MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  remulscl Structured version   Visualization version   GIF version

Theorem remulscl 28360
Description: The surreal reals are closed under multiplication. Part of theorem 13(ii) of [Conway] p. 24. (Contributed by Scott Fenton, 16-Apr-2025.)
Assertion
Ref Expression
remulscl ((𝐴 ∈ ℝs𝐵 ∈ ℝs) → (𝐴 ·s 𝐵) ∈ ℝs)

Proof of Theorem remulscl
Dummy variables 𝑥 𝑦 𝑧 𝑛 𝑚 𝑝 𝑡 𝑢 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 mulscl 28044 . . . . 5 ((𝐴 No 𝐵 No ) → (𝐴 ·s 𝐵) ∈ No )
21adantr 480 . . . 4 (((𝐴 No 𝐵 No ) ∧ ((∃𝑛 ∈ ℕs (( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ 𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))})) ∧ (∃𝑚 ∈ ℕs (( -us𝑚) <s 𝐵𝐵 <s 𝑚) ∧ 𝐵 = ({𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))} |s {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))})))) → (𝐴 ·s 𝐵) ∈ No )
3 remulscllem2 28359 . . . . . . 7 (((𝐴 No 𝐵 No ) ∧ ((𝑛 ∈ ℕs𝑚 ∈ ℕs) ∧ ((( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ (( -us𝑚) <s 𝐵𝐵 <s 𝑚)))) → ∃𝑝 ∈ ℕs (( -us𝑝) <s (𝐴 ·s 𝐵) ∧ (𝐴 ·s 𝐵) <s 𝑝))
43expr 456 . . . . . 6 (((𝐴 No 𝐵 No ) ∧ (𝑛 ∈ ℕs𝑚 ∈ ℕs)) → (((( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ (( -us𝑚) <s 𝐵𝐵 <s 𝑚)) → ∃𝑝 ∈ ℕs (( -us𝑝) <s (𝐴 ·s 𝐵) ∧ (𝐴 ·s 𝐵) <s 𝑝)))
54rexlimdvva 3195 . . . . 5 ((𝐴 No 𝐵 No ) → (∃𝑛 ∈ ℕs𝑚 ∈ ℕs ((( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ (( -us𝑚) <s 𝐵𝐵 <s 𝑚)) → ∃𝑝 ∈ ℕs (( -us𝑝) <s (𝐴 ·s 𝐵) ∧ (𝐴 ·s 𝐵) <s 𝑝)))
6 simpl 482 . . . . . . 7 ((∃𝑛 ∈ ℕs (( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ 𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))})) → ∃𝑛 ∈ ℕs (( -us𝑛) <s 𝐴𝐴 <s 𝑛))
7 simpl 482 . . . . . . 7 ((∃𝑚 ∈ ℕs (( -us𝑚) <s 𝐵𝐵 <s 𝑚) ∧ 𝐵 = ({𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))} |s {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))})) → ∃𝑚 ∈ ℕs (( -us𝑚) <s 𝐵𝐵 <s 𝑚))
86, 7anim12i 613 . . . . . 6 (((∃𝑛 ∈ ℕs (( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ 𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))})) ∧ (∃𝑚 ∈ ℕs (( -us𝑚) <s 𝐵𝐵 <s 𝑚) ∧ 𝐵 = ({𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))} |s {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}))) → (∃𝑛 ∈ ℕs (( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ ∃𝑚 ∈ ℕs (( -us𝑚) <s 𝐵𝐵 <s 𝑚)))
9 reeanv 3210 . . . . . 6 (∃𝑛 ∈ ℕs𝑚 ∈ ℕs ((( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ (( -us𝑚) <s 𝐵𝐵 <s 𝑚)) ↔ (∃𝑛 ∈ ℕs (( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ ∃𝑚 ∈ ℕs (( -us𝑚) <s 𝐵𝐵 <s 𝑚)))
108, 9sylibr 234 . . . . 5 (((∃𝑛 ∈ ℕs (( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ 𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))})) ∧ (∃𝑚 ∈ ℕs (( -us𝑚) <s 𝐵𝐵 <s 𝑚) ∧ 𝐵 = ({𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))} |s {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}))) → ∃𝑛 ∈ ℕs𝑚 ∈ ℕs ((( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ (( -us𝑚) <s 𝐵𝐵 <s 𝑚)))
115, 10impel 505 . . . 4 (((𝐴 No 𝐵 No ) ∧ ((∃𝑛 ∈ ℕs (( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ 𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))})) ∧ (∃𝑚 ∈ ℕs (( -us𝑚) <s 𝐵𝐵 <s 𝑚) ∧ 𝐵 = ({𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))} |s {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))})))) → ∃𝑝 ∈ ℕs (( -us𝑝) <s (𝐴 ·s 𝐵) ∧ (𝐴 ·s 𝐵) <s 𝑝))
12 simpr 484 . . . . . 6 ((∃𝑛 ∈ ℕs (( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ 𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))})) → 𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}))
13 simpr 484 . . . . . 6 ((∃𝑚 ∈ ℕs (( -us𝑚) <s 𝐵𝐵 <s 𝑚) ∧ 𝐵 = ({𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))} |s {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))})) → 𝐵 = ({𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))} |s {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}))
1412, 13anim12i 613 . . . . 5 (((∃𝑛 ∈ ℕs (( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ 𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))})) ∧ (∃𝑚 ∈ ℕs (( -us𝑚) <s 𝐵𝐵 <s 𝑚) ∧ 𝐵 = ({𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))} |s {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}))) → (𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}) ∧ 𝐵 = ({𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))} |s {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))})))
15 recut 28354 . . . . . . . . 9 (𝐴 No → {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} <<s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))})
1615adantr 480 . . . . . . . 8 ((𝐴 No 𝐵 No ) → {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} <<s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))})
1716adantr 480 . . . . . . 7 (((𝐴 No 𝐵 No ) ∧ (𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}) ∧ 𝐵 = ({𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))} |s {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}))) → {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} <<s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))})
18 recut 28354 . . . . . . . 8 (𝐵 No → {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))} <<s {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))})
1918ad2antlr 727 . . . . . . 7 (((𝐴 No 𝐵 No ) ∧ (𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}) ∧ 𝐵 = ({𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))} |s {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}))) → {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))} <<s {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))})
20 simprl 770 . . . . . . 7 (((𝐴 No 𝐵 No ) ∧ (𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}) ∧ 𝐵 = ({𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))} |s {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}))) → 𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}))
21 simprr 772 . . . . . . 7 (((𝐴 No 𝐵 No ) ∧ (𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}) ∧ 𝐵 = ({𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))} |s {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}))) → 𝐵 = ({𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))} |s {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}))
