| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > n0sge0 | Structured version Visualization version GIF version | ||
| Description: A non-negative integer is greater than or equal to zero. (Contributed by Scott Fenton, 15-Apr-2025.) |
| Ref | Expression |
|---|---|
| n0sge0 | ⊢ (𝐴 ∈ ℕ0s → 0s ≤s 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 5114 | . 2 ⊢ (𝑛 = 0s → ( 0s ≤s 𝑛 ↔ 0s ≤s 0s )) | |
| 2 | breq2 5114 | . 2 ⊢ (𝑛 = 𝑚 → ( 0s ≤s 𝑛 ↔ 0s ≤s 𝑚)) | |
| 3 | breq2 5114 | . 2 ⊢ (𝑛 = (𝑚 +s 1s ) → ( 0s ≤s 𝑛 ↔ 0s ≤s (𝑚 +s 1s ))) | |
| 4 | breq2 5114 | . 2 ⊢ (𝑛 = 𝐴 → ( 0s ≤s 𝑛 ↔ 0s ≤s 𝐴)) | |
| 5 | 0sno 27745 | . . 3 ⊢ 0s ∈ No | |
| 6 | slerflex 27682 | . . 3 ⊢ ( 0s ∈ No → 0s ≤s 0s ) | |
| 7 | 5, 6 | ax-mp 5 | . 2 ⊢ 0s ≤s 0s |
| 8 | 5 | a1i 11 | . . . 4 ⊢ ((𝑚 ∈ ℕ0s ∧ 0s ≤s 𝑚) → 0s ∈ No ) |
| 9 | n0sno 28223 | . . . . 5 ⊢ (𝑚 ∈ ℕ0s → 𝑚 ∈ No ) | |
| 10 | 9 | adantr 480 | . . . 4 ⊢ ((𝑚 ∈ ℕ0s ∧ 0s ≤s 𝑚) → 𝑚 ∈ No ) |
| 11 | peano2no 27898 | . . . . . 6 ⊢ (𝑚 ∈ No → (𝑚 +s 1s ) ∈ No ) | |
| 12 | 9, 11 | syl 17 | . . . . 5 ⊢ (𝑚 ∈ ℕ0s → (𝑚 +s 1s ) ∈ No ) |
| 13 | 12 | adantr 480 | . . . 4 ⊢ ((𝑚 ∈ ℕ0s ∧ 0s ≤s 𝑚) → (𝑚 +s 1s ) ∈ No ) |
| 14 | simpr 484 | . . . 4 ⊢ ((𝑚 ∈ ℕ0s ∧ 0s ≤s 𝑚) → 0s ≤s 𝑚) | |
| 15 | 9 | addsridd 27879 | . . . . . 6 ⊢ (𝑚 ∈ ℕ0s → (𝑚 +s 0s ) = 𝑚) |
| 16 | 15 | adantr 480 | . . . . 5 ⊢ ((𝑚 ∈ ℕ0s ∧ 0s ≤s 𝑚) → (𝑚 +s 0s ) = 𝑚) |
| 17 | 5 | a1i 11 | . . . . . . . . 9 ⊢ (⊤ → 0s ∈ No ) |
| 18 | 1sno 27746 | . . . . . . . . . 10 ⊢ 1s ∈ No | |
| 19 | 18 | a1i 11 | . . . . . . . . 9 ⊢ (⊤ → 1s ∈ No ) |
| 20 | 0slt1s 27748 | . . . . . . . . . 10 ⊢ 0s <s 1s | |
| 21 | 20 | a1i 11 | . . . . . . . . 9 ⊢ (⊤ → 0s <s 1s ) |
| 22 | 17, 19, 21 | sltled 27688 | . . . . . . . 8 ⊢ (⊤ → 0s ≤s 1s ) |
| 23 | 22 | mptru 1547 | . . . . . . 7 ⊢ 0s ≤s 1s |
| 24 | 5 | a1i 11 | . . . . . . . 8 ⊢ (𝑚 ∈ ℕ0s → 0s ∈ No ) |
| 25 | 18 | a1i 11 | . . . . . . . 8 ⊢ (𝑚 ∈ ℕ0s → 1s ∈ No ) |
| 26 | 24, 25, 9 | sleadd2d 27910 | . . . . . . 7 ⊢ (𝑚 ∈ ℕ0s → ( 0s ≤s 1s ↔ (𝑚 +s 0s ) ≤s (𝑚 +s 1s ))) |
| 27 | 23, 26 | mpbii 233 | . . . . . 6 ⊢ (𝑚 ∈ ℕ0s → (𝑚 +s 0s ) ≤s (𝑚 +s 1s )) |
| 28 | 27 | adantr 480 | . . . . 5 ⊢ ((𝑚 ∈ ℕ0s ∧ 0s ≤s 𝑚) → (𝑚 +s 0s ) ≤s (𝑚 +s 1s )) |
| 29 | 16, 28 | eqbrtrrd 5134 | . . . 4 ⊢ ((𝑚 ∈ ℕ0s ∧ 0s ≤s 𝑚) → 𝑚 ≤s (𝑚 +s 1s )) |
| 30 | 8, 10, 13, 14, 29 | sletrd 27681 | . . 3 ⊢ ((𝑚 ∈ ℕ0s ∧ 0s ≤s 𝑚) → 0s ≤s (𝑚 +s 1s )) |
| 31 | 30 | ex 412 | . 2 ⊢ (𝑚 ∈ ℕ0s → ( 0s ≤s 𝑚 → 0s ≤s (𝑚 +s 1s ))) |
| 32 | 1, 2, 3, 4, 7, 31 | n0sind 28232 | 1 ⊢ (𝐴 ∈ ℕ0s → 0s ≤s 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ⊤wtru 1541 ∈ wcel 2109 class class class wbr 5110 (class class class)co 7390 No csur 27558 <s cslt 27559 ≤s csle 27663 0s c0s 27741 1s c1s 27742 +s cadds 27873 ℕ0scnn0s 28213 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-ot 4601 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-nadd 8633 df-no 27561 df-slt 27562 df-bday 27563 df-sle 27664 df-sslt 27700 df-scut 27702 df-0s 27743 df-1s 27744 df-made 27762 df-old 27763 df-left 27765 df-right 27766 df-norec2 27863 df-adds 27874 df-n0s 28215 |
| This theorem is referenced by: nnsgt0 28238 elnns2 28240 nnsge1 28242 n0subs 28260 eln0zs 28295 |
| Copyright terms: Public domain | W3C validator |