MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnne0s Structured version   Visualization version   GIF version

Theorem nnne0s 28286
Description: A surreal positive integer is non-zero. (Contributed by Scott Fenton, 15-Apr-2025.)
Assertion
Ref Expression
nnne0s (𝐴 ∈ ℕs𝐴 ≠ 0s )

Proof of Theorem nnne0s
StepHypRef Expression
1 eldifsni 4771 . 2 (𝐴 ∈ (ℕ0s ∖ { 0s }) → 𝐴 ≠ 0s )
2 df-nns 28266 . 2 s = (ℕ0s ∖ { 0s })
31, 2eleq2s 2853 1 (𝐴 ∈ ℕs𝐴 ≠ 0s )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  wne 2933  cdif 3928  {csn 4606   0s c0s 27791  0scnn0s 28263  scnns 28264
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-ne 2934  df-v 3466  df-dif 3934  df-sn 4607  df-nns 28266
This theorem is referenced by:  nnsgt0  28288  2ne0s  28363  expsnnval  28369  recut  28404  0reno  28405  renegscl  28406  readdscl  28407  remulscllem1  28408  remulscl  28410
  Copyright terms: Public domain W3C validator