![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > n0sge0 | Structured version Visualization version GIF version |
Description: A non-negative integer is greater than or equal to zero. (Contributed by Scott Fenton, 15-Apr-2025.) |
Ref | Expression |
---|---|
n0sge0 | ⊢ (𝐴 ∈ ℕ0s → 0s ≤s 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 5157 | . 2 ⊢ (𝑛 = 0s → ( 0s ≤s 𝑛 ↔ 0s ≤s 0s )) | |
2 | breq2 5157 | . 2 ⊢ (𝑛 = 𝑚 → ( 0s ≤s 𝑛 ↔ 0s ≤s 𝑚)) | |
3 | breq2 5157 | . 2 ⊢ (𝑛 = (𝑚 +s 1s ) → ( 0s ≤s 𝑛 ↔ 0s ≤s (𝑚 +s 1s ))) | |
4 | breq2 5157 | . 2 ⊢ (𝑛 = 𝐴 → ( 0s ≤s 𝑛 ↔ 0s ≤s 𝐴)) | |
5 | 0sno 27856 | . . 3 ⊢ 0s ∈ No | |
6 | slerflex 27793 | . . 3 ⊢ ( 0s ∈ No → 0s ≤s 0s ) | |
7 | 5, 6 | ax-mp 5 | . 2 ⊢ 0s ≤s 0s |
8 | 5 | a1i 11 | . . . 4 ⊢ ((𝑚 ∈ ℕ0s ∧ 0s ≤s 𝑚) → 0s ∈ No ) |
9 | n0sno 28296 | . . . . 5 ⊢ (𝑚 ∈ ℕ0s → 𝑚 ∈ No ) | |
10 | 9 | adantr 479 | . . . 4 ⊢ ((𝑚 ∈ ℕ0s ∧ 0s ≤s 𝑚) → 𝑚 ∈ No ) |
11 | peano2no 27998 | . . . . . 6 ⊢ (𝑚 ∈ No → (𝑚 +s 1s ) ∈ No ) | |
12 | 9, 11 | syl 17 | . . . . 5 ⊢ (𝑚 ∈ ℕ0s → (𝑚 +s 1s ) ∈ No ) |
13 | 12 | adantr 479 | . . . 4 ⊢ ((𝑚 ∈ ℕ0s ∧ 0s ≤s 𝑚) → (𝑚 +s 1s ) ∈ No ) |
14 | simpr 483 | . . . 4 ⊢ ((𝑚 ∈ ℕ0s ∧ 0s ≤s 𝑚) → 0s ≤s 𝑚) | |
15 | 9 | addsridd 27979 | . . . . . 6 ⊢ (𝑚 ∈ ℕ0s → (𝑚 +s 0s ) = 𝑚) |
16 | 15 | adantr 479 | . . . . 5 ⊢ ((𝑚 ∈ ℕ0s ∧ 0s ≤s 𝑚) → (𝑚 +s 0s ) = 𝑚) |
17 | 5 | a1i 11 | . . . . . . . . 9 ⊢ (⊤ → 0s ∈ No ) |
18 | 1sno 27857 | . . . . . . . . . 10 ⊢ 1s ∈ No | |
19 | 18 | a1i 11 | . . . . . . . . 9 ⊢ (⊤ → 1s ∈ No ) |
20 | 0slt1s 27859 | . . . . . . . . . 10 ⊢ 0s <s 1s | |
21 | 20 | a1i 11 | . . . . . . . . 9 ⊢ (⊤ → 0s <s 1s ) |
22 | 17, 19, 21 | sltled 27799 | . . . . . . . 8 ⊢ (⊤ → 0s ≤s 1s ) |
23 | 22 | mptru 1541 | . . . . . . 7 ⊢ 0s ≤s 1s |
24 | 5 | a1i 11 | . . . . . . . 8 ⊢ (𝑚 ∈ ℕ0s → 0s ∈ No ) |
25 | 18 | a1i 11 | . . . . . . . 8 ⊢ (𝑚 ∈ ℕ0s → 1s ∈ No ) |
26 | 24, 25, 9 | sleadd2d 28010 | . . . . . . 7 ⊢ (𝑚 ∈ ℕ0s → ( 0s ≤s 1s ↔ (𝑚 +s 0s ) ≤s (𝑚 +s 1s ))) |
27 | 23, 26 | mpbii 232 | . . . . . 6 ⊢ (𝑚 ∈ ℕ0s → (𝑚 +s 0s ) ≤s (𝑚 +s 1s )) |
28 | 27 | adantr 479 | . . . . 5 ⊢ ((𝑚 ∈ ℕ0s ∧ 0s ≤s 𝑚) → (𝑚 +s 0s ) ≤s (𝑚 +s 1s )) |
29 | 16, 28 | eqbrtrrd 5177 | . . . 4 ⊢ ((𝑚 ∈ ℕ0s ∧ 0s ≤s 𝑚) → 𝑚 ≤s (𝑚 +s 1s )) |
30 | 8, 10, 13, 14, 29 | sletrd 27792 | . . 3 ⊢ ((𝑚 ∈ ℕ0s ∧ 0s ≤s 𝑚) → 0s ≤s (𝑚 +s 1s )) |
31 | 30 | ex 411 | . 2 ⊢ (𝑚 ∈ ℕ0s → ( 0s ≤s 𝑚 → 0s ≤s (𝑚 +s 1s ))) |
32 | 1, 2, 3, 4, 7, 31 | n0sind 28305 | 1 ⊢ (𝐴 ∈ ℕ0s → 0s ≤s 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ⊤wtru 1535 ∈ wcel 2099 class class class wbr 5153 (class class class)co 7424 No csur 27669 <s cslt 27670 ≤s csle 27774 0s c0s 27852 1s c1s 27853 +s cadds 27973 ℕ0scnn0s 28286 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5290 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3967 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-tp 4638 df-op 4640 df-ot 4642 df-uni 4914 df-int 4955 df-iun 5003 df-br 5154 df-opab 5216 df-mpt 5237 df-tr 5271 df-id 5580 df-eprel 5586 df-po 5594 df-so 5595 df-fr 5637 df-se 5638 df-we 5639 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-ima 5695 df-pred 6312 df-ord 6379 df-on 6380 df-lim 6381 df-suc 6382 df-iota 6506 df-fun 6556 df-fn 6557 df-f 6558 df-f1 6559 df-fo 6560 df-f1o 6561 df-fv 6562 df-riota 7380 df-ov 7427 df-oprab 7428 df-mpo 7429 df-om 7877 df-1st 8003 df-2nd 8004 df-frecs 8296 df-wrecs 8327 df-recs 8401 df-rdg 8440 df-1o 8496 df-2o 8497 df-nadd 8696 df-no 27672 df-slt 27673 df-bday 27674 df-sle 27775 df-sslt 27811 df-scut 27813 df-0s 27854 df-1s 27855 df-made 27871 df-old 27872 df-left 27874 df-right 27875 df-norec2 27963 df-adds 27974 df-n0s 28288 |
This theorem is referenced by: nnsgt0 28310 elnns2 28312 n0subs 28326 |
Copyright terms: Public domain | W3C validator |