MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nnne0s Structured version   Visualization version   GIF version

Theorem nnne0s 28236
Description: A surreal positive integer is non-zero. (Contributed by Scott Fenton, 15-Apr-2025.)
Assertion
Ref Expression
nnne0s (𝐴 ∈ ℕs𝐴 ≠ 0s )

Proof of Theorem nnne0s
StepHypRef Expression
1 eldifsni 4757 . 2 (𝐴 ∈ (ℕ0s ∖ { 0s }) → 𝐴 ≠ 0s )
2 df-nns 28216 . 2 s = (ℕ0s ∖ { 0s })
31, 2eleq2s 2847 1 (𝐴 ∈ ℕs𝐴 ≠ 0s )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  wne 2926  cdif 3914  {csn 4592   0s c0s 27741  0scnn0s 28213  scnns 28214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-v 3452  df-dif 3920  df-sn 4593  df-nns 28216
This theorem is referenced by:  nnsgt0  28238  2ne0s  28313  expsnnval  28319  recut  28354  0reno  28355  renegscl  28356  readdscl  28357  remulscllem1  28358  remulscl  28360
  Copyright terms: Public domain W3C validator