MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  n0sge0 Structured version   Visualization version   GIF version

Theorem n0sge0 28237
Description: A non-negative integer is greater than or equal to zero. (Contributed by Scott Fenton, 15-Apr-2025.)
Assertion
Ref Expression
n0sge0 (𝐴 ∈ ℕ0s → 0s ≤s 𝐴)

Proof of Theorem n0sge0
Dummy variables 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 5114 . 2 (𝑛 = 0s → ( 0s ≤s 𝑛 ↔ 0s ≤s 0s ))
2 breq2 5114 . 2 (𝑛 = 𝑚 → ( 0s ≤s 𝑛 ↔ 0s ≤s 𝑚))
3 breq2 5114 . 2 (𝑛 = (𝑚 +s 1s ) → ( 0s ≤s 𝑛 ↔ 0s ≤s (𝑚 +s 1s )))
4 breq2 5114 . 2 (𝑛 = 𝐴 → ( 0s ≤s 𝑛 ↔ 0s ≤s 𝐴))
5 0sno 27745 . . 3 0s No
6 slerflex 27682 . . 3 ( 0s No → 0s ≤s 0s )
75, 6ax-mp 5 . 2 0s ≤s 0s
85a1i 11 . . . 4 ((𝑚 ∈ ℕ0s ∧ 0s ≤s 𝑚) → 0s No )
9 n0sno 28223 . . . . 5 (𝑚 ∈ ℕ0s𝑚 No )
109adantr 480 . . . 4 ((𝑚 ∈ ℕ0s ∧ 0s ≤s 𝑚) → 𝑚 No )
11 peano2no 27898 . . . . . 6 (𝑚 No → (𝑚 +s 1s ) ∈ No )
129, 11syl 17 . . . . 5 (𝑚 ∈ ℕ0s → (𝑚 +s 1s ) ∈ No )
1312adantr 480 . . . 4 ((𝑚 ∈ ℕ0s ∧ 0s ≤s 𝑚) → (𝑚 +s 1s ) ∈ No )
14 simpr 484 . . . 4 ((𝑚 ∈ ℕ0s ∧ 0s ≤s 𝑚) → 0s ≤s 𝑚)
159addsridd 27879 . . . . . 6 (𝑚 ∈ ℕ0s → (𝑚 +s 0s ) = 𝑚)
1615adantr 480 . . . . 5 ((𝑚 ∈ ℕ0s ∧ 0s ≤s 𝑚) → (𝑚 +s 0s ) = 𝑚)
175a1i 11 . . . . . . . . 9 (⊤ → 0s No )
18 1sno 27746 . . . . . . . . . 10 1s No
1918a1i 11 . . . . . . . . 9 (⊤ → 1s No )
20 0slt1s 27748 . . . . . . . . . 10 0s <s 1s
2120a1i 11 . . . . . . . . 9 (⊤ → 0s <s 1s )
2217, 19, 21sltled 27688 . . . . . . . 8 (⊤ → 0s ≤s 1s )
2322mptru 1547 . . . . . . 7 0s ≤s 1s
245a1i 11 . . . . . . . 8 (𝑚 ∈ ℕ0s → 0s No )
2518a1i 11 . . . . . . . 8 (𝑚 ∈ ℕ0s → 1s No )
2624, 25, 9sleadd2d 27910 . . . . . . 7 (𝑚 ∈ ℕ0s → ( 0s ≤s 1s ↔ (𝑚 +s 0s ) ≤s (𝑚 +s 1s )))
2723, 26mpbii 233 . . . . . 6 (𝑚 ∈ ℕ0s → (𝑚 +s 0s ) ≤s (𝑚 +s 1s ))
2827adantr 480 . . . . 5 ((𝑚 ∈ ℕ0s ∧ 0s ≤s 𝑚) → (𝑚 +s 0s ) ≤s (𝑚 +s 1s ))
2916, 28eqbrtrrd 5134 . . . 4 ((𝑚 ∈ ℕ0s ∧ 0s ≤s 𝑚) → 𝑚 ≤s (𝑚 +s 1s ))
308, 10, 13, 14, 29sletrd 27681 . . 3 ((𝑚 ∈ ℕ0s ∧ 0s ≤s 𝑚) → 0s ≤s (𝑚 +s 1s ))
3130ex 412 . 2 (𝑚 ∈ ℕ0s → ( 0s ≤s 𝑚 → 0s ≤s (𝑚 +s 1s )))
321, 2, 3, 4, 7, 31n0sind 28232 1 (𝐴 ∈ ℕ0s → 0s ≤s 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wtru 1541  wcel 2109   class class class wbr 5110  (class class class)co 7390   No csur 27558   <s cslt 27559   ≤s csle 27663   0s c0s 27741   1s c1s 27742   +s cadds 27873  0scnn0s 28213
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-ot 4601  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-nadd 8633  df-no 27561  df-slt 27562  df-bday 27563  df-sle 27664  df-sslt 27700  df-scut 27702  df-0s 27743  df-1s 27744  df-made 27762  df-old 27763  df-left 27765  df-right 27766  df-norec2 27863  df-adds 27874  df-n0s 28215
This theorem is referenced by:  nnsgt0  28238  elnns2  28240  nnsge1  28242  n0subs  28260  eln0zs  28295
  Copyright terms: Public domain W3C validator