MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  n0sge0 Structured version   Visualization version   GIF version

Theorem n0sge0 28253
Description: A non-negative integer is greater than or equal to zero. (Contributed by Scott Fenton, 15-Apr-2025.)
Assertion
Ref Expression
n0sge0 (𝐴 ∈ ℕ0s → 0s ≤s 𝐴)

Proof of Theorem n0sge0
Dummy variables 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 5099 . 2 (𝑛 = 0s → ( 0s ≤s 𝑛 ↔ 0s ≤s 0s ))
2 breq2 5099 . 2 (𝑛 = 𝑚 → ( 0s ≤s 𝑛 ↔ 0s ≤s 𝑚))
3 breq2 5099 . 2 (𝑛 = (𝑚 +s 1s ) → ( 0s ≤s 𝑛 ↔ 0s ≤s (𝑚 +s 1s )))
4 breq2 5099 . 2 (𝑛 = 𝐴 → ( 0s ≤s 𝑛 ↔ 0s ≤s 𝐴))
5 0sno 27758 . . 3 0s No
6 slerflex 27691 . . 3 ( 0s No → 0s ≤s 0s )
75, 6ax-mp 5 . 2 0s ≤s 0s
85a1i 11 . . . 4 ((𝑚 ∈ ℕ0s ∧ 0s ≤s 𝑚) → 0s No )
9 n0sno 28239 . . . . 5 (𝑚 ∈ ℕ0s𝑚 No )
109adantr 480 . . . 4 ((𝑚 ∈ ℕ0s ∧ 0s ≤s 𝑚) → 𝑚 No )
11 peano2no 27914 . . . . . 6 (𝑚 No → (𝑚 +s 1s ) ∈ No )
129, 11syl 17 . . . . 5 (𝑚 ∈ ℕ0s → (𝑚 +s 1s ) ∈ No )
1312adantr 480 . . . 4 ((𝑚 ∈ ℕ0s ∧ 0s ≤s 𝑚) → (𝑚 +s 1s ) ∈ No )
14 simpr 484 . . . 4 ((𝑚 ∈ ℕ0s ∧ 0s ≤s 𝑚) → 0s ≤s 𝑚)
159addsridd 27895 . . . . . 6 (𝑚 ∈ ℕ0s → (𝑚 +s 0s ) = 𝑚)
1615adantr 480 . . . . 5 ((𝑚 ∈ ℕ0s ∧ 0s ≤s 𝑚) → (𝑚 +s 0s ) = 𝑚)
175a1i 11 . . . . . . . . 9 (⊤ → 0s No )
18 1sno 27759 . . . . . . . . . 10 1s No
1918a1i 11 . . . . . . . . 9 (⊤ → 1s No )
20 0slt1s 27761 . . . . . . . . . 10 0s <s 1s
2120a1i 11 . . . . . . . . 9 (⊤ → 0s <s 1s )
2217, 19, 21sltled 27697 . . . . . . . 8 (⊤ → 0s ≤s 1s )
2322mptru 1547 . . . . . . 7 0s ≤s 1s
245a1i 11 . . . . . . . 8 (𝑚 ∈ ℕ0s → 0s No )
2518a1i 11 . . . . . . . 8 (𝑚 ∈ ℕ0s → 1s No )
2624, 25, 9sleadd2d 27926 . . . . . . 7 (𝑚 ∈ ℕ0s → ( 0s ≤s 1s ↔ (𝑚 +s 0s ) ≤s (𝑚 +s 1s )))
2723, 26mpbii 233 . . . . . 6 (𝑚 ∈ ℕ0s → (𝑚 +s 0s ) ≤s (𝑚 +s 1s ))
2827adantr 480 . . . . 5 ((𝑚 ∈ ℕ0s ∧ 0s ≤s 𝑚) → (𝑚 +s 0s ) ≤s (𝑚 +s 1s ))
2916, 28eqbrtrrd 5119 . . . 4 ((𝑚 ∈ ℕ0s ∧ 0s ≤s 𝑚) → 𝑚 ≤s (𝑚 +s 1s ))
308, 10, 13, 14, 29sletrd 27690 . . 3 ((𝑚 ∈ ℕ0s ∧ 0s ≤s 𝑚) → 0s ≤s (𝑚 +s 1s ))
3130ex 412 . 2 (𝑚 ∈ ℕ0s → ( 0s ≤s 𝑚 → 0s ≤s (𝑚 +s 1s )))
321, 2, 3, 4, 7, 31n0sind 28248 1 (𝐴 ∈ ℕ0s → 0s ≤s 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wtru 1541  wcel 2109   class class class wbr 5095  (class class class)co 7353   No csur 27567   <s cslt 27568   ≤s csle 27672   0s c0s 27754   1s c1s 27755   +s cadds 27889  0scnn0s 28229
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-ot 4588  df-uni 4862  df-int 4900  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-om 7807  df-1st 7931  df-2nd 7932  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-nadd 8591  df-no 27570  df-slt 27571  df-bday 27572  df-sle 27673  df-sslt 27710  df-scut 27712  df-0s 27756  df-1s 27757  df-made 27775  df-old 27776  df-left 27778  df-right 27779  df-norec2 27879  df-adds 27890  df-n0s 28231
This theorem is referenced by:  nnsgt0  28254  elnns2  28256  nnsge1  28258  n0subs  28276  eln0zs  28311
  Copyright terms: Public domain W3C validator