MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  remulscl Structured version   Visualization version   GIF version

Theorem remulscl 28243
Description: The surreal reals are closed under multiplication. Part of theorem 13(ii) of [Conway] p. 24. (Contributed by Scott Fenton, 16-Apr-2025.)
Assertion
Ref Expression
remulscl ((𝐴 ∈ ℝs𝐵 ∈ ℝs) → (𝐴 ·s 𝐵) ∈ ℝs)

Proof of Theorem remulscl
Dummy variables 𝑥 𝑦 𝑧 𝑛 𝑚 𝑝 𝑡 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulscl 28047 . . . . 5 ((𝐴 No 𝐵 No ) → (𝐴 ·s 𝐵) ∈ No )
21adantr 480 . . . 4 (((𝐴 No 𝐵 No ) ∧ ((∃𝑛 ∈ ℕs (( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ 𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))})) ∧ (∃𝑚 ∈ ℕs (( -us𝑚) <s 𝐵𝐵 <s 𝑚) ∧ 𝐵 = ({𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))} |s {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))})))) → (𝐴 ·s 𝐵) ∈ No )
3 remulscllem2 28242 . . . . . . 7 (((𝐴 No 𝐵 No ) ∧ ((𝑛 ∈ ℕs𝑚 ∈ ℕs) ∧ ((( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ (( -us𝑚) <s 𝐵𝐵 <s 𝑚)))) → ∃𝑝 ∈ ℕs (( -us𝑝) <s (𝐴 ·s 𝐵) ∧ (𝐴 ·s 𝐵) <s 𝑝))
43expr 456 . . . . . 6 (((𝐴 No 𝐵 No ) ∧ (𝑛 ∈ ℕs𝑚 ∈ ℕs)) → (((( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ (( -us𝑚) <s 𝐵𝐵 <s 𝑚)) → ∃𝑝 ∈ ℕs (( -us𝑝) <s (𝐴 ·s 𝐵) ∧ (𝐴 ·s 𝐵) <s 𝑝)))
54rexlimdvva 3208 . . . . 5 ((𝐴 No 𝐵 No ) → (∃𝑛 ∈ ℕs𝑚 ∈ ℕs ((( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ (( -us𝑚) <s 𝐵𝐵 <s 𝑚)) → ∃𝑝 ∈ ℕs (( -us𝑝) <s (𝐴 ·s 𝐵) ∧ (𝐴 ·s 𝐵) <s 𝑝)))
6 simpl 482 . . . . . . 7 ((∃𝑛 ∈ ℕs (( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ 𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))})) → ∃𝑛 ∈ ℕs (( -us𝑛) <s 𝐴𝐴 <s 𝑛))
7 simpl 482 . . . . . . 7 ((∃𝑚 ∈ ℕs (( -us𝑚) <s 𝐵𝐵 <s 𝑚) ∧ 𝐵 = ({𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))} |s {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))})) → ∃𝑚 ∈ ℕs (( -us𝑚) <s 𝐵𝐵 <s 𝑚))
86, 7anim12i 612 . . . . . 6 (((∃𝑛 ∈ ℕs (( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ 𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))})) ∧ (∃𝑚 ∈ ℕs (( -us𝑚) <s 𝐵𝐵 <s 𝑚) ∧ 𝐵 = ({𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))} |s {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}))) → (∃𝑛 ∈ ℕs (( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ ∃𝑚 ∈ ℕs (( -us𝑚) <s 𝐵𝐵 <s 𝑚)))
9 reeanv 3223 . . . . . 6 (∃𝑛 ∈ ℕs𝑚 ∈ ℕs ((( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ (( -us𝑚) <s 𝐵𝐵 <s 𝑚)) ↔ (∃𝑛 ∈ ℕs (( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ ∃𝑚 ∈ ℕs (( -us𝑚) <s 𝐵𝐵 <s 𝑚)))
108, 9sylibr 233 . . . . 5 (((∃𝑛 ∈ ℕs (( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ 𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))})) ∧ (∃𝑚 ∈ ℕs (( -us𝑚) <s 𝐵𝐵 <s 𝑚) ∧ 𝐵 = ({𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))} |s {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}))) → ∃𝑛 ∈ ℕs𝑚 ∈ ℕs ((( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ (( -us𝑚) <s 𝐵𝐵 <s 𝑚)))
115, 10impel 505 . . . 4 (((𝐴 No 𝐵 No ) ∧ ((∃𝑛 ∈ ℕs (( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ 𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))})) ∧ (∃𝑚 ∈ ℕs (( -us𝑚) <s 𝐵𝐵 <s 𝑚) ∧ 𝐵 = ({𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))} |s {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))})))) → ∃𝑝 ∈ ℕs (( -us𝑝) <s (𝐴 ·s 𝐵) ∧ (𝐴 ·s 𝐵) <s 𝑝))
12 simpr 484 . . . . . 6 ((∃𝑛 ∈ ℕs (( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ 𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))})) → 𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}))
13 simpr 484 . . . . . 6 ((∃𝑚 ∈ ℕs (( -us𝑚) <s 𝐵𝐵 <s 𝑚) ∧ 𝐵 = ({𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))} |s {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))})) → 𝐵 = ({𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))} |s {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}))
1412, 13anim12i 612 . . . . 5 (((∃𝑛 ∈ ℕs (( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ 𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))})) ∧ (∃𝑚 ∈ ℕs (( -us𝑚) <s 𝐵𝐵 <s 𝑚) ∧ 𝐵 = ({𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))} |s {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}))) → (𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}) ∧ 𝐵 = ({𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))} |s {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))})))
15 recut 28237 . . . . . . . . 9 (𝐴 No → {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} <<s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))})
1615adantr 480 . . . . . . . 8 ((𝐴 No 𝐵 No ) → {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} <<s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))})
1716adantr 480 . . . . . . 7 (((𝐴 No 𝐵 No ) ∧ (𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}) ∧ 𝐵 = ({𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))} |s {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}))) → {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} <<s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))})
18 recut 28237 . . . . . . . 8 (𝐵 No → {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))} <<s {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))})
1918ad2antlr 726 . . . . . . 7 (((𝐴 No 𝐵 No ) ∧ (𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}) ∧ 𝐵 = ({𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))} |s {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}))) → {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))} <<s {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))})
20 simprl 770 . . . . . . 7 (((𝐴 No 𝐵 No ) ∧ (𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}) ∧ 𝐵 = ({𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))} |s {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}))) → 𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}))
21 simprr 772 . . . . . . 7 (((𝐴 No 𝐵 No ) ∧ (𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}) ∧ 𝐵 = ({𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))} |s {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}))) → 𝐵 = ({𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))} |s {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}))
