![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nnne0s | Structured version Visualization version GIF version |
Description: A surreal positive integer is non-zero. (Contributed by Scott Fenton, 15-Apr-2025.) |
Ref | Expression |
---|---|
nnne0s | ⊢ (𝐴 ∈ ℕs → 𝐴 ≠ 0s ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eldifsni 4795 | . 2 ⊢ (𝐴 ∈ (ℕ0s ∖ { 0s }) → 𝐴 ≠ 0s ) | |
2 | df-nns 28238 | . 2 ⊢ ℕs = (ℕ0s ∖ { 0s }) | |
3 | 1, 2 | eleq2s 2843 | 1 ⊢ (𝐴 ∈ ℕs → 𝐴 ≠ 0s ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2098 ≠ wne 2929 ∖ cdif 3941 {csn 4630 0s c0s 27801 ℕ0scnn0s 28235 ℕscnns 28236 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 |
This theorem depends on definitions: df-bi 206 df-an 395 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ne 2930 df-v 3463 df-dif 3947 df-sn 4631 df-nns 28238 |
This theorem is referenced by: nnsgt0 28259 recut 28296 0reno 28297 renegscl 28298 readdscl 28299 remulscllem1 28300 remulscl 28302 |
Copyright terms: Public domain | W3C validator |