2217, 19, 20, 21mulsunif2 28080 . . . . . 6 (((𝐴 No 𝐵 No ) ∧ (𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}) ∧ 𝐵 = ({𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))} |s {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}))) → (𝐴 ·s 𝐵) = (({𝑧 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))}∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑡) ·s (𝐵 -s 𝑢)))} ∪ {𝑧 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝑡 -s 𝐴) ·s (𝑢 -s 𝐵)))}) |s ({𝑧 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))}∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑢 -s 𝐵)))} ∪ {𝑧 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝑡 -s 𝐴) ·s (𝐵 -s 𝑢)))})))
23 r19.41v 3168 . . . . . . . . . . . . . 14 (∃𝑛 ∈ ℕs (𝑡 = (𝐴 -s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑡) ·s (𝐵 -s 𝑢)))) ↔ (∃𝑛 ∈ ℕs 𝑡 = (𝐴 -s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑡) ·s (𝐵 -s 𝑢)))))
2423exbii 1848 . . . . . . . . . . . . 13 (∃𝑡𝑛 ∈ ℕs (𝑡 = (𝐴 -s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑡) ·s (𝐵 -s 𝑢)))) ↔ ∃𝑡(∃𝑛 ∈ ℕs 𝑡 = (𝐴 -s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑡) ·s (𝐵 -s 𝑢)))))
25 rexcom4 3265 . . . . . . . . . . . . 13 (∃𝑛 ∈ ℕs𝑡(𝑡 = (𝐴 -s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑡) ·s (𝐵 -s 𝑢)))) ↔ ∃𝑡𝑛 ∈ ℕs (𝑡 = (𝐴 -s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑡) ·s (𝐵 -s 𝑢)))))
26 eqeq1 2734 . . . . . . . . . . . . . . 15 (𝑥 = 𝑡 → (𝑥 = (𝐴 -s ( 1s /su 𝑛)) ↔ 𝑡 = (𝐴 -s ( 1s /su 𝑛))))
2726rexbidv 3158 . . . . . . . . . . . . . 14 (𝑥 = 𝑡 → (∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛)) ↔ ∃𝑛 ∈ ℕs 𝑡 = (𝐴 -s ( 1s /su 𝑛))))
2827rexab 3669 . . . . . . . . . . . . 13 (∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))}∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑡) ·s (𝐵 -s 𝑢))) ↔ ∃𝑡(∃𝑛 ∈ ℕs 𝑡 = (𝐴 -s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑡) ·s (𝐵 -s 𝑢)))))
2924, 25, 283bitr4ri 304 . . . . . . . . . . . 12 (∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))}∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑡) ·s (𝐵 -s 𝑢))) ↔ ∃𝑛 ∈ ℕs𝑡(𝑡 = (𝐴 -s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑡) ·s (𝐵 -s 𝑢)))))
30 ovex 7423 . . . . . . . . . . . . . . . . 17 (𝐴 -s ( 1s /su 𝑛)) ∈ V
31 oveq2 7398 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 = (𝐴 -s ( 1s /su 𝑛)) → (𝐴 -s 𝑡) = (𝐴 -s (𝐴 -s ( 1s /su 𝑛))))
3231oveq1d 7405 . . . . . . . . . . . . . . . . . . . 20 (𝑡 = (𝐴 -s ( 1s /su 𝑛)) → ((𝐴 -s 𝑡) ·s (𝐵 -s 𝑢)) = ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝐵 -s 𝑢)))
3332oveq2d 7406 . . . . . . . . . . . . . . . . . . 19 (𝑡 = (𝐴 -s ( 1s /su 𝑛)) → ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑡) ·s (𝐵 -s 𝑢))) = ((𝐴 ·s 𝐵) -s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝐵 -s 𝑢))))
3433eqeq2d 2741 . . . . . . . . . . . . . . . . . 18 (𝑡 = (𝐴 -s ( 1s /su 𝑛)) → (𝑧 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑡) ·s (𝐵 -s 𝑢))) ↔ 𝑧 = ((𝐴 ·s 𝐵) -s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝐵 -s 𝑢)))))
3534rexbidv 3158 . . . . . . . . . . . . . . . . 17 (𝑡 = (𝐴 -s ( 1s /su 𝑛)) → (∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑡) ·s (𝐵 -s 𝑢))) ↔ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝐵 -s 𝑢)))))
3630, 35ceqsexv 3501 . . . . . . . . . . . . . . . 16 (∃𝑡(𝑡 = (𝐴 -s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑡) ·s (𝐵 -s 𝑢)))) ↔ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝐵 -s 𝑢))))
37 r19.41v 3168 . . . . . . . . . . . . . . . . . 18 (∃𝑚 ∈ ℕs (𝑢 = (𝐵 -s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) -s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝐵 -s 𝑢)))) ↔ (∃𝑚 ∈ ℕs 𝑢 = (𝐵 -s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) -s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝐵 -s 𝑢)))))
3837exbii 1848 . . . . . . . . . . . . . . . . 17 (∃𝑢𝑚 ∈ ℕs (𝑢 = (𝐵 -s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) -s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝐵 -s 𝑢)))) ↔ ∃𝑢(∃𝑚 ∈ ℕs 𝑢 = (𝐵 -s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) -s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝐵 -s 𝑢)))))
39 rexcom4 3265 . . . . . . . . . . . . . . . . 17 (∃𝑚 ∈ ℕs𝑢(𝑢 = (𝐵 -s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) -s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝐵 -s 𝑢)))) ↔ ∃𝑢𝑚 ∈ ℕs (𝑢 = (𝐵 -s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) -s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝐵 -s 𝑢)))))
40 eqeq1 2734 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑢 → (𝑦 = (𝐵 -s ( 1s /su 𝑚)) ↔ 𝑢 = (𝐵 -s ( 1s /su 𝑚))))
4140rexbidv 3158 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑢 → (∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚)) ↔ ∃𝑚 ∈ ℕs 𝑢 = (𝐵 -s ( 1s /su 𝑚))))
4241rexab 3669 . . . . . . . . . . . . . . . . 17 (∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝐵 -s 𝑢))) ↔ ∃𝑢(∃𝑚 ∈ ℕs 𝑢 = (𝐵 -s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) -s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝐵 -s 𝑢)))))
4338, 39, 423bitr4ri 304 . . . . . . . . . . . . . . . 16 (∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝐵 -s 𝑢))) ↔ ∃𝑚 ∈ ℕs𝑢(𝑢 = (𝐵 -s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) -s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝐵 -s 𝑢)))))
4436, 43bitri 275 . . . . . . . . . . . . . . 15 (∃𝑡(𝑡 = (𝐴 -s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑡) ·s (𝐵 -s 𝑢)))) ↔ ∃𝑚 ∈ ℕs𝑢(𝑢 = (𝐵 -s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) -s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝐵 -s 𝑢)))))
45 ovex 7423 . . . . . . . . . . . . . . . . . 18 (𝐵 -s ( 1s /su 𝑚)) ∈ V
46 oveq2 7398 . . . . . . . . . . . . . . . . . . . . 21 (𝑢 = (𝐵 -s ( 1s /su 𝑚)) → (𝐵 -s 𝑢) = (𝐵 -s (𝐵 -s ( 1s /su 𝑚))))
4746oveq2d 7406 . . . . . . . . . . . . . . . . . . . 20 (𝑢 = (𝐵 -s ( 1s /su 𝑚)) → ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝐵 -s 𝑢)) = ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝐵 -s (𝐵 -s ( 1s /su 𝑚)))))
4847oveq2d 7406 . . . . . . . . . . . . . . . . . . 19 (𝑢 = (𝐵 -s ( 1s /su 𝑚)) → ((𝐴 ·s 𝐵) -s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝐵 -s 𝑢))) = ((𝐴 ·s 𝐵) -s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝐵 -s (𝐵 -s ( 1s /su 𝑚))))))