2217, 19, 20, 21mulsunif2 28083 . . . . . 6 (((𝐴 No 𝐵 No ) ∧ (𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}) ∧ 𝐵 = ({𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))} |s {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}))) → (𝐴 ·s 𝐵) = (({𝑧 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))}∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑡) ·s (𝐵 -s 𝑢)))} ∪ {𝑧 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝑡 -s 𝐴) ·s (𝑢 -s 𝐵)))}) |s ({𝑧 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))}∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑢 -s 𝐵)))} ∪ {𝑧 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝑡 -s 𝐴) ·s (𝐵 -s 𝑢)))})))
23 r19.41v 3185 . . . . . . . . . . . . . 14 (∃𝑛 ∈ ℕs (𝑡 = (𝐴 -s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑡) ·s (𝐵 -s 𝑢)))) ↔ (∃𝑛 ∈ ℕs 𝑡 = (𝐴 -s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑡) ·s (𝐵 -s 𝑢)))))
2423exbii 1843 . . . . . . . . . . . . 13 (∃𝑡𝑛 ∈ ℕs (𝑡 = (𝐴 -s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑡) ·s (𝐵 -s 𝑢)))) ↔ ∃𝑡(∃𝑛 ∈ ℕs 𝑡 = (𝐴 -s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑡) ·s (𝐵 -s 𝑢)))))
25 rexcom4 3282 . . . . . . . . . . . . 13 (∃𝑛 ∈ ℕs𝑡(𝑡 = (𝐴 -s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑡) ·s (𝐵 -s 𝑢)))) ↔ ∃𝑡𝑛 ∈ ℕs (𝑡 = (𝐴 -s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑡) ·s (𝐵 -s 𝑢)))))
26 eqeq1 2732 . . . . . . . . . . . . . . 15 (𝑥 = 𝑡 → (𝑥 = (𝐴 -s ( 1s /su 𝑛)) ↔ 𝑡 = (𝐴 -s ( 1s /su 𝑛))))
2726rexbidv 3175 . . . . . . . . . . . . . 14 (𝑥 = 𝑡 → (∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛)) ↔ ∃𝑛 ∈ ℕs 𝑡 = (𝐴 -s ( 1s /su 𝑛))))
2827rexab 3689 . . . . . . . . . . . . 13 (∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))}∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑡) ·s (𝐵 -s 𝑢))) ↔ ∃𝑡(∃𝑛 ∈ ℕs 𝑡 = (𝐴 -s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑡) ·s (𝐵 -s 𝑢)))))
2924, 25, 283bitr4ri 304 . . . . . . . . . . . 12 (∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))}∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑡) ·s (𝐵 -s 𝑢))) ↔ ∃𝑛 ∈ ℕs𝑡(𝑡 = (𝐴 -s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑡) ·s (𝐵 -s 𝑢)))))
30 ovex 7453 . . . . . . . . . . . . . . . . 17 (𝐴 -s ( 1s /su 𝑛)) ∈ V
31 oveq2 7428 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 = (𝐴 -s ( 1s /su 𝑛)) → (𝐴 -s 𝑡) = (𝐴 -s (𝐴 -s ( 1s /su 𝑛))))
3231oveq1d 7435 . . . . . . . . . . . . . . . . . . . 20 (𝑡 = (𝐴 -s ( 1s /su 𝑛)) → ((𝐴 -s 𝑡) ·s (𝐵 -s 𝑢)) = ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝐵 -s 𝑢)))
3332oveq2d 7436 . . . . . . . . . . . . . . . . . . 19 (𝑡 = (𝐴 -s ( 1s /su 𝑛)) → ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑡) ·s (𝐵 -s 𝑢))) = ((𝐴 ·s 𝐵) -s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝐵 -s 𝑢))))
3433eqeq2d 2739 . . . . . . . . . . . . . . . . . 18 (𝑡 = (𝐴 -s ( 1s /su 𝑛)) → (𝑧 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑡) ·s (𝐵 -s 𝑢))) ↔ 𝑧 = ((𝐴 ·s 𝐵) -s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝐵 -s 𝑢)))))
3534rexbidv 3175 . . . . . . . . . . . . . . . . 17 (𝑡 = (𝐴 -s ( 1s /su 𝑛)) → (∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑡) ·s (𝐵 -s 𝑢))) ↔ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝐵 -s 𝑢)))))
3630, 35ceqsexv 3523 . . . . . . . . . . . . . . . 16 (∃𝑡(𝑡 = (𝐴 -s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑡) ·s (𝐵 -s 𝑢)))) ↔ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝐵 -s 𝑢))))
37 r19.41v 3185 . . . . . . . . . . . . . . . . . 18 (∃𝑚 ∈ ℕs (𝑢 = (𝐵 -s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) -s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝐵 -s 𝑢)))) ↔ (∃𝑚 ∈ ℕs 𝑢 = (𝐵 -s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) -s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝐵 -s 𝑢)))))
3837exbii 1843 . . . . . . . . . . . . . . . . 17 (∃𝑢𝑚 ∈ ℕs (𝑢 = (𝐵 -s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) -s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝐵 -s 𝑢)))) ↔ ∃𝑢(∃𝑚 ∈ ℕs 𝑢 = (𝐵 -s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) -s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝐵 -s 𝑢)))))
39 rexcom4 3282 . . . . . . . . . . . . . . . . 17 (∃𝑚 ∈ ℕs𝑢(𝑢 = (𝐵 -s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) -s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝐵 -s 𝑢)))) ↔ ∃𝑢𝑚 ∈ ℕs (𝑢 = (𝐵 -s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) -s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝐵 -s 𝑢)))))
40 eqeq1 2732 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑢 → (𝑦 = (𝐵 -s ( 1s /su 𝑚)) ↔ 𝑢 = (𝐵 -s ( 1s /su 𝑚))))
4140rexbidv 3175 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑢 → (∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚)) ↔ ∃𝑚 ∈ ℕs 𝑢 = (𝐵 -s ( 1s /su 𝑚))))
4241rexab 3689 . . . . . . . . . . . . . . . . 17 (∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝐵 -s 𝑢))) ↔ ∃𝑢(∃𝑚 ∈ ℕs 𝑢 = (𝐵 -s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) -s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝐵 -s 𝑢)))))
4338, 39, 423bitr4ri 304 . . . . . . . . . . . . . . . 16 (∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝐵 -s 𝑢))) ↔ ∃𝑚 ∈ ℕs𝑢(𝑢 = (𝐵 -s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) -s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝐵 -s 𝑢)))))
4436, 43bitri 275 . . . . . . . . . . . . . . 15 (∃𝑡(𝑡 = (𝐴 -s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑡) ·s (𝐵 -s 𝑢)))) ↔ ∃𝑚 ∈ ℕs𝑢(𝑢 = (𝐵 -s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) -s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝐵 -s 𝑢)))))
45 ovex 7453 . . . . . . . . . . . . . . . . . 18 (𝐵 -s ( 1s /su 𝑚)) ∈ V
46 oveq2 7428 . . . . . . . . . . . . . . . . . . . . 21 (𝑢 = (𝐵 -s ( 1s /su 𝑚)) → (𝐵 -s 𝑢) = (𝐵 -s (𝐵 -s ( 1s /su 𝑚))))
4746oveq2d 7436 . . . . . . . . . . . . . . . . . . . 20 (𝑢 = (𝐵 -s ( 1s /su 𝑚)) → ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝐵 -s 𝑢)) = ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝐵 -s (𝐵 -s ( 1s /su 𝑚)))))
4847oveq2d 7436 . . . . . . . . . . . . . . . . . . 19 (𝑢 = (𝐵 -s ( 1s /su 𝑚)) → ((𝐴 ·s 𝐵) -s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝐵 -s 𝑢))) = ((𝐴 ·s 𝐵) -s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝐵 -s (𝐵 -s ( 1s /su 𝑚))))))
