MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  n0sge0 Structured version   Visualization version   GIF version

Theorem n0sge0 28267
Description: A non-negative integer is greater than or equal to zero. (Contributed by Scott Fenton, 15-Apr-2025.)
Assertion
Ref Expression
n0sge0 (𝐴 ∈ ℕ0s → 0s ≤s 𝐴)

Proof of Theorem n0sge0
Dummy variables 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 5097 . 2 (𝑛 = 0s → ( 0s ≤s 𝑛 ↔ 0s ≤s 0s ))
2 breq2 5097 . 2 (𝑛 = 𝑚 → ( 0s ≤s 𝑛 ↔ 0s ≤s 𝑚))
3 breq2 5097 . 2 (𝑛 = (𝑚 +s 1s ) → ( 0s ≤s 𝑛 ↔ 0s ≤s (𝑚 +s 1s )))
4 breq2 5097 . 2 (𝑛 = 𝐴 → ( 0s ≤s 𝑛 ↔ 0s ≤s 𝐴))
5 0sno 27771 . . 3 0s No
6 slerflex 27703 . . 3 ( 0s No → 0s ≤s 0s )
75, 6ax-mp 5 . 2 0s ≤s 0s
85a1i 11 . . . 4 ((𝑚 ∈ ℕ0s ∧ 0s ≤s 𝑚) → 0s No )
9 n0sno 28253 . . . . 5 (𝑚 ∈ ℕ0s𝑚 No )
109adantr 480 . . . 4 ((𝑚 ∈ ℕ0s ∧ 0s ≤s 𝑚) → 𝑚 No )
11 peano2no 27928 . . . . . 6 (𝑚 No → (𝑚 +s 1s ) ∈ No )
129, 11syl 17 . . . . 5 (𝑚 ∈ ℕ0s → (𝑚 +s 1s ) ∈ No )
1312adantr 480 . . . 4 ((𝑚 ∈ ℕ0s ∧ 0s ≤s 𝑚) → (𝑚 +s 1s ) ∈ No )
14 simpr 484 . . . 4 ((𝑚 ∈ ℕ0s ∧ 0s ≤s 𝑚) → 0s ≤s 𝑚)
159addsridd 27909 . . . . . 6 (𝑚 ∈ ℕ0s → (𝑚 +s 0s ) = 𝑚)
1615adantr 480 . . . . 5 ((𝑚 ∈ ℕ0s ∧ 0s ≤s 𝑚) → (𝑚 +s 0s ) = 𝑚)
175a1i 11 . . . . . . . . 9 (⊤ → 0s No )
18 1sno 27772 . . . . . . . . . 10 1s No
1918a1i 11 . . . . . . . . 9 (⊤ → 1s No )
20 0slt1s 27774 . . . . . . . . . 10 0s <s 1s
2120a1i 11 . . . . . . . . 9 (⊤ → 0s <s 1s )
2217, 19, 21sltled 27709 . . . . . . . 8 (⊤ → 0s ≤s 1s )
2322mptru 1548 . . . . . . 7 0s ≤s 1s
245a1i 11 . . . . . . . 8 (𝑚 ∈ ℕ0s → 0s No )
2518a1i 11 . . . . . . . 8 (𝑚 ∈ ℕ0s → 1s No )
2624, 25, 9sleadd2d 27940 . . . . . . 7 (𝑚 ∈ ℕ0s → ( 0s ≤s 1s ↔ (𝑚 +s 0s ) ≤s (𝑚 +s 1s )))
2723, 26mpbii 233 . . . . . 6 (𝑚 ∈ ℕ0s → (𝑚 +s 0s ) ≤s (𝑚 +s 1s ))
2827adantr 480 . . . . 5 ((𝑚 ∈ ℕ0s ∧ 0s ≤s 𝑚) → (𝑚 +s 0s ) ≤s (𝑚 +s 1s ))
2916, 28eqbrtrrd 5117 . . . 4 ((𝑚 ∈ ℕ0s ∧ 0s ≤s 𝑚) → 𝑚 ≤s (𝑚 +s 1s ))
308, 10, 13, 14, 29sletrd 27702 . . 3 ((𝑚 ∈ ℕ0s ∧ 0s ≤s 𝑚) → 0s ≤s (𝑚 +s 1s ))
3130ex 412 . 2 (𝑚 ∈ ℕ0s → ( 0s ≤s 𝑚 → 0s ≤s (𝑚 +s 1s )))
321, 2, 3, 4, 7, 31n0sind 28262 1 (𝐴 ∈ ℕ0s → 0s ≤s 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wtru 1542  wcel 2113   class class class wbr 5093  (class class class)co 7352   No csur 27579   <s cslt 27580   ≤s csle 27684   0s c0s 27767   1s c1s 27768   +s cadds 27903  0scnn0s 28243
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-ot 4584  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-2o 8392  df-nadd 8587  df-no 27582  df-slt 27583  df-bday 27584  df-sle 27685  df-sslt 27722  df-scut 27724  df-0s 27769  df-1s 27770  df-made 27789  df-old 27790  df-left 27792  df-right 27793  df-norec2 27893  df-adds 27904  df-n0s 28245
This theorem is referenced by:  nnsgt0  28268  elnns2  28270  nnsge1  28272  n0subs  28290  eln0zs  28325
  Copyright terms: Public domain W3C validator