4948eqeq2d 2741 . . . . . . . . . . . . . . . . . 18 (𝑢 = (𝐵 -s ( 1s /su 𝑚)) → (𝑧 = ((𝐴 ·s 𝐵) -s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝐵 -s 𝑢))) ↔ 𝑧 = ((𝐴 ·s 𝐵) -s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝐵 -s (𝐵 -s ( 1s /su 𝑚)))))))
5045, 49ceqsexv 3501 . . . . . . . . . . . . . . . . 17 (∃𝑢(𝑢 = (𝐵 -s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) -s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝐵 -s 𝑢)))) ↔ 𝑧 = ((𝐴 ·s 𝐵) -s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝐵 -s (𝐵 -s ( 1s /su 𝑚))))))
51 simplll 774 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs) ∧ 𝑚 ∈ ℕs) → 𝐴 No )
52 1sno 27746 . . . . . . . . . . . . . . . . . . . . . . 23 1s No
5352a1i 11 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs) ∧ 𝑚 ∈ ℕs) → 1s No )
54 nnsno 28224 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ ℕs𝑛 No )
5554ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs) ∧ 𝑚 ∈ ℕs) → 𝑛 No )
56 nnne0s 28236 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑛 ∈ ℕs𝑛 ≠ 0s )
5756ad2antlr 727 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs) ∧ 𝑚 ∈ ℕs) → 𝑛 ≠ 0s )
5853, 55, 57divscld 28133 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs) ∧ 𝑚 ∈ ℕs) → ( 1s /su 𝑛) ∈ No )
5951, 58nncansd 28007 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs) ∧ 𝑚 ∈ ℕs) → (𝐴 -s (𝐴 -s ( 1s /su 𝑛))) = ( 1s /su 𝑛))
60 simpllr 775 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs) ∧ 𝑚 ∈ ℕs) → 𝐵 No )
61 nnsno 28224 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 ∈ ℕs𝑚 No )
6261adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs) ∧ 𝑚 ∈ ℕs) → 𝑚 No )
63 nnne0s 28236 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑚 ∈ ℕs𝑚 ≠ 0s )
6463adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs) ∧ 𝑚 ∈ ℕs) → 𝑚 ≠ 0s )
6553, 62, 64divscld 28133 . . . . . . . . . . . . . . . . . . . . 21 ((((𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs) ∧ 𝑚 ∈ ℕs) → ( 1s /su 𝑚) ∈ No )
6660, 65nncansd 28007 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs) ∧ 𝑚 ∈ ℕs) → (𝐵 -s (𝐵 -s ( 1s /su 𝑚))) = ( 1s /su 𝑚))
6759, 66oveq12d 7408 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs) ∧ 𝑚 ∈ ℕs) → ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝐵 -s (𝐵 -s ( 1s /su 𝑚)))) = (( 1s /su 𝑛) ·s ( 1s /su 𝑚)))
6867oveq2d 7406 . . . . . . . . . . . . . . . . . 18 ((((𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs) ∧ 𝑚 ∈ ℕs) → ((𝐴 ·s 𝐵) -s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝐵 -s (𝐵 -s ( 1s /su 𝑚))))) = ((𝐴 ·s 𝐵) -s (( 1s /su 𝑛) ·s ( 1s /su 𝑚))))
6968eqeq2d 2741 . . . . . . . . . . . . . . . . 17 ((((𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs) ∧ 𝑚 ∈ ℕs) → (𝑧 = ((𝐴 ·s 𝐵) -s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝐵 -s (𝐵 -s ( 1s /su 𝑚))))) ↔ 𝑧 = ((𝐴 ·s 𝐵) -s (( 1s /su 𝑛) ·s ( 1s /su 𝑚)))))
7050, 69bitrid 283 . . . . . . . . . . . . . . . 16 ((((𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs) ∧ 𝑚 ∈ ℕs) → (∃𝑢(𝑢 = (𝐵 -s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) -s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝐵 -s 𝑢)))) ↔ 𝑧 = ((𝐴 ·s 𝐵) -s (( 1s /su 𝑛) ·s ( 1s /su 𝑚)))))
7170rexbidva 3156 . . . . . . . . . . . . . . 15 (((𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs) → (∃𝑚 ∈ ℕs𝑢(𝑢 = (𝐵 -s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) -s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝐵 -s 𝑢)))) ↔ ∃𝑚 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) -s (( 1s /su 𝑛) ·s ( 1s /su 𝑚)))))
7244, 71bitrid 283 . . . . . . . . . . . . . 14 (((𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs) → (∃𝑡(𝑡 = (𝐴 -s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑡) ·s (𝐵 -s 𝑢)))) ↔ ∃𝑚 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) -s (( 1s /su 𝑛) ·s ( 1s /su 𝑚)))))
7372rexbidva 3156 . . . . . . . . . . . . 13 ((𝐴 No 𝐵 No ) → (∃𝑛 ∈ ℕs𝑡(𝑡 = (𝐴 -s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑡) ·s (𝐵 -s 𝑢)))) ↔ ∃𝑛 ∈ ℕs𝑚 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) -s (( 1s /su 𝑛) ·s ( 1s /su 𝑚)))))
74 remulscllem1 28358 . . . . . . . . . . . . 13 (∃𝑛 ∈ ℕs𝑚 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) -s (( 1s /su 𝑛) ·s ( 1s /su 𝑚))) ↔ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) -s ( 1s /su 𝑝)))
7573, 74bitrdi 287 . . . . . . . . . . . 12 ((𝐴 No 𝐵 No ) → (∃𝑛 ∈ ℕs𝑡(𝑡 = (𝐴 -s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑡) ·s (𝐵 -s 𝑢)))) ↔ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) -s ( 1s /su 𝑝))))
7629, 75bitrid 283 . . . . . . . . . . 11 ((𝐴 No 𝐵 No ) → (∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))}∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑡) ·s (𝐵 -s 𝑢))) ↔ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) -s ( 1s /su 𝑝))))
7776abbidv 2796 . . . . . . . . . 10 ((𝐴 No 𝐵 No ) → {𝑧 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))}∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑡) ·s (𝐵 -s 𝑢)))} = {𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) -s ( 1s /su 𝑝))})
78 r19.41v 3168 . . . . . . . . . . . . . 14 (∃𝑛 ∈ ℕs (𝑡 = (𝐴 +s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝑡 -s 𝐴) ·s (𝑢 -s 𝐵)))) ↔ (∃𝑛 ∈ ℕs 𝑡 = (𝐴 +s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝑡 -s 𝐴) ·s (𝑢 -s 𝐵)))))
7978exbii 1848 . . . . . . . . . . . . 13 (∃𝑡𝑛 ∈ ℕs (𝑡 = (𝐴 +s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝑡 -s 𝐴) ·s (𝑢 -s 𝐵)))) ↔ ∃𝑡(∃𝑛 ∈ ℕs 𝑡 = (𝐴 +s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝑡 -s 𝐴) ·s (𝑢 -s 𝐵)))))
80 rexcom4 3265 . . . . . . . . . . . . 13 (∃𝑛 ∈ ℕs𝑡(𝑡 = (𝐴 +s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝑡 -s 𝐴) ·s (𝑢 -s 𝐵)))) ↔ ∃𝑡𝑛 ∈ ℕs (𝑡 = (𝐴 +s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝑡 -s 𝐴) ·s (𝑢 -s 𝐵)))))
81 eqeq1 2734 . . . . . . . . . . . . . . 15 (𝑥 = 𝑡 → (𝑥 = (𝐴 +s ( 1s /su 𝑛)) ↔ 𝑡 = (𝐴 +s ( 1s /su 𝑛))))
8281rexbidv 3158 . . . . . . . . . . . . . 14 (𝑥 = 𝑡 → (∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛)) ↔ ∃𝑛 ∈ ℕs 𝑡 = (𝐴 +s ( 1s /su 𝑛))))
8382rexab 3669 . . . . . . . . . . . . 13 (∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝑡 -s 𝐴) ·s (𝑢 -s 𝐵))) ↔ ∃𝑡(∃𝑛 ∈ ℕs 𝑡 = (𝐴 +s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝑡 -s 𝐴) ·s (𝑢 -s 𝐵)))))
8479, 80, 833bitr4ri 304 . . . . . . . . . . . 12 (∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝑡 -s 𝐴) ·s (𝑢 -s 𝐵))) ↔ ∃𝑛 ∈ ℕs𝑡(𝑡 = (𝐴 +s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝑡 -s 𝐴) ·s (𝑢 -s 𝐵)))))