4948eqeq2d 2739 . . . . . . . . . . . . . . . . . 18 (𝑢 = (𝐵 -s ( 1s /su 𝑚)) → (𝑧 = ((𝐴 ·s 𝐵) -s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝐵 -s 𝑢))) ↔ 𝑧 = ((𝐴 ·s 𝐵) -s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝐵 -s (𝐵 -s ( 1s /su 𝑚)))))))
5045, 49ceqsexv 3523 . . . . . . . . . . . . . . . . 17 (∃𝑢(𝑢 = (𝐵 -s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) -s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝐵 -s 𝑢)))) ↔ 𝑧 = ((𝐴 ·s 𝐵) -s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝐵 -s (𝐵 -s ( 1s /su 𝑚))))))
51 simplll 774 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs) ∧ 𝑚 ∈ ℕs) → 𝐴 No )
52 1sno 27773 . . . . . . . . . . . . . . . . . . . . . . 23 1s No
5352a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs) ∧ 𝑚 ∈ ℕs) → 1s No )
54 nnsno 28209 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ ℕs𝑛 No )
5554ad2antlr 726 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs) ∧ 𝑚 ∈ ℕs) → 𝑛 No )
56 nnne0s 28218 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ ℕs𝑛 ≠ 0s )
5756ad2antlr 726 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs) ∧ 𝑚 ∈ ℕs) → 𝑛 ≠ 0s )
5853, 55, 57divscld 28135 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs) ∧ 𝑚 ∈ ℕs) → ( 1s /su 𝑛) ∈ No )
5951, 58nncansd 28016 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs) ∧ 𝑚 ∈ ℕs) → (𝐴 -s (𝐴 -s ( 1s /su 𝑛))) = ( 1s /su 𝑛))
60 simpllr 775 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs) ∧ 𝑚 ∈ ℕs) → 𝐵 No )
61 nnsno 28209 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 ∈ ℕs𝑚 No )
6261adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs) ∧ 𝑚 ∈ ℕs) → 𝑚 No )
63 nnne0s 28218 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 ∈ ℕs𝑚 ≠ 0s )
6463adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs) ∧ 𝑚 ∈ ℕs) → 𝑚 ≠ 0s )
6553, 62, 64divscld 28135 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs) ∧ 𝑚 ∈ ℕs) → ( 1s /su 𝑚) ∈ No )
6660, 65nncansd 28016 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs) ∧ 𝑚 ∈ ℕs) → (𝐵 -s (𝐵 -s ( 1s /su 𝑚))) = ( 1s /su 𝑚))
6759, 66oveq12d 7438 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs) ∧ 𝑚 ∈ ℕs) → ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝐵 -s (𝐵 -s ( 1s /su 𝑚)))) = (( 1s /su 𝑛) ·s ( 1s /su 𝑚)))
6867oveq2d 7436 . . . . . . . . . . . . . . . . . 18 ((((𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs) ∧ 𝑚 ∈ ℕs) → ((𝐴 ·s 𝐵) -s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝐵 -s (𝐵 -s ( 1s /su 𝑚))))) = ((𝐴 ·s 𝐵) -s (( 1s /su 𝑛) ·s ( 1s /su 𝑚))))
6968eqeq2d 2739 . . . . . . . . . . . . . . . . 17 ((((𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs) ∧ 𝑚 ∈ ℕs) → (𝑧 = ((𝐴 ·s 𝐵) -s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝐵 -s (𝐵 -s ( 1s /su 𝑚))))) ↔ 𝑧 = ((𝐴 ·s 𝐵) -s (( 1s /su 𝑛) ·s ( 1s /su 𝑚)))))
7050, 69bitrid 283 . . . . . . . . . . . . . . . 16 ((((𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs) ∧ 𝑚 ∈ ℕs) → (∃𝑢(𝑢 = (𝐵 -s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) -s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝐵 -s 𝑢)))) ↔ 𝑧 = ((𝐴 ·s 𝐵) -s (( 1s /su 𝑛) ·s ( 1s /su 𝑚)))))
7170rexbidva 3173 . . . . . . . . . . . . . . 15 (((𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs) → (∃𝑚 ∈ ℕs𝑢(𝑢 = (𝐵 -s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) -s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝐵 -s 𝑢)))) ↔ ∃𝑚 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) -s (( 1s /su 𝑛) ·s ( 1s /su 𝑚)))))
7244, 71bitrid 283 . . . . . . . . . . . . . 14 (((𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs) → (∃𝑡(𝑡 = (𝐴 -s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑡) ·s (𝐵 -s 𝑢)))) ↔ ∃𝑚 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) -s (( 1s /su 𝑛) ·s ( 1s /su 𝑚)))))
7372rexbidva 3173 . . . . . . . . . . . . 13 ((𝐴 No 𝐵 No ) → (∃𝑛 ∈ ℕs𝑡(𝑡 = (𝐴 -s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑡) ·s (𝐵 -s 𝑢)))) ↔ ∃𝑛 ∈ ℕs𝑚 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) -s (( 1s /su 𝑛) ·s ( 1s /su 𝑚)))))
74 remulscllem1 28241 . . . . . . . . . . . . 13 (∃𝑛 ∈ ℕs𝑚 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) -s (( 1s /su 𝑛) ·s ( 1s /su 𝑚))) ↔ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) -s ( 1s /su 𝑝)))
7573, 74bitrdi 287 . . . . . . . . . . . 12 ((𝐴 No 𝐵 No ) → (∃𝑛 ∈ ℕs𝑡(𝑡 = (𝐴 -s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑡) ·s (𝐵 -s 𝑢)))) ↔ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) -s ( 1s /su 𝑝))))
7629, 75bitrid 283 . . . . . . . . . . 11 ((𝐴 No 𝐵 No ) → (∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))}∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑡) ·s (𝐵 -s 𝑢))) ↔ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) -s ( 1s /su 𝑝))))
7776abbidv 2797 . . . . . . . . . 10 ((𝐴 No 𝐵 No ) → {𝑧 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))}∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑡) ·s (𝐵 -s 𝑢)))} = {𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) -s ( 1s /su 𝑝))})
78 r19.41v 3185 . . . . . . . . . . . . . 14 (∃𝑛 ∈ ℕs (𝑡 = (𝐴 +s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝑡 -s 𝐴) ·s (𝑢 -s 𝐵)))) ↔ (∃𝑛 ∈ ℕs 𝑡 = (𝐴 +s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝑡 -s 𝐴) ·s (𝑢 -s 𝐵)))))
7978exbii 1843 . . . . . . . . . . . . 13 (∃𝑡𝑛 ∈ ℕs (𝑡 = (𝐴 +s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝑡 -s 𝐴) ·s (𝑢 -s 𝐵)))) ↔ ∃𝑡(∃𝑛 ∈ ℕs 𝑡 = (𝐴 +s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝑡 -s 𝐴) ·s (𝑢 -s 𝐵)))))
80 rexcom4 3282 . . . . . . . . . . . . 13 (∃𝑛 ∈ ℕs𝑡(𝑡 = (𝐴 +s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝑡 -s 𝐴) ·s (𝑢 -s 𝐵)))) ↔ ∃𝑡𝑛 ∈ ℕs (𝑡 = (𝐴 +s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝑡 -s 𝐴) ·s (𝑢 -s 𝐵)))))
81 eqeq1 2732 . . . . . . . . . . . . . . 15 (𝑥 = 𝑡 → (𝑥 = (𝐴 +s ( 1s /su 𝑛)) ↔ 𝑡 = (𝐴 +s ( 1s /su 𝑛))))
8281rexbidv 3175 . . . . . . . . . . . . . 14 (𝑥 = 𝑡 → (∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛)) ↔ ∃𝑛 ∈ ℕs 𝑡 = (𝐴 +s ( 1s /su 𝑛))))
8382rexab 3689 . . . . . . . . . . . . 13 (∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝑡 -s 𝐴) ·s (𝑢 -s 𝐵))) ↔ ∃𝑡(∃𝑛 ∈ ℕs 𝑡 = (𝐴 +s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝑡 -s 𝐴) ·s (𝑢 -s 𝐵)))))
8479, 80, 833bitr4ri 304 . . . . . . . . . . . 12 (∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝑡 -s 𝐴) ·s (𝑢 -s 𝐵))) ↔ ∃𝑛 ∈ ℕs𝑡(𝑡 = (𝐴 +s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝑡 -s 𝐴) ·s (𝑢 -s 𝐵)))))
