| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnne0s | Structured version Visualization version GIF version | ||
| Description: A surreal positive integer is non-zero. (Contributed by Scott Fenton, 15-Apr-2025.) |
| Ref | Expression |
|---|---|
| nnne0s | ⊢ (𝐴 ∈ ℕs → 𝐴 ≠ 0s ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifsni 4742 | . 2 ⊢ (𝐴 ∈ (ℕ0s ∖ { 0s }) → 𝐴 ≠ 0s ) | |
| 2 | df-nns 28243 | . 2 ⊢ ℕs = (ℕ0s ∖ { 0s }) | |
| 3 | 1, 2 | eleq2s 2849 | 1 ⊢ (𝐴 ∈ ℕs → 𝐴 ≠ 0s ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 ≠ wne 2928 ∖ cdif 3899 {csn 4576 0s c0s 27764 ℕ0scnn0s 28240 ℕscnns 28241 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-v 3438 df-dif 3905 df-sn 4577 df-nns 28243 |
| This theorem is referenced by: nnsgt0 28265 2ne0s 28341 expsnnval 28347 recut 28396 0reno 28397 renegscl 28398 readdscl 28399 remulscllem1 28400 remulscl 28402 |
| Copyright terms: Public domain | W3C validator |