85 ovex 7423 . . . . . . . . . . . . . . . . 17 (𝐴 +s ( 1s /su 𝑛)) ∈ V
86 oveq1 7397 . . . . . . . . . . . . . . . . . . . . 21 (𝑡 = (𝐴 +s ( 1s /su 𝑛)) → (𝑡 -s 𝐴) = ((𝐴 +s ( 1s /su 𝑛)) -s 𝐴))
8786oveq1d 7405 . . . . . . . . . . . . . . . . . . . 20 (𝑡 = (𝐴 +s ( 1s /su 𝑛)) → ((𝑡 -s 𝐴) ·s (𝑢 -s 𝐵)) = (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝑢 -s 𝐵)))
8887oveq2d 7406 . . . . . . . . . . . . . . . . . . 19 (𝑡 = (𝐴 +s ( 1s /su 𝑛)) → ((𝐴 ·s 𝐵) -s ((𝑡 -s 𝐴) ·s (𝑢 -s 𝐵))) = ((𝐴 ·s 𝐵) -s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝑢 -s 𝐵))))
8988eqeq2d 2741 . . . . . . . . . . . . . . . . . 18 (𝑡 = (𝐴 +s ( 1s /su 𝑛)) → (𝑧 = ((𝐴 ·s 𝐵) -s ((𝑡 -s 𝐴) ·s (𝑢 -s 𝐵))) ↔ 𝑧 = ((𝐴 ·s 𝐵) -s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝑢 -s 𝐵)))))
9089rexbidv 3158 . . . . . . . . . . . . . . . . 17 (𝑡 = (𝐴 +s ( 1s /su 𝑛)) → (∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝑡 -s 𝐴) ·s (𝑢 -s 𝐵))) ↔ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝑢 -s 𝐵)))))
9185, 90ceqsexv 3501 . . . . . . . . . . . . . . . 16 (∃𝑡(𝑡 = (𝐴 +s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝑡 -s 𝐴) ·s (𝑢 -s 𝐵)))) ↔ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝑢 -s 𝐵))))
92 r19.41v 3168 . . . . . . . . . . . . . . . . . 18 (∃𝑚 ∈ ℕs (𝑢 = (𝐵 +s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) -s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝑢 -s 𝐵)))) ↔ (∃𝑚 ∈ ℕs 𝑢 = (𝐵 +s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) -s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝑢 -s 𝐵)))))
9392exbii 1848 . . . . . . . . . . . . . . . . 17 (∃𝑢𝑚 ∈ ℕs (𝑢 = (𝐵 +s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) -s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝑢 -s 𝐵)))) ↔ ∃𝑢(∃𝑚 ∈ ℕs 𝑢 = (𝐵 +s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) -s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝑢 -s 𝐵)))))
94 rexcom4 3265 . . . . . . . . . . . . . . . . 17 (∃𝑚 ∈ ℕs𝑢(𝑢 = (𝐵 +s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) -s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝑢 -s 𝐵)))) ↔ ∃𝑢𝑚 ∈ ℕs (𝑢 = (𝐵 +s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) -s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝑢 -s 𝐵)))))
95 eqeq1 2734 . . . . . . . . . . . . . . . . . . 19 (𝑦 = 𝑢 → (𝑦 = (𝐵 +s ( 1s /su 𝑚)) ↔ 𝑢 = (𝐵 +s ( 1s /su 𝑚))))
9695rexbidv 3158 . . . . . . . . . . . . . . . . . 18 (𝑦 = 𝑢 → (∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚)) ↔ ∃𝑚 ∈ ℕs 𝑢 = (𝐵 +s ( 1s /su 𝑚))))
9796rexab 3669 . . . . . . . . . . . . . . . . 17 (∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝑢 -s 𝐵))) ↔ ∃𝑢(∃𝑚 ∈ ℕs 𝑢 = (𝐵 +s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) -s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝑢 -s 𝐵)))))
9893, 94, 973bitr4ri 304 . . . . . . . . . . . . . . . 16 (∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝑢 -s 𝐵))) ↔ ∃𝑚 ∈ ℕs𝑢(𝑢 = (𝐵 +s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) -s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝑢 -s 𝐵)))))
9991, 98bitri 275 . . . . . . . . . . . . . . 15 (∃𝑡(𝑡 = (𝐴 +s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝑡 -s 𝐴) ·s (𝑢 -s 𝐵)))) ↔ ∃𝑚 ∈ ℕs𝑢(𝑢 = (𝐵 +s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) -s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝑢 -s 𝐵)))))
100 ovex 7423 . . . . . . . . . . . . . . . . . 18 (𝐵 +s ( 1s /su 𝑚)) ∈ V
101 oveq1 7397 . . . . . . . . . . . . . . . . . . . . 21 (𝑢 = (𝐵 +s ( 1s /su 𝑚)) → (𝑢 -s 𝐵) = ((𝐵 +s ( 1s /su 𝑚)) -s 𝐵))
102101oveq2d 7406 . . . . . . . . . . . . . . . . . . . 20 (𝑢 = (𝐵 +s ( 1s /su 𝑚)) → (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝑢 -s 𝐵)) = (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s ((𝐵 +s ( 1s /su 𝑚)) -s 𝐵)))
103102oveq2d 7406 . . . . . . . . . . . . . . . . . . 19 (𝑢 = (𝐵 +s ( 1s /su 𝑚)) → ((𝐴 ·s 𝐵) -s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝑢 -s 𝐵))) = ((𝐴 ·s 𝐵) -s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s ((𝐵 +s ( 1s /su 𝑚)) -s 𝐵))))
104103eqeq2d 2741 . . . . . . . . . . . . . . . . . 18 (𝑢 = (𝐵 +s ( 1s /su 𝑚)) → (𝑧 = ((𝐴 ·s 𝐵) -s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝑢 -s 𝐵))) ↔ 𝑧 = ((𝐴 ·s 𝐵) -s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s ((𝐵 +s ( 1s /su 𝑚)) -s 𝐵)))))
105100, 104ceqsexv 3501 . . . . . . . . . . . . . . . . 17 (∃𝑢(𝑢 = (𝐵 +s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) -s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝑢 -s 𝐵)))) ↔ 𝑧 = ((𝐴 ·s 𝐵) -s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s ((𝐵 +s ( 1s /su 𝑚)) -s 𝐵))))
106 pncan2s 27985 . . . . . . . . . . . . . . . . . . . . 21 ((𝐴 No ∧ ( 1s /su 𝑛) ∈ No ) → ((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) = ( 1s /su 𝑛))
10751, 58, 106syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs) ∧ 𝑚 ∈ ℕs) → ((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) = ( 1s /su 𝑛))
108 pncan2s 27985 . . . . . . . . . . . . . . . . . . . . 21 ((𝐵 No ∧ ( 1s /su 𝑚) ∈ No ) → ((𝐵 +s ( 1s /su 𝑚)) -s 𝐵) = ( 1s /su 𝑚))
10960, 65, 108syl2anc 584 . . . . . . . . . . . . . . . . . . . 20 ((((𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs) ∧ 𝑚 ∈ ℕs) → ((𝐵 +s ( 1s /su 𝑚)) -s 𝐵) = ( 1s /su 𝑚))
110107, 109oveq12d 7408 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs) ∧ 𝑚 ∈ ℕs) → (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s ((𝐵 +s ( 1s /su 𝑚)) -s 𝐵)) = (( 1s /su 𝑛) ·s ( 1s /su 𝑚)))
111110oveq2d 7406 . . . . . . . . . . . . . . . . . 18 ((((𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs) ∧ 𝑚 ∈ ℕs) → ((𝐴 ·s 𝐵) -s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s ((𝐵 +s ( 1s /su 𝑚)) -s 𝐵))) = ((𝐴 ·s 𝐵) -s (( 1s /su 𝑛) ·s ( 1s /su 𝑚))))
112111eqeq2d 2741 . . . . . . . . . . . . . . . . 17 ((((𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs) ∧ 𝑚 ∈ ℕs) → (𝑧 = ((𝐴 ·s 𝐵) -s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s ((𝐵 +s ( 1s /su 𝑚)) -s 𝐵))) ↔ 𝑧 = ((𝐴 ·s 𝐵) -s (( 1s /su 𝑛) ·s ( 1s /su 𝑚)))))
113105, 112bitrid 283 . . . . . . . . . . . . . . . 16 ((((𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs) ∧ 𝑚 ∈ ℕs) → (∃𝑢(𝑢 = (𝐵 +s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) -s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝑢 -s 𝐵)))) ↔ 𝑧 = ((𝐴 ·s 𝐵) -s (( 1s /su 𝑛) ·s ( 1s /su 𝑚)))))