85 ovex 7453 . . . . . . . . . . . . . . . . 17 (𝐴 +s ( 1s /su 𝑛)) ∈ V
86 oveq1 7427 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 = (𝐴 +s ( 1s /su 𝑛)) → (𝑡 -s 𝐴) = ((𝐴 +s ( 1s /su 𝑛)) -s 𝐴))
8786oveq1d 7435 . . . . . . . . . . . . . . . . . . . 20 (𝑡 = (𝐴 +s ( 1s /su 𝑛)) → ((𝑡 -s 𝐴) ·s (𝑢 -s 𝐵)) = (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝑢 -s 𝐵)))
8887oveq2d 7436 . . . . . . . . . . . . . . . . . . 19 (𝑡 = (𝐴 +s ( 1s /su 𝑛)) → ((𝐴 ·s 𝐵) -s ((𝑡 -s 𝐴) ·s (𝑢 -s 𝐵))) = ((𝐴 ·s 𝐵) -s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝑢 -s 𝐵))))
8988eqeq2d 2739 . . . . . . . . . . . . . . . . . 18 (𝑡 = (𝐴 +s ( 1s /su 𝑛)) → (𝑧 = ((𝐴 ·s 𝐵) -s ((𝑡 -s 𝐴) ·s (𝑢 -s 𝐵))) ↔ 𝑧 = ((𝐴 ·s 𝐵) -s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝑢 -s 𝐵)))))
9089rexbidv 3175 . . . . . . . . . . . . . . . . 17 (𝑡 = (𝐴 +s ( 1s /su 𝑛)) → (∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝑡 -s 𝐴) ·s (𝑢 -s 𝐵))) ↔ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝑢 -s 𝐵)))))
9185, 90ceqsexv 3523 . . . . . . . . . . . . . . . 16 (∃𝑡(𝑡 = (𝐴 +s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝑡 -s 𝐴) ·s (𝑢 -s 𝐵)))) ↔ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝑢 -s 𝐵))))
92 r19.41v 3185 . . . . . . . . . . . . . . . . . 18 (∃𝑚 ∈ ℕs (𝑢 = (𝐵 +s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) -s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝑢 -s 𝐵)))) ↔ (∃𝑚 ∈ ℕs 𝑢 = (𝐵 +s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) -s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝑢 -s 𝐵)))))
9392exbii 1843 . . . . . . . . . . . . . . . . 17 (∃𝑢𝑚 ∈ ℕs (𝑢 = (𝐵 +s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) -s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝑢 -s 𝐵)))) ↔ ∃𝑢(∃𝑚 ∈ ℕs 𝑢 = (𝐵 +s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) -s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝑢 -s 𝐵)))))
94 rexcom4 3282 . . . . . . . . . . . . . . . . 17 (∃𝑚 ∈ ℕs𝑢(𝑢 = (𝐵 +s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) -s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝑢 -s 𝐵)))) ↔ ∃𝑢𝑚 ∈ ℕs (𝑢 = (𝐵 +s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) -s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝑢 -s 𝐵)))))
95 eqeq1 2732 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑢 → (𝑦 = (𝐵 +s ( 1s /su 𝑚)) ↔ 𝑢 = (𝐵 +s ( 1s /su 𝑚))))
9695rexbidv 3175 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑢 → (∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚)) ↔ ∃𝑚 ∈ ℕs 𝑢 = (𝐵 +s ( 1s /su 𝑚))))
9796rexab 3689 . . . . . . . . . . . . . . . . 17 (∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝑢 -s 𝐵))) ↔ ∃𝑢(∃𝑚 ∈ ℕs 𝑢 = (𝐵 +s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) -s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝑢 -s 𝐵)))))
9893, 94, 973bitr4ri 304 . . . . . . . . . . . . . . . 16 (∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝑢 -s 𝐵))) ↔ ∃𝑚 ∈ ℕs𝑢(𝑢 = (𝐵 +s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) -s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝑢 -s 𝐵)))))
9991, 98bitri 275 . . . . . . . . . . . . . . 15 (∃𝑡(𝑡 = (𝐴 +s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝑡 -s 𝐴) ·s (𝑢 -s 𝐵)))) ↔ ∃𝑚 ∈ ℕs𝑢(𝑢 = (𝐵 +s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) -s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝑢 -s 𝐵)))))
100 ovex 7453 . . . . . . . . . . . . . . . . . 18 (𝐵 +s ( 1s /su 𝑚)) ∈ V
101 oveq1 7427 . . . . . . . . . . . . . . . . . . . . 21 (𝑢 = (𝐵 +s ( 1s /su 𝑚)) → (𝑢 -s 𝐵) = ((𝐵 +s ( 1s /su 𝑚)) -s 𝐵))
102101oveq2d 7436 . . . . . . . . . . . . . . . . . . . 20 (𝑢 = (𝐵 +s ( 1s /su 𝑚)) → (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝑢 -s 𝐵)) = (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s ((𝐵 +s ( 1s /su 𝑚)) -s 𝐵)))
103102oveq2d 7436 . . . . . . . . . . . . . . . . . . 19 (𝑢 = (𝐵 +s ( 1s /su 𝑚)) → ((𝐴 ·s 𝐵) -s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝑢 -s 𝐵))) = ((𝐴 ·s 𝐵) -s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s ((𝐵 +s ( 1s /su 𝑚)) -s 𝐵))))
104103eqeq2d 2739 . . . . . . . . . . . . . . . . . 18 (𝑢 = (𝐵 +s ( 1s /su 𝑚)) → (𝑧 = ((𝐴 ·s 𝐵) -s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝑢 -s 𝐵))) ↔ 𝑧 = ((𝐴 ·s 𝐵) -s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s ((𝐵 +s ( 1s /su 𝑚)) -s 𝐵)))))
105100, 104ceqsexv 3523 . . . . . . . . . . . . . . . . 17 (∃𝑢(𝑢 = (𝐵 +s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) -s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝑢 -s 𝐵)))) ↔ 𝑧 = ((𝐴 ·s 𝐵) -s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s ((𝐵 +s ( 1s /su 𝑚)) -s 𝐵))))
106 pncan2s 27995 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 No ∧ ( 1s /su 𝑛) ∈ No ) → ((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) = ( 1s /su 𝑛))
10751, 58, 106syl2anc 583 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs) ∧ 𝑚 ∈ ℕs) → ((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) = ( 1s /su 𝑛))
108 pncan2s 27995 . . . . . . . . . . . . . . . . . . . . 21 ((𝐵 No ∧ ( 1s /su 𝑚) ∈ No ) → ((𝐵 +s ( 1s /su 𝑚)) -s 𝐵) = ( 1s /su 𝑚))
10960, 65, 108syl2anc 583 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs) ∧ 𝑚 ∈ ℕs) → ((𝐵 +s ( 1s /su 𝑚)) -s 𝐵) = ( 1s /su 𝑚))
110107, 109oveq12d 7438 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs) ∧ 𝑚 ∈ ℕs) → (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s ((𝐵 +s ( 1s /su 𝑚)) -s 𝐵)) = (( 1s /su 𝑛) ·s ( 1s /su 𝑚)))
111110oveq2d 7436 . . . . . . . . . . . . . . . . . 18 ((((𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs) ∧ 𝑚 ∈ ℕs) → ((𝐴 ·s 𝐵) -s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s ((𝐵 +s ( 1s /su 𝑚)) -s 𝐵))) = ((𝐴 ·s 𝐵) -s (( 1s /su 𝑛) ·s ( 1s /su 𝑚))))
112111eqeq2d 2739 . . . . . . . . . . . . . . . . 17 ((((𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs) ∧ 𝑚 ∈ ℕs) → (𝑧 = ((𝐴 ·s 𝐵) -s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s ((𝐵 +s ( 1s /su 𝑚)) -s 𝐵))) ↔ 𝑧 = ((𝐴 ·s 𝐵) -s (( 1s /su 𝑛) ·s ( 1s /su 𝑚)))))
113105, 112bitrid 283 . . . . . . . . . . . . . . . 16 ((((𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs) ∧ 𝑚 ∈ ℕs) → (∃𝑢(𝑢 = (𝐵 +s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) -s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝑢 -s 𝐵)))) ↔ 𝑧 = ((𝐴 ·s 𝐵) -s (( 1s /su 𝑛) ·s ( 1s /su 𝑚)))))
