![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > n0sge0 | Structured version Visualization version GIF version |
Description: A non-negative integer is greater than or equal to zero. (Contributed by Scott Fenton, 15-Apr-2025.) |
Ref | Expression |
---|---|
n0sge0 | ⊢ (𝐴 ∈ ℕ0s → 0s ≤s 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq2 5170 | . 2 ⊢ (𝑛 = 0s → ( 0s ≤s 𝑛 ↔ 0s ≤s 0s )) | |
2 | breq2 5170 | . 2 ⊢ (𝑛 = 𝑚 → ( 0s ≤s 𝑛 ↔ 0s ≤s 𝑚)) | |
3 | breq2 5170 | . 2 ⊢ (𝑛 = (𝑚 +s 1s ) → ( 0s ≤s 𝑛 ↔ 0s ≤s (𝑚 +s 1s ))) | |
4 | breq2 5170 | . 2 ⊢ (𝑛 = 𝐴 → ( 0s ≤s 𝑛 ↔ 0s ≤s 𝐴)) | |
5 | 0sno 27889 | . . 3 ⊢ 0s ∈ No | |
6 | slerflex 27826 | . . 3 ⊢ ( 0s ∈ No → 0s ≤s 0s ) | |
7 | 5, 6 | ax-mp 5 | . 2 ⊢ 0s ≤s 0s |
8 | 5 | a1i 11 | . . . 4 ⊢ ((𝑚 ∈ ℕ0s ∧ 0s ≤s 𝑚) → 0s ∈ No ) |
9 | n0sno 28346 | . . . . 5 ⊢ (𝑚 ∈ ℕ0s → 𝑚 ∈ No ) | |
10 | 9 | adantr 480 | . . . 4 ⊢ ((𝑚 ∈ ℕ0s ∧ 0s ≤s 𝑚) → 𝑚 ∈ No ) |
11 | peano2no 28035 | . . . . . 6 ⊢ (𝑚 ∈ No → (𝑚 +s 1s ) ∈ No ) | |
12 | 9, 11 | syl 17 | . . . . 5 ⊢ (𝑚 ∈ ℕ0s → (𝑚 +s 1s ) ∈ No ) |
13 | 12 | adantr 480 | . . . 4 ⊢ ((𝑚 ∈ ℕ0s ∧ 0s ≤s 𝑚) → (𝑚 +s 1s ) ∈ No ) |
14 | simpr 484 | . . . 4 ⊢ ((𝑚 ∈ ℕ0s ∧ 0s ≤s 𝑚) → 0s ≤s 𝑚) | |
15 | 9 | addsridd 28016 | . . . . . 6 ⊢ (𝑚 ∈ ℕ0s → (𝑚 +s 0s ) = 𝑚) |
16 | 15 | adantr 480 | . . . . 5 ⊢ ((𝑚 ∈ ℕ0s ∧ 0s ≤s 𝑚) → (𝑚 +s 0s ) = 𝑚) |
17 | 5 | a1i 11 | . . . . . . . . 9 ⊢ (⊤ → 0s ∈ No ) |
18 | 1sno 27890 | . . . . . . . . . 10 ⊢ 1s ∈ No | |
19 | 18 | a1i 11 | . . . . . . . . 9 ⊢ (⊤ → 1s ∈ No ) |
20 | 0slt1s 27892 | . . . . . . . . . 10 ⊢ 0s <s 1s | |
21 | 20 | a1i 11 | . . . . . . . . 9 ⊢ (⊤ → 0s <s 1s ) |
22 | 17, 19, 21 | sltled 27832 | . . . . . . . 8 ⊢ (⊤ → 0s ≤s 1s ) |
23 | 22 | mptru 1544 | . . . . . . 7 ⊢ 0s ≤s 1s |
24 | 5 | a1i 11 | . . . . . . . 8 ⊢ (𝑚 ∈ ℕ0s → 0s ∈ No ) |
25 | 18 | a1i 11 | . . . . . . . 8 ⊢ (𝑚 ∈ ℕ0s → 1s ∈ No ) |
26 | 24, 25, 9 | sleadd2d 28047 | . . . . . . 7 ⊢ (𝑚 ∈ ℕ0s → ( 0s ≤s 1s ↔ (𝑚 +s 0s ) ≤s (𝑚 +s 1s ))) |
27 | 23, 26 | mpbii 233 | . . . . . 6 ⊢ (𝑚 ∈ ℕ0s → (𝑚 +s 0s ) ≤s (𝑚 +s 1s )) |
28 | 27 | adantr 480 | . . . . 5 ⊢ ((𝑚 ∈ ℕ0s ∧ 0s ≤s 𝑚) → (𝑚 +s 0s ) ≤s (𝑚 +s 1s )) |
29 | 16, 28 | eqbrtrrd 5190 | . . . 4 ⊢ ((𝑚 ∈ ℕ0s ∧ 0s ≤s 𝑚) → 𝑚 ≤s (𝑚 +s 1s )) |
30 | 8, 10, 13, 14, 29 | sletrd 27825 | . . 3 ⊢ ((𝑚 ∈ ℕ0s ∧ 0s ≤s 𝑚) → 0s ≤s (𝑚 +s 1s )) |
31 | 30 | ex 412 | . 2 ⊢ (𝑚 ∈ ℕ0s → ( 0s ≤s 𝑚 → 0s ≤s (𝑚 +s 1s ))) |
32 | 1, 2, 3, 4, 7, 31 | n0sind 28355 | 1 ⊢ (𝐴 ∈ ℕ0s → 0s ≤s 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ⊤wtru 1538 ∈ wcel 2108 class class class wbr 5166 (class class class)co 7448 No csur 27702 <s cslt 27703 ≤s csle 27807 0s c0s 27885 1s c1s 27886 +s cadds 28010 ℕ0scnn0s 28336 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-ot 4657 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-nadd 8722 df-no 27705 df-slt 27706 df-bday 27707 df-sle 27808 df-sslt 27844 df-scut 27846 df-0s 27887 df-1s 27888 df-made 27904 df-old 27905 df-left 27907 df-right 27908 df-norec2 28000 df-adds 28011 df-n0s 28338 |
This theorem is referenced by: nnsgt0 28360 elnns2 28362 nnsge1 28364 n0subs 28378 eln0zs 28404 |
Copyright terms: Public domain | W3C validator |