114113rexbidva 3156 . . . . . . . . . . . . . . 15 (((𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs) → (∃𝑚 ∈ ℕs𝑢(𝑢 = (𝐵 +s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) -s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝑢 -s 𝐵)))) ↔ ∃𝑚 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) -s (( 1s /su 𝑛) ·s ( 1s /su 𝑚)))))
11599, 114bitrid 283 . . . . . . . . . . . . . 14 (((𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs) → (∃𝑡(𝑡 = (𝐴 +s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝑡 -s 𝐴) ·s (𝑢 -s 𝐵)))) ↔ ∃𝑚 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) -s (( 1s /su 𝑛) ·s ( 1s /su 𝑚)))))
116115rexbidva 3156 . . . . . . . . . . . . 13 ((𝐴 No 𝐵 No ) → (∃𝑛 ∈ ℕs𝑡(𝑡 = (𝐴 +s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝑡 -s 𝐴) ·s (𝑢 -s 𝐵)))) ↔ ∃𝑛 ∈ ℕs𝑚 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) -s (( 1s /su 𝑛) ·s ( 1s /su 𝑚)))))
117116, 74bitrdi 287 . . . . . . . . . . . 12 ((𝐴 No 𝐵 No ) → (∃𝑛 ∈ ℕs𝑡(𝑡 = (𝐴 +s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝑡 -s 𝐴) ·s (𝑢 -s 𝐵)))) ↔ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) -s ( 1s /su 𝑝))))
11884, 117bitrid 283 . . . . . . . . . . 11 ((𝐴 No 𝐵 No ) → (∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝑡 -s 𝐴) ·s (𝑢 -s 𝐵))) ↔ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) -s ( 1s /su 𝑝))))
119118abbidv 2796 . . . . . . . . . 10 ((𝐴 No 𝐵 No ) → {𝑧 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝑡 -s 𝐴) ·s (𝑢 -s 𝐵)))} = {𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) -s ( 1s /su 𝑝))})
12077, 119uneq12d 4135 . . . . . . . . 9 ((𝐴 No 𝐵 No ) → ({𝑧 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))}∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑡) ·s (𝐵 -s 𝑢)))} ∪ {𝑧 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝑡 -s 𝐴) ·s (𝑢 -s 𝐵)))}) = ({𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) -s ( 1s /su 𝑝))} ∪ {𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) -s ( 1s /su 𝑝))}))
121 unidm 4123 . . . . . . . . 9 ({𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) -s ( 1s /su 𝑝))} ∪ {𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) -s ( 1s /su 𝑝))}) = {𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) -s ( 1s /su 𝑝))}
122120, 121eqtrdi 2781 . . . . . . . 8 ((𝐴 No 𝐵 No ) → ({𝑧 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))}∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑡) ·s (𝐵 -s 𝑢)))} ∪ {𝑧 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝑡 -s 𝐴) ·s (𝑢 -s 𝐵)))}) = {𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) -s ( 1s /su 𝑝))})
123 r19.41v 3168 . . . . . . . . . . . . . 14 (∃𝑛 ∈ ℕs (𝑡 = (𝐴 -s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑢 -s 𝐵)))) ↔ (∃𝑛 ∈ ℕs 𝑡 = (𝐴 -s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑢 -s 𝐵)))))
124123exbii 1848 . . . . . . . . . . . . 13 (∃𝑡𝑛 ∈ ℕs (𝑡 = (𝐴 -s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑢 -s 𝐵)))) ↔ ∃𝑡(∃𝑛 ∈ ℕs 𝑡 = (𝐴 -s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑢 -s 𝐵)))))
125 rexcom4 3265 . . . . . . . . . . . . 13 (∃𝑛 ∈ ℕs𝑡(𝑡 = (𝐴 -s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑢 -s 𝐵)))) ↔ ∃𝑡𝑛 ∈ ℕs (𝑡 = (𝐴 -s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑢 -s 𝐵)))))
12627rexab 3669 . . . . . . . . . . . . 13 (∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))}∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑢 -s 𝐵))) ↔ ∃𝑡(∃𝑛 ∈ ℕs 𝑡 = (𝐴 -s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑢 -s 𝐵)))))
127124, 125, 1263bitr4ri 304 . . . . . . . . . . . 12 (∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))}∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑢 -s 𝐵))) ↔ ∃𝑛 ∈ ℕs𝑡(𝑡 = (𝐴 -s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑢 -s 𝐵)))))
12831oveq1d 7405 . . . . . . . . . . . . . . . . . . . 20 (𝑡 = (𝐴 -s ( 1s /su 𝑛)) → ((𝐴 -s 𝑡) ·s (𝑢 -s 𝐵)) = ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝑢 -s 𝐵)))
129128oveq2d 7406 . . . . . . . . . . . . . . . . . . 19 (𝑡 = (𝐴 -s ( 1s /su 𝑛)) → ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑢 -s 𝐵))) = ((𝐴 ·s 𝐵) +s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝑢 -s 𝐵))))
130129eqeq2d 2741 . . . . . . . . . . . . . . . . . 18 (𝑡 = (𝐴 -s ( 1s /su 𝑛)) → (𝑧 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑢 -s 𝐵))) ↔ 𝑧 = ((𝐴 ·s 𝐵) +s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝑢 -s 𝐵)))))
131130rexbidv 3158 . . . . . . . . . . . . . . . . 17 (𝑡 = (𝐴 -s ( 1s /su 𝑛)) → (∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑢 -s 𝐵))) ↔ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝑢 -s 𝐵)))))
13230, 131ceqsexv 3501 . . . . . . . . . . . . . . . 16 (∃𝑡(𝑡 = (𝐴 -s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑢 -s 𝐵)))) ↔ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝑢 -s 𝐵))))
133 r19.41v 3168 . . . . . . . . . . . . . . . . . 18 (∃𝑚 ∈ ℕs (𝑢 = (𝐵 +s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) +s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝑢 -s 𝐵)))) ↔ (∃𝑚 ∈ ℕs 𝑢 = (𝐵 +s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) +s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝑢 -s 𝐵)))))
134133exbii 1848 . . . . . . . . . . . . . . . . 17 (∃𝑢𝑚 ∈ ℕs (𝑢 = (𝐵 +s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) +s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝑢 -s 𝐵)))) ↔ ∃𝑢(∃𝑚 ∈ ℕs 𝑢 = (𝐵 +s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) +s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝑢 -s 𝐵)))))
135 rexcom4 3265 . . . . . . . . . . . . . . . . 17 (∃𝑚 ∈ ℕs𝑢(𝑢 = (𝐵 +s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) +s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝑢 -s 𝐵)))) ↔ ∃𝑢𝑚 ∈ ℕs (𝑢 = (𝐵 +s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) +s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝑢 -s 𝐵)))))
13696rexab 3669 . . . . . . . . . . . . . . . . 17 (∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝑢 -s 𝐵))) ↔ ∃𝑢(∃𝑚 ∈ ℕs 𝑢 = (𝐵 +s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) +s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝑢 -s 𝐵)))))