114113rexbidva 3173 . . . . . . . . . . . . . . 15 (((𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs) → (∃𝑚 ∈ ℕs𝑢(𝑢 = (𝐵 +s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) -s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝑢 -s 𝐵)))) ↔ ∃𝑚 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) -s (( 1s /su 𝑛) ·s ( 1s /su 𝑚)))))
11599, 114bitrid 283 . . . . . . . . . . . . . 14 (((𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs) → (∃𝑡(𝑡 = (𝐴 +s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝑡 -s 𝐴) ·s (𝑢 -s 𝐵)))) ↔ ∃𝑚 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) -s (( 1s /su 𝑛) ·s ( 1s /su 𝑚)))))
116115rexbidva 3173 . . . . . . . . . . . . 13 ((𝐴 No 𝐵 No ) → (∃𝑛 ∈ ℕs𝑡(𝑡 = (𝐴 +s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝑡 -s 𝐴) ·s (𝑢 -s 𝐵)))) ↔ ∃𝑛 ∈ ℕs𝑚 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) -s (( 1s /su 𝑛) ·s ( 1s /su 𝑚)))))
117116, 74bitrdi 287 . . . . . . . . . . . 12 ((𝐴 No 𝐵 No ) → (∃𝑛 ∈ ℕs𝑡(𝑡 = (𝐴 +s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝑡 -s 𝐴) ·s (𝑢 -s 𝐵)))) ↔ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) -s ( 1s /su 𝑝))))
11884, 117bitrid 283 . . . . . . . . . . 11 ((𝐴 No 𝐵 No ) → (∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝑡 -s 𝐴) ·s (𝑢 -s 𝐵))) ↔ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) -s ( 1s /su 𝑝))))
119118abbidv 2797 . . . . . . . . . 10 ((𝐴 No 𝐵 No ) → {𝑧 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝑡 -s 𝐴) ·s (𝑢 -s 𝐵)))} = {𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) -s ( 1s /su 𝑝))})
12077, 119uneq12d 4163 . . . . . . . . 9 ((𝐴 No 𝐵 No ) → ({𝑧 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))}∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑡) ·s (𝐵 -s 𝑢)))} ∪ {𝑧 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝑡 -s 𝐴) ·s (𝑢 -s 𝐵)))}) = ({𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) -s ( 1s /su 𝑝))} ∪ {𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) -s ( 1s /su 𝑝))}))
121 unidm 4151 . . . . . . . . 9 ({𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) -s ( 1s /su 𝑝))} ∪ {𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) -s ( 1s /su 𝑝))}) = {𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) -s ( 1s /su 𝑝))}
122120, 121eqtrdi 2784 . . . . . . . 8 ((𝐴 No 𝐵 No ) → ({𝑧 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))}∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑡) ·s (𝐵 -s 𝑢)))} ∪ {𝑧 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝑡 -s 𝐴) ·s (𝑢 -s 𝐵)))}) = {𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) -s ( 1s /su 𝑝))})
123 r19.41v 3185 . . . . . . . . . . . . . 14 (∃𝑛 ∈ ℕs (𝑡 = (𝐴 -s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑢 -s 𝐵)))) ↔ (∃𝑛 ∈ ℕs 𝑡 = (𝐴 -s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑢 -s 𝐵)))))
124123exbii 1843 . . . . . . . . . . . . 13 (∃𝑡𝑛 ∈ ℕs (𝑡 = (𝐴 -s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑢 -s 𝐵)))) ↔ ∃𝑡(∃𝑛 ∈ ℕs 𝑡 = (𝐴 -s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑢 -s 𝐵)))))
125 rexcom4 3282 . . . . . . . . . . . . 13 (∃𝑛 ∈ ℕs𝑡(𝑡 = (𝐴 -s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑢 -s 𝐵)))) ↔ ∃𝑡𝑛 ∈ ℕs (𝑡 = (𝐴 -s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑢 -s 𝐵)))))
12627rexab 3689 . . . . . . . . . . . . 13 (∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))}∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑢 -s 𝐵))) ↔ ∃𝑡(∃𝑛 ∈ ℕs 𝑡 = (𝐴 -s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑢 -s 𝐵)))))
127124, 125, 1263bitr4ri 304 . . . . . . . . . . . 12 (∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))}∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑢 -s 𝐵))) ↔ ∃𝑛 ∈ ℕs𝑡(𝑡 = (𝐴 -s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑢 -s 𝐵)))))
12831oveq1d 7435 . . . . . . . . . . . . . . . . . . . 20 (𝑡 = (𝐴 -s ( 1s /su 𝑛)) → ((𝐴 -s 𝑡) ·s (𝑢 -s 𝐵)) = ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝑢 -s 𝐵)))
129128oveq2d 7436 . . . . . . . . . . . . . . . . . . 19 (𝑡 = (𝐴 -s ( 1s /su 𝑛)) → ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑢 -s 𝐵))) = ((𝐴 ·s 𝐵) +s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝑢 -s 𝐵))))
130129eqeq2d 2739 . . . . . . . . . . . . . . . . . 18 (𝑡 = (𝐴 -s ( 1s /su 𝑛)) → (𝑧 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑢 -s 𝐵))) ↔ 𝑧 = ((𝐴 ·s 𝐵) +s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝑢 -s 𝐵)))))
131130rexbidv 3175 . . . . . . . . . . . . . . . . 17 (𝑡 = (𝐴 -s ( 1s /su 𝑛)) → (∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑢 -s 𝐵))) ↔ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝑢 -s 𝐵)))))
13230, 131ceqsexv 3523 . . . . . . . . . . . . . . . 16 (∃𝑡(𝑡 = (𝐴 -s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑢 -s 𝐵)))) ↔ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝑢 -s 𝐵))))
133 r19.41v 3185 . . . . . . . . . . . . . . . . . 18 (∃𝑚 ∈ ℕs (𝑢 = (𝐵 +s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) +s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝑢 -s 𝐵)))) ↔ (∃𝑚 ∈ ℕs 𝑢 = (𝐵 +s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) +s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝑢 -s 𝐵)))))
134133exbii 1843 . . . . . . . . . . . . . . . . 17 (∃𝑢𝑚 ∈ ℕs (𝑢 = (𝐵 +s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) +s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝑢 -s 𝐵)))) ↔ ∃𝑢(∃𝑚 ∈ ℕs 𝑢 = (𝐵 +s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) +s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝑢 -s 𝐵)))))
135 rexcom4 3282 . . . . . . . . . . . . . . . . 17 (∃𝑚 ∈ ℕs𝑢(𝑢 = (𝐵 +s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) +s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝑢 -s 𝐵)))) ↔ ∃𝑢𝑚 ∈ ℕs (𝑢 = (𝐵 +s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) +s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝑢 -s 𝐵)))))
13696rexab 3689 . . . . . . . . . . . . . . . . 17 (∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝑢 -s 𝐵))) ↔ ∃𝑢(∃𝑚 ∈ ℕs 𝑢 = (𝐵 +s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) +s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝑢 -s 𝐵)))))
