MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  n0sge0 Structured version   Visualization version   GIF version

Theorem n0sge0 28264
Description: A non-negative integer is greater than or equal to zero. (Contributed by Scott Fenton, 15-Apr-2025.)
Assertion
Ref Expression
n0sge0 (𝐴 ∈ ℕ0s → 0s ≤s 𝐴)

Proof of Theorem n0sge0
Dummy variables 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 5095 . 2 (𝑛 = 0s → ( 0s ≤s 𝑛 ↔ 0s ≤s 0s ))
2 breq2 5095 . 2 (𝑛 = 𝑚 → ( 0s ≤s 𝑛 ↔ 0s ≤s 𝑚))
3 breq2 5095 . 2 (𝑛 = (𝑚 +s 1s ) → ( 0s ≤s 𝑛 ↔ 0s ≤s (𝑚 +s 1s )))
4 breq2 5095 . 2 (𝑛 = 𝐴 → ( 0s ≤s 𝑛 ↔ 0s ≤s 𝐴))
5 0sno 27768 . . 3 0s No
6 slerflex 27700 . . 3 ( 0s No → 0s ≤s 0s )
75, 6ax-mp 5 . 2 0s ≤s 0s
85a1i 11 . . . 4 ((𝑚 ∈ ℕ0s ∧ 0s ≤s 𝑚) → 0s No )
9 n0sno 28250 . . . . 5 (𝑚 ∈ ℕ0s𝑚 No )
109adantr 480 . . . 4 ((𝑚 ∈ ℕ0s ∧ 0s ≤s 𝑚) → 𝑚 No )
11 peano2no 27925 . . . . . 6 (𝑚 No → (𝑚 +s 1s ) ∈ No )
129, 11syl 17 . . . . 5 (𝑚 ∈ ℕ0s → (𝑚 +s 1s ) ∈ No )
1312adantr 480 . . . 4 ((𝑚 ∈ ℕ0s ∧ 0s ≤s 𝑚) → (𝑚 +s 1s ) ∈ No )
14 simpr 484 . . . 4 ((𝑚 ∈ ℕ0s ∧ 0s ≤s 𝑚) → 0s ≤s 𝑚)
159addsridd 27906 . . . . . 6 (𝑚 ∈ ℕ0s → (𝑚 +s 0s ) = 𝑚)
1615adantr 480 . . . . 5 ((𝑚 ∈ ℕ0s ∧ 0s ≤s 𝑚) → (𝑚 +s 0s ) = 𝑚)
175a1i 11 . . . . . . . . 9 (⊤ → 0s No )
18 1sno 27769 . . . . . . . . . 10 1s No
1918a1i 11 . . . . . . . . 9 (⊤ → 1s No )
20 0slt1s 27771 . . . . . . . . . 10 0s <s 1s
2120a1i 11 . . . . . . . . 9 (⊤ → 0s <s 1s )
2217, 19, 21sltled 27706 . . . . . . . 8 (⊤ → 0s ≤s 1s )
2322mptru 1548 . . . . . . 7 0s ≤s 1s
245a1i 11 . . . . . . . 8 (𝑚 ∈ ℕ0s → 0s No )
2518a1i 11 . . . . . . . 8 (𝑚 ∈ ℕ0s → 1s No )
2624, 25, 9sleadd2d 27937 . . . . . . 7 (𝑚 ∈ ℕ0s → ( 0s ≤s 1s ↔ (𝑚 +s 0s ) ≤s (𝑚 +s 1s )))
2723, 26mpbii 233 . . . . . 6 (𝑚 ∈ ℕ0s → (𝑚 +s 0s ) ≤s (𝑚 +s 1s ))
2827adantr 480 . . . . 5 ((𝑚 ∈ ℕ0s ∧ 0s ≤s 𝑚) → (𝑚 +s 0s ) ≤s (𝑚 +s 1s ))
2916, 28eqbrtrrd 5115 . . . 4 ((𝑚 ∈ ℕ0s ∧ 0s ≤s 𝑚) → 𝑚 ≤s (𝑚 +s 1s ))
308, 10, 13, 14, 29sletrd 27699 . . 3 ((𝑚 ∈ ℕ0s ∧ 0s ≤s 𝑚) → 0s ≤s (𝑚 +s 1s ))
3130ex 412 . 2 (𝑚 ∈ ℕ0s → ( 0s ≤s 𝑚 → 0s ≤s (𝑚 +s 1s )))
321, 2, 3, 4, 7, 31n0sind 28259 1 (𝐴 ∈ ℕ0s → 0s ≤s 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wtru 1542  wcel 2111   class class class wbr 5091  (class class class)co 7346   No csur 27576   <s cslt 27577   ≤s csle 27681   0s c0s 27764   1s c1s 27765   +s cadds 27900  0scnn0s 28240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-tp 4581  df-op 4583  df-ot 4585  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-se 5570  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-nadd 8581  df-no 27579  df-slt 27580  df-bday 27581  df-sle 27682  df-sslt 27719  df-scut 27721  df-0s 27766  df-1s 27767  df-made 27786  df-old 27787  df-left 27789  df-right 27790  df-norec2 27890  df-adds 27901  df-n0s 28242
This theorem is referenced by:  nnsgt0  28265  elnns2  28267  nnsge1  28269  n0subs  28287  eln0zs  28322
  Copyright terms: Public domain W3C validator