137134, 135, 1363bitr4ri 304 . . . . . . . . . . . . . . . 16 (∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝑢 -s 𝐵))) ↔ ∃𝑚 ∈ ℕs𝑢(𝑢 = (𝐵 +s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) +s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝑢 -s 𝐵)))))
138132, 137bitri 275 . . . . . . . . . . . . . . 15 (∃𝑡(𝑡 = (𝐴 -s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑢 -s 𝐵)))) ↔ ∃𝑚 ∈ ℕs𝑢(𝑢 = (𝐵 +s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) +s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝑢 -s 𝐵)))))
139101oveq2d 7406 . . . . . . . . . . . . . . . . . . . 20 (𝑢 = (𝐵 +s ( 1s /su 𝑚)) → ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝑢 -s 𝐵)) = ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s ((𝐵 +s ( 1s /su 𝑚)) -s 𝐵)))
140139oveq2d 7406 . . . . . . . . . . . . . . . . . . 19 (𝑢 = (𝐵 +s ( 1s /su 𝑚)) → ((𝐴 ·s 𝐵) +s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝑢 -s 𝐵))) = ((𝐴 ·s 𝐵) +s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s ((𝐵 +s ( 1s /su 𝑚)) -s 𝐵))))
141140eqeq2d 2741 . . . . . . . . . . . . . . . . . 18 (𝑢 = (𝐵 +s ( 1s /su 𝑚)) → (𝑧 = ((𝐴 ·s 𝐵) +s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝑢 -s 𝐵))) ↔ 𝑧 = ((𝐴 ·s 𝐵) +s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s ((𝐵 +s ( 1s /su 𝑚)) -s 𝐵)))))
142100, 141ceqsexv 3501 . . . . . . . . . . . . . . . . 17 (∃𝑢(𝑢 = (𝐵 +s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) +s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝑢 -s 𝐵)))) ↔ 𝑧 = ((𝐴 ·s 𝐵) +s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s ((𝐵 +s ( 1s /su 𝑚)) -s 𝐵))))
14359, 109oveq12d 7408 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs) ∧ 𝑚 ∈ ℕs) → ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s ((𝐵 +s ( 1s /su 𝑚)) -s 𝐵)) = (( 1s /su 𝑛) ·s ( 1s /su 𝑚)))
144143oveq2d 7406 . . . . . . . . . . . . . . . . . 18 ((((𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs) ∧ 𝑚 ∈ ℕs) → ((𝐴 ·s 𝐵) +s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s ((𝐵 +s ( 1s /su 𝑚)) -s 𝐵))) = ((𝐴 ·s 𝐵) +s (( 1s /su 𝑛) ·s ( 1s /su 𝑚))))
145144eqeq2d 2741 . . . . . . . . . . . . . . . . 17 ((((𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs) ∧ 𝑚 ∈ ℕs) → (𝑧 = ((𝐴 ·s 𝐵) +s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s ((𝐵 +s ( 1s /su 𝑚)) -s 𝐵))) ↔ 𝑧 = ((𝐴 ·s 𝐵) +s (( 1s /su 𝑛) ·s ( 1s /su 𝑚)))))
146142, 145bitrid 283 . . . . . . . . . . . . . . . 16 ((((𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs) ∧ 𝑚 ∈ ℕs) → (∃𝑢(𝑢 = (𝐵 +s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) +s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝑢 -s 𝐵)))) ↔ 𝑧 = ((𝐴 ·s 𝐵) +s (( 1s /su 𝑛) ·s ( 1s /su 𝑚)))))
147146rexbidva 3156 . . . . . . . . . . . . . . 15 (((𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs) → (∃𝑚 ∈ ℕs𝑢(𝑢 = (𝐵 +s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) +s ((𝐴 -s (𝐴 -s ( 1s /su 𝑛))) ·s (𝑢 -s 𝐵)))) ↔ ∃𝑚 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) +s (( 1s /su 𝑛) ·s ( 1s /su 𝑚)))))
148138, 147bitrid 283 . . . . . . . . . . . . . 14 (((𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs) → (∃𝑡(𝑡 = (𝐴 -s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑢 -s 𝐵)))) ↔ ∃𝑚 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) +s (( 1s /su 𝑛) ·s ( 1s /su 𝑚)))))
149148rexbidva 3156 . . . . . . . . . . . . 13 ((𝐴 No 𝐵 No ) → (∃𝑛 ∈ ℕs𝑡(𝑡 = (𝐴 -s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑢 -s 𝐵)))) ↔ ∃𝑛 ∈ ℕs𝑚 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) +s (( 1s /su 𝑛) ·s ( 1s /su 𝑚)))))
150 remulscllem1 28358 . . . . . . . . . . . . 13 (∃𝑛 ∈ ℕs𝑚 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) +s (( 1s /su 𝑛) ·s ( 1s /su 𝑚))) ↔ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) +s ( 1s /su 𝑝)))
151149, 150bitrdi 287 . . . . . . . . . . . 12 ((𝐴 No 𝐵 No ) → (∃𝑛 ∈ ℕs𝑡(𝑡 = (𝐴 -s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑢 -s 𝐵)))) ↔ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) +s ( 1s /su 𝑝))))
152127, 151bitrid 283 . . . . . . . . . . 11 ((𝐴 No 𝐵 No ) → (∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))}∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑢 -s 𝐵))) ↔ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) +s ( 1s /su 𝑝))))
153152abbidv 2796 . . . . . . . . . 10 ((𝐴 No 𝐵 No ) → {𝑧 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))}∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑢 -s 𝐵)))} = {𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) +s ( 1s /su 𝑝))})
154 r19.41v 3168 . . . . . . . . . . . . . 14 (∃𝑛 ∈ ℕs (𝑡 = (𝐴 +s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝑡 -s 𝐴) ·s (𝐵 -s 𝑢)))) ↔ (∃𝑛 ∈ ℕs 𝑡 = (𝐴 +s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝑡 -s 𝐴) ·s (𝐵 -s 𝑢)))))
155154exbii 1848 . . . . . . . . . . . . 13 (∃𝑡𝑛 ∈ ℕs (𝑡 = (𝐴 +s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝑡 -s 𝐴) ·s (𝐵 -s 𝑢)))) ↔ ∃𝑡(∃𝑛 ∈ ℕs 𝑡 = (𝐴 +s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝑡 -s 𝐴) ·s (𝐵 -s 𝑢)))))
156 rexcom4 3265 . . . . . . . . . . . . 13 (∃𝑛 ∈ ℕs𝑡(𝑡 = (𝐴 +s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝑡 -s 𝐴) ·s (𝐵 -s 𝑢)))) ↔ ∃𝑡𝑛 ∈ ℕs (𝑡 = (𝐴 +s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝑡 -s 𝐴) ·s (𝐵 -s 𝑢)))))
15782rexab 3669 . . . . . . . . . . . . 13 (∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝑡 -s 𝐴) ·s (𝐵 -s 𝑢))) ↔ ∃𝑡(∃𝑛 ∈ ℕs 𝑡 = (𝐴 +s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝑡 -s 𝐴) ·s (𝐵 -s 𝑢)))))
158155, 156, 1573bitr4ri 304 . . . . . . . . . . . 12 (∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝑡 -s 𝐴) ·s (𝐵 -s 𝑢))) ↔ ∃𝑛 ∈ ℕs𝑡(𝑡 = (𝐴 +s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝑡 -s 𝐴) ·s (𝐵 -s 𝑢)))))
15986oveq1d 7405 . . . . . . . . . . . . . . . . . . . 20 (𝑡 = (𝐴 +s ( 1s /su 𝑛)) → ((𝑡 -s 𝐴) ·s (𝐵 -s 𝑢)) = (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝐵 -s 𝑢)))
160159oveq2d 7406 . . . . . . . . . . . . . . . . . . 19 (𝑡 = (𝐴 +s ( 1s /su 𝑛)) → ((𝐴 ·s 𝐵) +s ((𝑡 -s 𝐴) ·s (𝐵 -s 𝑢))) = ((𝐴 ·s 𝐵) +s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝐵 -s 𝑢))))
161160eqeq2d 2741 . . . . . . . . . . . . . . . . . 18 (𝑡 = (𝐴 +s ( 1s /su 𝑛)) → (𝑧 = ((𝐴 ·s 𝐵) +s ((𝑡 -s 𝐴) ·s (𝐵 -s 𝑢))) ↔ 𝑧 = ((𝐴 ·s 𝐵) +s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝐵 -s 𝑢)))))
162161rexbidv 3158 . . . . . . . . . . . . . . . . 17 (𝑡 = (𝐴 +s ( 1s /su 𝑛)) → (∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝑡 -s 𝐴) ·s (𝐵 -s 𝑢))) ↔ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝐵 -s 𝑢)))))