137134, 135, 1363bitr4ri 304 . . . . . . . . . . . . . . . 16 (∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝑢 -s 𝐵))) ↔ ∃𝑚 ∈ ℕs𝑢(𝑢 = (𝐵 +s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) +s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝑢 -s 𝐵)))))
138132, 137bitri 275 . . . . . . . . . . . . . . 15 (∃𝑡(𝑡 = (𝐴 -s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑢 -s 𝐵)))) ↔ ∃𝑚 ∈ ℕs𝑢(𝑢 = (𝐵 +s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) +s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝑢 -s 𝐵)))))
139101oveq2d 7436 . . . . . . . . . . . . . . . . . . . 20 (𝑢 = (𝐵 +s ( 1s /su 𝑚)) → ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝑢 -s 𝐵)) = ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s ((𝐵 +s ( 1s /su 𝑚)) -s 𝐵)))
140139oveq2d 7436 . . . . . . . . . . . . . . . . . . 19 (𝑢 = (𝐵 +s ( 1s /su 𝑚)) → ((𝐴 ·s 𝐵) +s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝑢 -s 𝐵))) = ((𝐴 ·s 𝐵) +s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s ((𝐵 +s ( 1s /su 𝑚)) -s 𝐵))))
141140eqeq2d 2739 . . . . . . . . . . . . . . . . . 18 (𝑢 = (𝐵 +s ( 1s /su 𝑚)) → (𝑧 = ((𝐴 ·s 𝐵) +s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝑢 -s 𝐵))) ↔ 𝑧 = ((𝐴 ·s 𝐵) +s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s ((𝐵 +s ( 1s /su 𝑚)) -s 𝐵)))))
142100, 141ceqsexv 3523 . . . . . . . . . . . . . . . . 17 (∃𝑢(𝑢 = (𝐵 +s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) +s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝑢 -s 𝐵)))) ↔ 𝑧 = ((𝐴 ·s 𝐵) +s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s ((𝐵 +s ( 1s /su 𝑚)) -s 𝐵))))
14359, 109oveq12d 7438 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs) ∧ 𝑚 ∈ ℕs) → ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s ((𝐵 +s ( 1s /su 𝑚)) -s 𝐵)) = (( 1s /su 𝑛) ·s ( 1s /su 𝑚)))
144143oveq2d 7436 . . . . . . . . . . . . . . . . . 18 ((((𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs) ∧ 𝑚 ∈ ℕs) → ((𝐴 ·s 𝐵) +s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s ((𝐵 +s ( 1s /su 𝑚)) -s 𝐵))) = ((𝐴 ·s 𝐵) +s (( 1s /su 𝑛) ·s ( 1s /su 𝑚))))
145144eqeq2d 2739 . . . . . . . . . . . . . . . . 17 ((((𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs) ∧ 𝑚 ∈ ℕs) → (𝑧 = ((𝐴 ·s 𝐵) +s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s ((𝐵 +s ( 1s /su 𝑚)) -s 𝐵))) ↔ 𝑧 = ((𝐴 ·s 𝐵) +s (( 1s /su 𝑛) ·s ( 1s /su 𝑚)))))
146142, 145bitrid 283 . . . . . . . . . . . . . . . 16 ((((𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs) ∧ 𝑚 ∈ ℕs) → (∃𝑢(𝑢 = (𝐵 +s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) +s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝑢 -s 𝐵)))) ↔ 𝑧 = ((𝐴 ·s 𝐵) +s (( 1s /su 𝑛) ·s ( 1s /su 𝑚)))))
147146rexbidva 3173 . . . . . . . . . . . . . . 15 (((𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs) → (∃𝑚 ∈ ℕs𝑢(𝑢 = (𝐵 +s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) +s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝑢 -s 𝐵)))) ↔ ∃𝑚 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) +s (( 1s /su 𝑛) ·s ( 1s /su 𝑚)))))
148138, 147bitrid 283 . . . . . . . . . . . . . 14 (((𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs) → (∃𝑡(𝑡 = (𝐴 -s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑢 -s 𝐵)))) ↔ ∃𝑚 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) +s (( 1s /su 𝑛) ·s ( 1s /su 𝑚)))))
149148rexbidva 3173 . . . . . . . . . . . . 13 ((𝐴 No 𝐵 No ) → (∃𝑛 ∈ ℕs𝑡(𝑡 = (𝐴 -s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑢 -s 𝐵)))) ↔ ∃𝑛 ∈ ℕs𝑚 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) +s (( 1s /su 𝑛) ·s ( 1s /su 𝑚)))))
150 remulscllem1 28241 . . . . . . . . . . . . 13 (∃𝑛 ∈ ℕs𝑚 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) +s (( 1s /su 𝑛) ·s ( 1s /su 𝑚))) ↔ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) +s ( 1s /su 𝑝)))
151149, 150bitrdi 287 . . . . . . . . . . . 12 ((𝐴 No 𝐵 No ) → (∃𝑛 ∈ ℕs𝑡(𝑡 = (𝐴 -s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑢 -s 𝐵)))) ↔ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) +s ( 1s /su 𝑝))))
152127, 151bitrid 283 . . . . . . . . . . 11 ((𝐴 No 𝐵 No ) → (∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))}∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑢 -s 𝐵))) ↔ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) +s ( 1s /su 𝑝))))
153152abbidv 2797 . . . . . . . . . 10 ((𝐴 No 𝐵 No ) → {𝑧 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))}∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑢 -s 𝐵)))} = {𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) +s ( 1s /su 𝑝))})
154 r19.41v 3185 . . . . . . . . . . . . . 14 (∃𝑛 ∈ ℕs (𝑡 = (𝐴 +s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝑡 -s 𝐴) ·s (𝐵 -s 𝑢)))) ↔ (∃𝑛 ∈ ℕs 𝑡 = (𝐴 +s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝑡 -s 𝐴) ·s (𝐵 -s 𝑢)))))
155154exbii 1843 . . . . . . . . . . . . 13 (∃𝑡𝑛 ∈ ℕs (𝑡 = (𝐴 +s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝑡 -s 𝐴) ·s (𝐵 -s 𝑢)))) ↔ ∃𝑡(∃𝑛 ∈ ℕs 𝑡 = (𝐴 +s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝑡 -s 𝐴) ·s (𝐵 -s 𝑢)))))
156 rexcom4 3282 . . . . . . . . . . . . 13 (∃𝑛 ∈ ℕs𝑡(𝑡 = (𝐴 +s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝑡 -s 𝐴) ·s (𝐵 -s 𝑢)))) ↔ ∃𝑡𝑛 ∈ ℕs (𝑡 = (𝐴 +s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝑡 -s 𝐴) ·s (𝐵 -s 𝑢)))))
15782rexab 3689 . . . . . . . . . . . . 13 (∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝑡 -s 𝐴) ·s (𝐵 -s 𝑢))) ↔ ∃𝑡(∃𝑛 ∈ ℕs 𝑡 = (𝐴 +s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝑡 -s 𝐴) ·s (𝐵 -s 𝑢)))))
158155, 156, 1573bitr4ri 304 . . . . . . . . . . . 12 (∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝑡 -s 𝐴) ·s (𝐵 -s 𝑢))) ↔ ∃𝑛 ∈ ℕs𝑡(𝑡 = (𝐴 +s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝑡 -s 𝐴) ·s (𝐵 -s 𝑢)))))
15986oveq1d 7435 . . . . . . . . . . . . . . . . . . . 20 (𝑡 = (𝐴 +s ( 1s /su 𝑛)) → ((𝑡 -s 𝐴) ·s (𝐵 -s 𝑢)) = (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝐵 -s 𝑢)))
160159oveq2d 7436 . . . . . . . . . . . . . . . . . . 19 (𝑡 = (𝐴 +s ( 1s /su 𝑛)) → ((𝐴 ·s 𝐵) +s ((𝑡 -s 𝐴) ·s (𝐵 -s 𝑢))) = ((𝐴 ·s 𝐵) +s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝐵 -s 𝑢))))
161160eqeq2d 2739 . . . . . . . . . . . . . . . . . 18 (𝑡 = (𝐴 +s ( 1s /su 𝑛)) → (𝑧 = ((𝐴 ·s 𝐵) +s ((𝑡 -s 𝐴) ·s (𝐵 -s 𝑢))) ↔ 𝑧 = ((𝐴 ·s 𝐵) +s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝐵 -s 𝑢)))))
162161rexbidv 3175 . . . . . . . . . . . . . . . . 17 (𝑡 = (𝐴 +s ( 1s /su 𝑛)) → (∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝑡 -s 𝐴) ·s (𝐵 -s 𝑢))) ↔ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝐵 -s 𝑢)))))
16385, 162ceqsexv 3523 . . . . . . . . . . . . . . . 16 (∃𝑡(𝑡 = (𝐴 +s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝑡 -s 𝐴) ·s (𝐵 -s 𝑢)))) ↔ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝐵 -s 𝑢))))
164 r19.41v 3185 . . . . . . . . . . . . . . . . . 18 (∃𝑚 ∈ ℕs (𝑢 = (𝐵 -s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) +s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝐵 -s 𝑢)))) ↔ (∃𝑚 ∈ ℕs 𝑢 = (𝐵 -s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) +s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝐵 -s 𝑢)))))
165164exbii 1843 . . . . . . . . . . . . . . . . 17 (∃𝑢𝑚 ∈ ℕs (𝑢 = (𝐵 -s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) +s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝐵 -s 𝑢)))) ↔ ∃𝑢(∃𝑚 ∈ ℕs 𝑢 = (𝐵 -s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) +s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝐵 -s 𝑢)))))
166 rexcom4 3282 . . . . . . . . . . . . . . . . 17 (∃𝑚 ∈ ℕs𝑢(𝑢 = (𝐵 -s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) +s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝐵 -s 𝑢)))) ↔ ∃𝑢𝑚 ∈ ℕs (𝑢 = (𝐵 -s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) +s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝐵 -s 𝑢)))))
16741rexab 3689 . . . . . . . . . . . . . . . . 17 (∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝐵 -s 𝑢))) ↔ ∃𝑢(∃𝑚 ∈ ℕs 𝑢 = (𝐵 -s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) +s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝐵 -s 𝑢)))))
168165, 166, 1673bitr4ri 304 . . . . . . . . . . . . . . . 16 (∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝐵 -s 𝑢))) ↔ ∃𝑚 ∈ ℕs𝑢(𝑢 = (𝐵 -s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) +s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝐵 -s 𝑢)))))
169163, 168bitri 275 . . . . . . . . . . . . . . 15 (∃𝑡(𝑡 = (𝐴 +s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝑡 -s 𝐴) ·s (𝐵 -s 𝑢)))) ↔ ∃𝑚 ∈ ℕs𝑢(𝑢 = (𝐵 -s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) +s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝐵 -s 𝑢)))))
17046oveq2d 7436 . . . . . . . . . . . . . . . . . . . 20 (𝑢 = (𝐵 -s ( 1s /su 𝑚)) → (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝐵 -s 𝑢)) = (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝐵 -s (𝐵 -s ( 1s /su 𝑚)))))
171170oveq2d 7436 . . . . . . . . . . . . . . . . . . 19 (𝑢 = (𝐵 -s ( 1s /su 𝑚)) → ((𝐴 ·s 𝐵) +s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝐵 -s 𝑢))) = ((𝐴 ·s 𝐵) +s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝐵 -s (𝐵 -s ( 1s /su 𝑚))))))
172171eqeq2d 2739 . . . . . . . . . . . . . . . . . 18 (𝑢 = (𝐵 -s ( 1s /su 𝑚)) → (𝑧 = ((𝐴 ·s 𝐵) +s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝐵 -s 𝑢))) ↔ 𝑧 = ((𝐴 ·s 𝐵) +s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝐵 -s (𝐵 -s ( 1s /su 𝑚)))))))
17345, 172ceqsexv 3523 . . . . . . . . . . . . . . . . 17 (∃𝑢(𝑢 = (𝐵 -s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) +s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝐵 -s 𝑢)))) ↔ 𝑧 = ((𝐴 ·s 𝐵) +s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝐵 -s (𝐵 -s ( 1s /su 𝑚))))))
174107, 66oveq12d 7438 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs) ∧ 𝑚 ∈ ℕs) → (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝐵 -s (𝐵 -s ( 1s /su 𝑚)))) = (( 1s /su 𝑛) ·s ( 1s /su 𝑚)))
175174oveq2d 7436 . . . . . . . . . . . . . . . . . 18 ((((𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs) ∧ 𝑚 ∈ ℕs) → ((𝐴 ·s 𝐵) +s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝐵 -s (𝐵 -s ( 1s /su 𝑚))))) = ((𝐴 ·s 𝐵) +s (( 1s /su 𝑛) ·s ( 1s /su 𝑚))))
176175eqeq2d 2739 . . . . . . . . . . . . . . . . 17 ((((𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs) ∧ 𝑚 ∈ ℕs) → (𝑧 = ((𝐴 ·s 𝐵) +s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝐵 -s (𝐵 -s ( 1s /su 𝑚))))) ↔ 𝑧 = ((𝐴 ·s 𝐵) +s (( 1s /su 𝑛) ·s ( 1s /su 𝑚)))))
177173, 176bitrid 283 . . . . . . . . . . . . . . . 16 ((((𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs) ∧ 𝑚 ∈ ℕs) → (∃𝑢(𝑢 = (𝐵 -s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) +s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝐵 -s 𝑢)))) ↔ 𝑧 = ((𝐴 ·s 𝐵) +s (( 1s /su 𝑛) ·s ( 1s /su 𝑚)))))
178177rexbidva 3173 . . . . . . . . . . . . . . 15 (((𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs) → (∃𝑚 ∈ ℕs𝑢(𝑢 = (𝐵 -s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) +s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝐵 -s 𝑢)))) ↔ ∃𝑚 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) +s (( 1s /su 𝑛) ·s ( 1s /su 𝑚)))))
179169, 178bitrid 283 . . . . . . . . . . . . . 14 (((𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs) → (∃𝑡(𝑡 = (𝐴 +s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝑡 -s 𝐴) ·s (𝐵 -s 𝑢)))) ↔ ∃𝑚 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) +s (( 1s /su 𝑛) ·s ( 1s /su 𝑚)))))
180179rexbidva 3173 . . . . . . . . . . . . 13 ((𝐴 No 𝐵 No ) → (∃𝑛 ∈ ℕs𝑡(𝑡 = (𝐴 +s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝑡 -s 𝐴) ·s (𝐵 -s 𝑢)))) ↔ ∃𝑛 ∈ ℕs𝑚 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) +s (( 1s /su 𝑛) ·s ( 1s /su 𝑚)))))
181180, 150bitrdi 287 . . . . . . . . . . . 12 ((𝐴 No 𝐵 No ) → (∃𝑛 ∈ ℕs𝑡(𝑡 = (𝐴 +s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝑡 -s 𝐴) ·s (𝐵 -s 𝑢)))) ↔ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) +s ( 1s /su 𝑝))))
182158, 181bitrid 283 . . . . . . . . . . 11 ((𝐴 No 𝐵 No ) → (∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝑡 -s 𝐴) ·s (𝐵 -s 𝑢))) ↔ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) +s ( 1s /su 𝑝))))
183182abbidv 2797 . . . . . . . . . 10 ((𝐴 No 𝐵 No ) → {𝑧 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝑡 -s 𝐴) ·s (𝐵 -s 𝑢)))} = {𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) +s ( 1s /su 𝑝))})
184153, 183uneq12d 4163 . . . . . . . . 9 ((𝐴 No 𝐵 No ) → ({𝑧 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))}∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑢 -s 𝐵)))} ∪ {𝑧 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝑡 -s 𝐴) ·s (𝐵 -s 𝑢)))}) = ({𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) +s ( 1s /su 𝑝))} ∪ {𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) +s ( 1s /su 𝑝))}))
