| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nnne0s | Structured version Visualization version GIF version | ||
| Description: A surreal positive integer is non-zero. (Contributed by Scott Fenton, 15-Apr-2025.) |
| Ref | Expression |
|---|---|
| nnne0s | ⊢ (𝐴 ∈ ℕs → 𝐴 ≠ 0s ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eldifsni 4771 | . 2 ⊢ (𝐴 ∈ (ℕ0s ∖ { 0s }) → 𝐴 ≠ 0s ) | |
| 2 | df-nns 28266 | . 2 ⊢ ℕs = (ℕ0s ∖ { 0s }) | |
| 3 | 1, 2 | eleq2s 2853 | 1 ⊢ (𝐴 ∈ ℕs → 𝐴 ≠ 0s ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 ≠ wne 2933 ∖ cdif 3928 {csn 4606 0s c0s 27791 ℕ0scnn0s 28263 ℕscnns 28264 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ne 2934 df-v 3466 df-dif 3934 df-sn 4607 df-nns 28266 |
| This theorem is referenced by: nnsgt0 28288 2ne0s 28363 expsnnval 28369 recut 28404 0reno 28405 renegscl 28406 readdscl 28407 remulscllem1 28408 remulscl 28410 |
| Copyright terms: Public domain | W3C validator |