MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  n0sge0 Structured version   Visualization version   GIF version

Theorem n0sge0 28359
Description: A non-negative integer is greater than or equal to zero. (Contributed by Scott Fenton, 15-Apr-2025.)
Assertion
Ref Expression
n0sge0 (𝐴 ∈ ℕ0s → 0s ≤s 𝐴)

Proof of Theorem n0sge0
Dummy variables 𝑛 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq2 5170 . 2 (𝑛 = 0s → ( 0s ≤s 𝑛 ↔ 0s ≤s 0s ))
2 breq2 5170 . 2 (𝑛 = 𝑚 → ( 0s ≤s 𝑛 ↔ 0s ≤s 𝑚))
3 breq2 5170 . 2 (𝑛 = (𝑚 +s 1s ) → ( 0s ≤s 𝑛 ↔ 0s ≤s (𝑚 +s 1s )))
4 breq2 5170 . 2 (𝑛 = 𝐴 → ( 0s ≤s 𝑛 ↔ 0s ≤s 𝐴))
5 0sno 27889 . . 3 0s No
6 slerflex 27826 . . 3 ( 0s No → 0s ≤s 0s )
75, 6ax-mp 5 . 2 0s ≤s 0s
85a1i 11 . . . 4 ((𝑚 ∈ ℕ0s ∧ 0s ≤s 𝑚) → 0s No )
9 n0sno 28346 . . . . 5 (𝑚 ∈ ℕ0s𝑚 No )
109adantr 480 . . . 4 ((𝑚 ∈ ℕ0s ∧ 0s ≤s 𝑚) → 𝑚 No )
11 peano2no 28035 . . . . . 6 (𝑚 No → (𝑚 +s 1s ) ∈ No )
129, 11syl 17 . . . . 5 (𝑚 ∈ ℕ0s → (𝑚 +s 1s ) ∈ No )
1312adantr 480 . . . 4 ((𝑚 ∈ ℕ0s ∧ 0s ≤s 𝑚) → (𝑚 +s 1s ) ∈ No )
14 simpr 484 . . . 4 ((𝑚 ∈ ℕ0s ∧ 0s ≤s 𝑚) → 0s ≤s 𝑚)
159addsridd 28016 . . . . . 6 (𝑚 ∈ ℕ0s → (𝑚 +s 0s ) = 𝑚)
1615adantr 480 . . . . 5 ((𝑚 ∈ ℕ0s ∧ 0s ≤s 𝑚) → (𝑚 +s 0s ) = 𝑚)
175a1i 11 . . . . . . . . 9 (⊤ → 0s No )
18 1sno 27890 . . . . . . . . . 10 1s No
1918a1i 11 . . . . . . . . 9 (⊤ → 1s No )
20 0slt1s 27892 . . . . . . . . . 10 0s <s 1s
2120a1i 11 . . . . . . . . 9 (⊤ → 0s <s 1s )
2217, 19, 21sltled 27832 . . . . . . . 8 (⊤ → 0s ≤s 1s )
2322mptru 1544 . . . . . . 7 0s ≤s 1s
245a1i 11 . . . . . . . 8 (𝑚 ∈ ℕ0s → 0s No )
2518a1i 11 . . . . . . . 8 (𝑚 ∈ ℕ0s → 1s No )
2624, 25, 9sleadd2d 28047 . . . . . . 7 (𝑚 ∈ ℕ0s → ( 0s ≤s 1s ↔ (𝑚 +s 0s ) ≤s (𝑚 +s 1s )))
2723, 26mpbii 233 . . . . . 6 (𝑚 ∈ ℕ0s → (𝑚 +s 0s ) ≤s (𝑚 +s 1s ))
2827adantr 480 . . . . 5 ((𝑚 ∈ ℕ0s ∧ 0s ≤s 𝑚) → (𝑚 +s 0s ) ≤s (𝑚 +s 1s ))
2916, 28eqbrtrrd 5190 . . . 4 ((𝑚 ∈ ℕ0s ∧ 0s ≤s 𝑚) → 𝑚 ≤s (𝑚 +s 1s ))
308, 10, 13, 14, 29sletrd 27825 . . 3 ((𝑚 ∈ ℕ0s ∧ 0s ≤s 𝑚) → 0s ≤s (𝑚 +s 1s ))
3130ex 412 . 2 (𝑚 ∈ ℕ0s → ( 0s ≤s 𝑚 → 0s ≤s (𝑚 +s 1s )))
321, 2, 3, 4, 7, 31n0sind 28355 1 (𝐴 ∈ ℕ0s → 0s ≤s 𝐴)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wtru 1538  wcel 2108   class class class wbr 5166  (class class class)co 7448   No csur 27702   <s cslt 27703   ≤s csle 27807   0s c0s 27885   1s c1s 27886   +s cadds 28010  0scnn0s 28336
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-ot 4657  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-nadd 8722  df-no 27705  df-slt 27706  df-bday 27707  df-sle 27808  df-sslt 27844  df-scut 27846  df-0s 27887  df-1s 27888  df-made 27904  df-old 27905  df-left 27907  df-right 27908  df-norec2 28000  df-adds 28011  df-n0s 28338
This theorem is referenced by:  nnsgt0  28360  elnns2  28362  nnsge1  28364  n0subs  28378  eln0zs  28404
  Copyright terms: Public domain W3C validator