16385, 162ceqsexv 3501 . . . . . . . . . . . . . . . 16 (∃𝑡(𝑡 = (𝐴 +s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝑡 -s 𝐴) ·s (𝐵 -s 𝑢)))) ↔ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝐵 -s 𝑢))))
164 r19.41v 3168 . . . . . . . . . . . . . . . . . 18 (∃𝑚 ∈ ℕs (𝑢 = (𝐵 -s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) +s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝐵 -s 𝑢)))) ↔ (∃𝑚 ∈ ℕs 𝑢 = (𝐵 -s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) +s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝐵 -s 𝑢)))))
165164exbii 1848 . . . . . . . . . . . . . . . . 17 (∃𝑢𝑚 ∈ ℕs (𝑢 = (𝐵 -s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) +s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝐵 -s 𝑢)))) ↔ ∃𝑢(∃𝑚 ∈ ℕs 𝑢 = (𝐵 -s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) +s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝐵 -s 𝑢)))))
166 rexcom4 3265 . . . . . . . . . . . . . . . . 17 (∃𝑚 ∈ ℕs𝑢(𝑢 = (𝐵 -s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) +s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝐵 -s 𝑢)))) ↔ ∃𝑢𝑚 ∈ ℕs (𝑢 = (𝐵 -s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) +s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝐵 -s 𝑢)))))
16741rexab 3669 . . . . . . . . . . . . . . . . 17 (∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝐵 -s 𝑢))) ↔ ∃𝑢(∃𝑚 ∈ ℕs 𝑢 = (𝐵 -s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) +s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝐵 -s 𝑢)))))
168165, 166, 1673bitr4ri 304 . . . . . . . . . . . . . . . 16 (∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝐵 -s 𝑢))) ↔ ∃𝑚 ∈ ℕs𝑢(𝑢 = (𝐵 -s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) +s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝐵 -s 𝑢)))))
169163, 168bitri 275 . . . . . . . . . . . . . . 15 (∃𝑡(𝑡 = (𝐴 +s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝑡 -s 𝐴) ·s (𝐵 -s 𝑢)))) ↔ ∃𝑚 ∈ ℕs𝑢(𝑢 = (𝐵 -s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) +s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝐵 -s 𝑢)))))
17046oveq2d 7406 . . . . . . . . . . . . . . . . . . . 20 (𝑢 = (𝐵 -s ( 1s /su 𝑚)) → (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝐵 -s 𝑢)) = (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝐵 -s (𝐵 -s ( 1s /su 𝑚)))))
171170oveq2d 7406 . . . . . . . . . . . . . . . . . . 19 (𝑢 = (𝐵 -s ( 1s /su 𝑚)) → ((𝐴 ·s 𝐵) +s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝐵 -s 𝑢))) = ((𝐴 ·s 𝐵) +s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝐵 -s (𝐵 -s ( 1s /su 𝑚))))))
172171eqeq2d 2741 . . . . . . . . . . . . . . . . . 18 (𝑢 = (𝐵 -s ( 1s /su 𝑚)) → (𝑧 = ((𝐴 ·s 𝐵) +s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝐵 -s 𝑢))) ↔ 𝑧 = ((𝐴 ·s 𝐵) +s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝐵 -s (𝐵 -s ( 1s /su 𝑚)))))))
17345, 172ceqsexv 3501 . . . . . . . . . . . . . . . . 17 (∃𝑢(𝑢 = (𝐵 -s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) +s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝐵 -s 𝑢)))) ↔ 𝑧 = ((𝐴 ·s 𝐵) +s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝐵 -s (𝐵 -s ( 1s /su 𝑚))))))
174107, 66oveq12d 7408 . . . . . . . . . . . . . . . . . . 19 ((((𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs) ∧ 𝑚 ∈ ℕs) → (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝐵 -s (𝐵 -s ( 1s /su 𝑚)))) = (( 1s /su 𝑛) ·s ( 1s /su 𝑚)))
175174oveq2d 7406 . . . . . . . . . . . . . . . . . 18 ((((𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs) ∧ 𝑚 ∈ ℕs) → ((𝐴 ·s 𝐵) +s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝐵 -s (𝐵 -s ( 1s /su 𝑚))))) = ((𝐴 ·s 𝐵) +s (( 1s /su 𝑛) ·s ( 1s /su 𝑚))))
176175eqeq2d 2741 . . . . . . . . . . . . . . . . 17 ((((𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs) ∧ 𝑚 ∈ ℕs) → (𝑧 = ((𝐴 ·s 𝐵) +s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝐵 -s (𝐵 -s ( 1s /su 𝑚))))) ↔ 𝑧 = ((𝐴 ·s 𝐵) +s (( 1s /su 𝑛) ·s ( 1s /su 𝑚)))))
177173, 176bitrid 283 . . . . . . . . . . . . . . . 16 ((((𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs) ∧ 𝑚 ∈ ℕs) → (∃𝑢(𝑢 = (𝐵 -s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) +s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝐵 -s 𝑢)))) ↔ 𝑧 = ((𝐴 ·s 𝐵) +s (( 1s /su 𝑛) ·s ( 1s /su 𝑚)))))
178177rexbidva 3156 . . . . . . . . . . . . . . 15 (((𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs) → (∃𝑚 ∈ ℕs𝑢(𝑢 = (𝐵 -s ( 1s /su 𝑚)) ∧ 𝑧 = ((𝐴 ·s 𝐵) +s (((𝐴 +s ( 1s /su 𝑛)) -s 𝐴) ·s (𝐵 -s 𝑢)))) ↔ ∃𝑚 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) +s (( 1s /su 𝑛) ·s ( 1s /su 𝑚)))))
179169, 178bitrid 283 . . . . . . . . . . . . . 14 (((𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs) → (∃𝑡(𝑡 = (𝐴 +s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝑡 -s 𝐴) ·s (𝐵 -s 𝑢)))) ↔ ∃𝑚 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) +s (( 1s /su 𝑛) ·s ( 1s /su 𝑚)))))
180179rexbidva 3156 . . . . . . . . . . . . 13 ((𝐴 No 𝐵 No ) → (∃𝑛 ∈ ℕs𝑡(𝑡 = (𝐴 +s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝑡 -s 𝐴) ·s (𝐵 -s 𝑢)))) ↔ ∃𝑛 ∈ ℕs𝑚 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) +s (( 1s /su 𝑛) ·s ( 1s /su 𝑚)))))
181180, 150bitrdi 287 . . . . . . . . . . . 12 ((𝐴 No 𝐵 No ) → (∃𝑛 ∈ ℕs𝑡(𝑡 = (𝐴 +s ( 1s /su 𝑛)) ∧ ∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝑡 -s 𝐴) ·s (𝐵 -s 𝑢)))) ↔ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) +s ( 1s /su 𝑝))))
182158, 181bitrid 283 . . . . . . . . . . 11 ((𝐴 No 𝐵 No ) → (∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝑡 -s 𝐴) ·s (𝐵 -s 𝑢))) ↔ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) +s ( 1s /su 𝑝))))
183182abbidv 2796 . . . . . . . . . 10 ((𝐴 No 𝐵 No ) → {𝑧 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝑡 -s 𝐴) ·s (𝐵 -s 𝑢)))} = {𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) +s ( 1s /su 𝑝))})
184153, 183uneq12d 4135 . . . . . . . . 9 ((𝐴 No 𝐵 No ) → ({𝑧 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))}∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑢 -s 𝐵)))} ∪ {𝑧 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝑡 -s 𝐴) ·s (𝐵 -s 𝑢)))}) = ({𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) +s ( 1s /su 𝑝))} ∪ {𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) +s ( 1s /su 𝑝))}))
185 unidm 4123 . . . . . . . . 9 ({𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) +s ( 1s /su 𝑝))} ∪ {𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) +s ( 1s /su 𝑝))}) = {𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) +s ( 1s /su 𝑝))}
186184, 185eqtrdi 2781 . . . . . . . 8 ((𝐴 No 𝐵 No ) → ({𝑧 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))}∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑢 -s 𝐵)))} ∪ {𝑧 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝑡 -s 𝐴) ·s (𝐵 -s 𝑢)))}) = {𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) +s ( 1s /su 𝑝))})
187122, 186oveq12d 7408 . . . . . . 7 ((𝐴 No 𝐵 No ) → (({𝑧 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))}∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑡) ·s (𝐵 -s 𝑢)))} ∪ {𝑧 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝑡 -s 𝐴) ·s (𝑢 -s 𝐵)))}) |s ({𝑧 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))}∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑢 -s 𝐵)))} ∪ {𝑧 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝑡 -s 𝐴) ·s (𝐵 -s 𝑢)))})) = ({𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) -s ( 1s /su 𝑝))} |s {𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) +s ( 1s /su 𝑝))}))
188187adantr 480 . . . . . 6 (((𝐴 No 𝐵 No ) ∧ (𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}) ∧ 𝐵 = ({𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))} |s {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}))) → (({𝑧 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))}∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝐴 -s 𝑡) ·s (𝐵 -s 𝑢)))} ∪ {𝑧 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) -s ((𝑡 -s 𝐴) ·s (𝑢 -s 𝐵)))}) |s ({𝑧 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))}∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝐴 -s 𝑡) ·s (𝑢 -s 𝐵)))} ∪ {𝑧 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}∃𝑢 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = ((𝐴 ·s 𝐵) +s ((𝑡 -s 𝐴) ·s (𝐵 -s 𝑢)))})) = ({𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) -s ( 1s /su 𝑝))} |s {𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) +s ( 1s /su 𝑝))}))
18922, 188eqtrd 2765 . . . . 5 (((𝐴 No 𝐵 No ) ∧ (𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}) ∧ 𝐵 = ({𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))} |s {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}))) → (𝐴 ·s 𝐵) = ({𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) -s ( 1s /su 𝑝))} |s {𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) +s ( 1s /su 𝑝))}))
19014, 189sylan2 593 . . . 4 (((𝐴 No 𝐵 No ) ∧ ((∃𝑛 ∈ ℕs (( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ 𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))})) ∧ (∃𝑚 ∈ ℕs (( -us𝑚) <s 𝐵𝐵 <s 𝑚) ∧ 𝐵 = ({𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))} |s {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))})))) → (𝐴 ·s 𝐵) = ({𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) -s ( 1s /su 𝑝))} |s {𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) +s ( 1s /su 𝑝))}))
1912, 11, 190jca32 515 . . 3 (((𝐴 No 𝐵 No ) ∧ ((∃𝑛 ∈ ℕs (( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ 𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))})) ∧ (∃𝑚 ∈ ℕs (( -us𝑚) <s 𝐵𝐵 <s 𝑚) ∧ 𝐵 = ({𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))} |s {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))})))) → ((𝐴 ·s 𝐵) ∈ No ∧ (∃𝑝 ∈ ℕs (( -us𝑝) <s (𝐴 ·s 𝐵) ∧ (𝐴 ·s 𝐵) <s 𝑝) ∧ (𝐴 ·s 𝐵) = ({𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) -s ( 1s /su 𝑝))} |s {𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) +s ( 1s /su 𝑝))}))))
192191an4s 660 . 2 (((𝐴 No ∧ (∃𝑛 ∈ ℕs (( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ 𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}))) ∧ (𝐵 No ∧ (∃𝑚 ∈ ℕs (( -us𝑚) <s 𝐵𝐵 <s 𝑚) ∧ 𝐵 = ({𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))} |s {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))})))) → ((𝐴 ·s 𝐵) ∈ No ∧ (∃𝑝 ∈ ℕs (( -us𝑝) <s (𝐴 ·s 𝐵) ∧ (𝐴 ·s 𝐵) <s 𝑝) ∧ (𝐴 ·s 𝐵) = ({𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) -s ( 1s /su 𝑝))} |s {𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) +s ( 1s /su 𝑝))}))))
193 elreno 28353 . . 3 (𝐴 ∈ ℝs ↔ (𝐴 No ∧ (∃𝑛 ∈ ℕs (( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ 𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}))))
194 elreno 28353 . . 3 (𝐵 ∈ ℝs ↔ (𝐵 No ∧ (∃𝑚 ∈ ℕs (( -us𝑚) <s 𝐵𝐵 <s 𝑚) ∧ 𝐵 = ({𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))} |s {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}))))
195193, 194anbi12i 628 . 2 ((𝐴 ∈ ℝs𝐵 ∈ ℝs) ↔ ((𝐴 No ∧ (∃𝑛 ∈ ℕs (( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ 𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}))) ∧ (𝐵 No ∧ (∃𝑚 ∈ ℕs (( -us𝑚) <s 𝐵𝐵 <s 𝑚) ∧ 𝐵 = ({𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))} |s {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))})))))
196 elreno 28353 . 2 ((𝐴 ·s 𝐵) ∈ ℝs ↔ ((𝐴 ·s 𝐵) ∈ No ∧ (∃𝑝 ∈ ℕs (( -us𝑝) <s (𝐴 ·s 𝐵) ∧ (𝐴 ·s 𝐵) <s 𝑝) ∧ (𝐴 ·s 𝐵) = ({𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) -s ( 1s /su 𝑝))} |s {𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 ·s 𝐵) +s ( 1s /su 𝑝))}))))
197192, 195, 1963imtr4i 292 1 ((𝐴 ∈ ℝs𝐵 ∈ ℝs) → (𝐴 ·s 𝐵) ∈ ℝs)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  {cab 2708  wne 2926  wrex 3054  cun 3915   class class class wbr 5110  cfv 6514  (class class class)co 7390   No csur 27558   <s cslt 27559   <<s csslt 27699   |s cscut 27701   0s c0s 27741   1s c1s 27742   +s cadds 27873   -us cnegs 27932   -s csubs 27933   ·s cmuls 28016   /su cdivs 28097  scnns 28214  screno 28351
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-dc 10406
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-ot 4601  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-oadd 8441  df-nadd 8633  df-no 27561  df-slt 27562  df-bday 27563  df-sle 27664  df-sslt 27700  df-scut 27702  df-0s 27743  df-1s 27744  df-made 27762  df-old 27763  df-left 27765  df-right 27766  df-norec 27852  df-norec2 27863  df-adds 27874  df-negs 27934  df-subs 27935  df-muls 28017  df-divs 28098  df-abss 28147  df-n0s 28215  df-nns 28216  df-reno 28352
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator