-nns 28246 . 2 s = (ℕ0s ∖ { 0s })
31, 2eleq2s 2851 1 (𝐴 ∈ ℕs𝐴 ≠ 0s )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2113  wne 2929  cdif 3895  {csn 4575   0s c0s 27767  0scnn0s 28243  scnns 28244
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-ext 2705
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1544  df-ex 1781  df-sb 2068  df-clab 2712  df-cleq 2725  df-clel 2808  df-ne 2930  df-v 3439  df-dif 3901  df-sn 4576  df-nns 28246
This theorem is referenced by:  nnsgt0  28268  2ne0s  28344  expsnnval  28350  recut  28399  0reno  28400  renegscl  28401  readdscl  28402  remulscllem1  28403  remulscl  28405
  Copyright terms: Public domain W3C validator