185 unidm 4151 . . . . . . . . 9 ({𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) +s ( 1s /su 𝑝))} ∪ {𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) +s ( 1s /su 𝑝))}) = {𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) +s ( 1s /su 𝑝))}
186184, 185eqtrdi 2784 . . . . . . . 8 ((𝐴 No 𝐵 No ) → ({𝑧 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))}∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑢 -s 𝐵)))} ∪ {𝑧 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝑡 -s 𝐴) ·s (𝐵 -s 𝑢)))}) = {𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) +s ( 1s /su 𝑝))})
187122, 186oveq12d 7438 . . . . . . 7 ((𝐴 No 𝐵 No ) → (({𝑧 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))}∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑡) ·s (𝐵 -s 𝑢)))} ∪ {𝑧 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝑡 -s 𝐴) ·s (𝑢 -s 𝐵)))}) |s ({𝑧 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))}∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑢 -s 𝐵)))} ∪ {𝑧 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝑡 -s 𝐴) ·s (𝐵 -s 𝑢)))})) = ({𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) -s ( 1s /su 𝑝))} |s {𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) +s ( 1s /su 𝑝))}))
188187adantr 480 . . . . . 6 (((𝐴 No 𝐵 No ) ∧ (𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}) ∧ 𝐵 = ({𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))} |s {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}))) → (({𝑧 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))}∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑡) ·s (𝐵 -s 𝑢)))} ∪ {𝑧 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝑡 -s 𝐴) ·s (𝑢 -s 𝐵)))}) |s ({𝑧 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))}∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑢 -s 𝐵)))} ∪ {𝑧 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝑡 -s 𝐴) ·s (𝐵 -s 𝑢)))})) = ({𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) -s ( 1s /su 𝑝))} |s {𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) +s ( 1s /su 𝑝))}))
18922, 188eqtrd 2768 . . . . 5 (((𝐴 No 𝐵 No ) ∧ (𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}) ∧ 𝐵 = ({𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))} |s {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}))) → (𝐴 ·s 𝐵) = ({𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) -s ( 1s /su 𝑝))} |s {𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) +s ( 1s /su 𝑝))}))
19014, 189sylan2 592 . . . 4 (((𝐴 No 𝐵 No ) ∧ ((∃𝑛 ∈ ℕs (( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ 𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))})) ∧ (∃𝑚 ∈ ℕs (( -us𝑚) <s 𝐵𝐵 <s 𝑚) ∧ 𝐵 = ({𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))} |s {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))})))) → (𝐴 ·s 𝐵) = ({𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) -s ( 1s /su 𝑝))} |s {𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) +s ( 1s /su 𝑝))}))
1912, 11, 190jca32 515 . . 3 (((𝐴 No 𝐵 No ) ∧ ((∃𝑛 ∈ ℕs (( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ 𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))})) ∧ (∃𝑚 ∈ ℕs (( -us𝑚) <s 𝐵𝐵 <s 𝑚) ∧ 𝐵 = ({𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))} |s {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))})))) → ((𝐴 ·s 𝐵) ∈ No ∧ (∃𝑝 ∈ ℕs (( -us𝑝) <s (𝐴 ·s 𝐵) ∧ (𝐴 ·s 𝐵) <s 𝑝) ∧ (𝐴 ·s 𝐵) = ({𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) -s ( 1s /su 𝑝))} |s {𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) +s ( 1s /su 𝑝))}))))
192191an4s 659 . 2 (((𝐴 No ∧ (∃𝑛 ∈ ℕs (( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ 𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}))) ∧ (𝐵 No ∧ (∃𝑚 ∈ ℕs (( -us𝑚) <s 𝐵𝐵 <s 𝑚) ∧ 𝐵 = ({𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))} |s {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))})))) → ((𝐴 ·s 𝐵) ∈ No ∧ (∃𝑝 ∈ ℕs (( -us𝑝) <s (𝐴 ·s 𝐵) ∧ (𝐴 ·s 𝐵) <s 𝑝) ∧ (𝐴 ·s 𝐵) = ({𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) -s ( 1s /su 𝑝))} |s {𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) +s ( 1s /su 𝑝))}))))
193 elreno 28236 . . 3 (𝐴 ∈ ℝs ↔ (𝐴 No ∧ (∃𝑛 ∈ ℕs (( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ 𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}))))
194 elreno 28236 . . 3 (𝐵 ∈ ℝs ↔ (𝐵 No ∧ (∃𝑚 ∈ ℕs (( -us𝑚) <s 𝐵𝐵 <s 𝑚) ∧ 𝐵 = ({𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))} |s {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}))))
195193, 194anbi12i 627 . 2 ((𝐴 ∈ ℝs𝐵 ∈ ℝs) ↔ ((𝐴 No ∧ (∃𝑛 ∈ ℕs (( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ 𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}))) ∧ (𝐵 No ∧ (∃𝑚 ∈ ℕs (( -us𝑚) <s 𝐵𝐵 <s 𝑚) ∧ 𝐵 = ({𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))} |s {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))})))))
196 elreno 28236 . 2 ((𝐴 ·s 𝐵) ∈ ℝs ↔ ((𝐴 ·s 𝐵) ∈ No ∧ (∃𝑝 ∈ ℕs (( -us𝑝) <s (𝐴 ·s 𝐵) ∧ (𝐴 ·s 𝐵) <s 𝑝) ∧ (𝐴 ·s 𝐵) = ({𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) -s ( 1s /su 𝑝))} |s {𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) +s ( 1s /su 𝑝))}))))
197192, 195, 1963imtr4i 292 1 ((𝐴 ∈ ℝs𝐵 ∈ ℝs) → (𝐴 ·s 𝐵) ∈ ℝs)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wex 1774  wcel 2099  {cab 2705  wne 2937  wrex 3067  cun 3945   class class class wbr 5148  cfv 6548  (class class class)co 7420   No csur 27586   <s cslt 27587   <<s csslt 27726   |s cscut 27728   0s c0s 27768   1s c1s 27769   +s cadds 27889   -us cnegs 27945   -s csubs 27946   ·s cmuls 28019   /su cdivs 28100  scnns 28199  screno 28234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-dc 10470
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-ot 4638  df-uni 4909  df-int 4950  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-1st 7993  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-oadd 8491  df-nadd 8687  df-no 27589  df-slt 27590  df-bday 27591  df-sle 27691  df-sslt 27727  df-scut 27729  df-0s 27770  df-1s 27771  df-made 27787  df-old 27788  df-left 27790  df-right 27791  df-norec 27868  df-norec2 27879  df-adds 27890  df-negs 27947  df-subs 27948  df-muls 28020  df-divs 28101  df-abss 28145  df-n0s 28200  df-nns 28201  df-reno 28235
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator