MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  renegscl Structured version   Visualization version   GIF version

Theorem renegscl 28298
Description: The surreal reals are closed under negation. Part of theorem 13(ii) of [Conway] p. 24. (Contributed by Scott Fenton, 15-Apr-2025.)
Assertion
Ref Expression
renegscl (𝐴 ∈ ℝs → ( -us𝐴) ∈ ℝs)

Proof of Theorem renegscl
Dummy variables 𝑛 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 negscl 27994 . . . 4 (𝐴 No → ( -us𝐴) ∈ No )
21adantr 479 . . 3 ((𝐴 No ∧ (∃𝑛 ∈ ℕs (( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ 𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}))) → ( -us𝐴) ∈ No )
3 nnsno 28246 . . . . . . . . . . . 12 (𝑛 ∈ ℕs𝑛 No )
43adantl 480 . . . . . . . . . . 11 ((𝐴 No 𝑛 ∈ ℕs) → 𝑛 No )
54negscld 27995 . . . . . . . . . 10 ((𝐴 No 𝑛 ∈ ℕs) → ( -us𝑛) ∈ No )
6 simpl 481 . . . . . . . . . 10 ((𝐴 No 𝑛 ∈ ℕs) → 𝐴 No )
75, 6sltnegd 28005 . . . . . . . . 9 ((𝐴 No 𝑛 ∈ ℕs) → (( -us𝑛) <s 𝐴 ↔ ( -us𝐴) <s ( -us ‘( -us𝑛))))
8 negnegs 28002 . . . . . . . . . . 11 (𝑛 No → ( -us ‘( -us𝑛)) = 𝑛)
94, 8syl 17 . . . . . . . . . 10 ((𝐴 No 𝑛 ∈ ℕs) → ( -us ‘( -us𝑛)) = 𝑛)
109breq2d 5161 . . . . . . . . 9 ((𝐴 No 𝑛 ∈ ℕs) → (( -us𝐴) <s ( -us ‘( -us𝑛)) ↔ ( -us𝐴) <s 𝑛))
117, 10bitrd 278 . . . . . . . 8 ((𝐴 No 𝑛 ∈ ℕs) → (( -us𝑛) <s 𝐴 ↔ ( -us𝐴) <s 𝑛))
126, 4sltnegd 28005 . . . . . . . 8 ((𝐴 No 𝑛 ∈ ℕs) → (𝐴 <s 𝑛 ↔ ( -us𝑛) <s ( -us𝐴)))
1311, 12anbi12d 630 . . . . . . 7 ((𝐴 No 𝑛 ∈ ℕs) → ((( -us𝑛) <s 𝐴𝐴 <s 𝑛) ↔ (( -us𝐴) <s 𝑛 ∧ ( -us𝑛) <s ( -us𝐴))))
1413biancomd 462 . . . . . 6 ((𝐴 No 𝑛 ∈ ℕs) → ((( -us𝑛) <s 𝐴𝐴 <s 𝑛) ↔ (( -us𝑛) <s ( -us𝐴) ∧ ( -us𝐴) <s 𝑛)))
1514rexbidva 3166 . . . . 5 (𝐴 No → (∃𝑛 ∈ ℕs (( -us𝑛) <s 𝐴𝐴 <s 𝑛) ↔ ∃𝑛 ∈ ℕs (( -us𝑛) <s ( -us𝐴) ∧ ( -us𝐴) <s 𝑛)))
1615biimpa 475 . . . 4 ((𝐴 No ∧ ∃𝑛 ∈ ℕs (( -us𝑛) <s 𝐴𝐴 <s 𝑛)) → ∃𝑛 ∈ ℕs (( -us𝑛) <s ( -us𝐴) ∧ ( -us𝐴) <s 𝑛))
1716adantrr 715 . . 3 ((𝐴 No ∧ (∃𝑛 ∈ ℕs (( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ 𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}))) → ∃𝑛 ∈ ℕs (( -us𝑛) <s ( -us𝐴) ∧ ( -us𝐴) <s 𝑛))
18 recut 28296 . . . . . 6 (𝐴 No → {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} <<s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))})
1918adantr 479 . . . . 5 ((𝐴 No ∧ (∃𝑛 ∈ ℕs (( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ 𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}))) → {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} <<s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))})
20 simprr 771 . . . . 5 ((𝐴 No ∧ (∃𝑛 ∈ ℕs (( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ 𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}))) → 𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}))
2119, 20negsunif 28013 . . . 4 ((𝐴 No ∧ (∃𝑛 ∈ ℕs (( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ 𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}))) → ( -us𝐴) = (( -us “ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}) |s ( -us “ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))})))
22 negsfn 27982 . . . . . . . . 9 -us Fn No
23 ssltss2 27768 . . . . . . . . . 10 ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} <<s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))} → {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))} ⊆ No )
2418, 23syl 17 . . . . . . . . 9 (𝐴 No → {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))} ⊆ No )
25 fvelimab 6970 . . . . . . . . 9 (( -us Fn No ∧ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))} ⊆ No ) → (𝑦 ∈ ( -us “ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}) ↔ ∃𝑧 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))} ( -us𝑧) = 𝑦))
2622, 24, 25sylancr 585 . . . . . . . 8 (𝐴 No → (𝑦 ∈ ( -us “ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}) ↔ ∃𝑧 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))} ( -us𝑧) = 𝑦))
27 eqeq1 2729 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝑥 = (𝐴 +s ( 1s /su 𝑛)) ↔ 𝑧 = (𝐴 +s ( 1s /su 𝑛))))
2827rexbidv 3168 . . . . . . . . . . 11 (𝑥 = 𝑧 → (∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛)) ↔ ∃𝑛 ∈ ℕs 𝑧 = (𝐴 +s ( 1s /su 𝑛))))
2928rexab 3686 . . . . . . . . . 10 (∃𝑧 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))} ( -us𝑧) = 𝑦 ↔ ∃𝑧(∃𝑛 ∈ ℕs 𝑧 = (𝐴 +s ( 1s /su 𝑛)) ∧ ( -us𝑧) = 𝑦))
30 rexcom4 3275 . . . . . . . . . . 11 (∃𝑛 ∈ ℕs𝑧(𝑧 = (𝐴 +s ( 1s /su 𝑛)) ∧ ( -us𝑧) = 𝑦) ↔ ∃𝑧𝑛 ∈ ℕs (𝑧 = (𝐴 +s ( 1s /su 𝑛)) ∧ ( -us𝑧) = 𝑦))
31 ovex 7452 . . . . . . . . . . . . 13 (𝐴 +s ( 1s /su 𝑛)) ∈ V
32 fveqeq2 6905 . . . . . . . . . . . . 13 (𝑧 = (𝐴 +s ( 1s /su 𝑛)) → (( -us𝑧) = 𝑦 ↔ ( -us ‘(𝐴 +s ( 1s /su 𝑛))) = 𝑦))
3331, 32ceqsexv 3514 . . . . . . . . . . . 12 (∃𝑧(𝑧 = (𝐴 +s ( 1s /su 𝑛)) ∧ ( -us𝑧) = 𝑦) ↔ ( -us ‘(𝐴 +s ( 1s /su 𝑛))) = 𝑦)
3433rexbii 3083 . . . . . . . . . . 11 (∃𝑛 ∈ ℕs𝑧(𝑧 = (𝐴 +s ( 1s /su 𝑛)) ∧ ( -us𝑧) = 𝑦) ↔ ∃𝑛 ∈ ℕs ( -us ‘(𝐴 +s ( 1s /su 𝑛))) = 𝑦)
35 r19.41v 3178 . . . . . . . . . . . 12 (∃𝑛 ∈ ℕs (𝑧 = (𝐴 +s ( 1s /su 𝑛)) ∧ ( -us𝑧) = 𝑦) ↔ (∃𝑛 ∈ ℕs 𝑧 = (𝐴 +s ( 1s /su 𝑛)) ∧ ( -us𝑧) = 𝑦))
3635exbii 1842 . . . . . . . . . . 11 (∃𝑧𝑛 ∈ ℕs (𝑧 = (𝐴 +s ( 1s /su 𝑛)) ∧ ( -us𝑧) = 𝑦) ↔ ∃𝑧(∃𝑛 ∈ ℕs 𝑧 = (𝐴 +s ( 1s /su 𝑛)) ∧ ( -us𝑧) = 𝑦))
3730, 34, 363bitr3ri 301 . . . . . . . . . 10 (∃𝑧(∃𝑛 ∈ ℕs 𝑧 = (𝐴 +s ( 1s /su 𝑛)) ∧ ( -us𝑧) = 𝑦) ↔ ∃𝑛 ∈ ℕs ( -us ‘(𝐴 +s ( 1s /su 𝑛))) = 𝑦)
3829, 37bitri 274 . . . . . . . . 9 (∃𝑧 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))} ( -us𝑧) = 𝑦 ↔ ∃𝑛 ∈ ℕs ( -us ‘(𝐴 +s ( 1s /su 𝑛))) = 𝑦)
39 1sno 27806 . . . . . . . . . . . . . . . . 17 1s No
4039a1i 11 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕs → 1s No )
41 nnne0s 28257 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕs𝑛 ≠ 0s )
4240, 3, 41divscld 28172 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕs → ( 1s /su 𝑛) ∈ No )
4342adantl 480 . . . . . . . . . . . . . 14 ((𝐴 No 𝑛 ∈ ℕs) → ( 1s /su 𝑛) ∈ No )
44 negsdi 28008 . . . . . . . . . . . . . 14 ((𝐴 No ∧ ( 1s /su 𝑛) ∈ No ) → ( -us ‘(𝐴 +s ( 1s /su 𝑛))) = (( -us𝐴) +s ( -us ‘( 1s /su 𝑛))))
4543, 44syldan 589 . . . . . . . . . . . . 13 ((𝐴 No 𝑛 ∈ ℕs) → ( -us ‘(𝐴 +s ( 1s /su 𝑛))) = (( -us𝐴) +s ( -us ‘( 1s /su 𝑛))))
461adantr 479 . . . . . . . . . . . . . 14 ((𝐴 No 𝑛 ∈ ℕs) → ( -us𝐴) ∈ No )
4746, 43subsvald 28017 . . . . . . . . . . . . 13 ((𝐴 No 𝑛 ∈ ℕs) → (( -us𝐴) -s ( 1s /su 𝑛)) = (( -us𝐴) +s ( -us ‘( 1s /su 𝑛))))
4845, 47eqtr4d 2768 . . . . . . . . . . . 12 ((𝐴 No 𝑛 ∈ ℕs) → ( -us ‘(𝐴 +s ( 1s /su 𝑛))) = (( -us𝐴) -s ( 1s /su 𝑛)))
4948eqeq1d 2727 . . . . . . . . . . 11 ((𝐴 No 𝑛 ∈ ℕs) → (( -us ‘(𝐴 +s ( 1s /su 𝑛))) = 𝑦 ↔ (( -us𝐴) -s ( 1s /su 𝑛)) = 𝑦))
50 eqcom 2732 . . . . . . . . . . 11 ((( -us𝐴) -s ( 1s /su 𝑛)) = 𝑦𝑦 = (( -us𝐴) -s ( 1s /su 𝑛)))
5149, 50bitrdi 286 . . . . . . . . . 10 ((𝐴 No 𝑛 ∈ ℕs) → (( -us ‘(𝐴 +s ( 1s /su 𝑛))) = 𝑦𝑦 = (( -us𝐴) -s ( 1s /su 𝑛))))
5251rexbidva 3166 . . . . . . . . 9 (𝐴 No → (∃𝑛 ∈ ℕs ( -us ‘(𝐴 +s ( 1s /su 𝑛))) = 𝑦 ↔ ∃𝑛 ∈ ℕs 𝑦 = (( -us𝐴) -s ( 1s /su 𝑛))))
5338, 52bitrid 282 . . . . . . . 8 (𝐴 No → (∃𝑧 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))} ( -us𝑧) = 𝑦 ↔ ∃𝑛 ∈ ℕs 𝑦 = (( -us𝐴) -s ( 1s /su 𝑛))))
5426, 53bitrd 278 . . . . . . 7 (𝐴 No → (𝑦 ∈ ( -us “ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}) ↔ ∃𝑛 ∈ ℕs 𝑦 = (( -us𝐴) -s ( 1s /su 𝑛))))
5554eqabdv 2859 . . . . . 6 (𝐴 No → ( -us “ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}) = {𝑦 ∣ ∃𝑛 ∈ ℕs 𝑦 = (( -us𝐴) -s ( 1s /su 𝑛))})
56 ssltss1 27767 . . . . . . . . . 10 ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} <<s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))} → {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} ⊆ No )
5718, 56syl 17 . . . . . . . . 9 (𝐴 No → {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} ⊆ No )
58 fvelimab 6970 . . . . . . . . 9 (( -us Fn No ∧ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} ⊆ No ) → (𝑦 ∈ ( -us “ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))}) ↔ ∃𝑧 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} ( -us𝑧) = 𝑦))
5922, 57, 58sylancr 585 . . . . . . . 8 (𝐴 No → (𝑦 ∈ ( -us “ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))}) ↔ ∃𝑧 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} ( -us𝑧) = 𝑦))
60 eqeq1 2729 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝑥 = (𝐴 -s ( 1s /su 𝑛)) ↔ 𝑧 = (𝐴 -s ( 1s /su 𝑛))))
6160rexbidv 3168 . . . . . . . . . . 11 (𝑥 = 𝑧 → (∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛)) ↔ ∃𝑛 ∈ ℕs 𝑧 = (𝐴 -s ( 1s /su 𝑛))))
6261rexab 3686 . . . . . . . . . 10 (∃𝑧 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} ( -us𝑧) = 𝑦 ↔ ∃𝑧(∃𝑛 ∈ ℕs 𝑧 = (𝐴 -s ( 1s /su 𝑛)) ∧ ( -us𝑧) = 𝑦))
63 rexcom4 3275 . . . . . . . . . . 11 (∃𝑛 ∈ ℕs𝑧(𝑧 = (𝐴 -s ( 1s /su 𝑛)) ∧ ( -us𝑧) = 𝑦) ↔ ∃𝑧𝑛 ∈ ℕs (𝑧 = (𝐴 -s ( 1s /su 𝑛)) ∧ ( -us𝑧) = 𝑦))
64 ovex 7452 . . . . . . . . . . . . 13 (𝐴 -s ( 1s /su 𝑛)) ∈ V
65 fveqeq2 6905 . . . . . . . . . . . . 13 (𝑧 = (𝐴 -s ( 1s /su 𝑛)) → (( -us𝑧) = 𝑦 ↔ ( -us ‘(𝐴 -s ( 1s /su 𝑛))) = 𝑦))
6664, 65ceqsexv 3514 . . . . . . . . . . . 12 (∃𝑧(𝑧 = (𝐴 -s ( 1s /su 𝑛)) ∧ ( -us𝑧) = 𝑦) ↔ ( -us ‘(𝐴 -s ( 1s /su 𝑛))) = 𝑦)
6766rexbii 3083 . . . . . . . . . . 11 (∃𝑛 ∈ ℕs𝑧(𝑧 = (𝐴 -s ( 1s /su 𝑛)) ∧ ( -us𝑧) = 𝑦) ↔ ∃𝑛 ∈ ℕs ( -us ‘(𝐴 -s ( 1s /su 𝑛))) = 𝑦)
68 r19.41v 3178 . . . . . . . . . . . 12 (∃𝑛 ∈ ℕs (𝑧 = (𝐴 -s ( 1s /su 𝑛)) ∧ ( -us𝑧) = 𝑦) ↔ (∃𝑛 ∈ ℕs 𝑧 = (𝐴 -s ( 1s /su 𝑛)) ∧ ( -us𝑧) = 𝑦))
6968exbii 1842 . . . . . . . . . . 11 (∃𝑧𝑛 ∈ ℕs (𝑧 = (𝐴 -s ( 1s /su 𝑛)) ∧ ( -us𝑧) = 𝑦) ↔ ∃𝑧(∃𝑛 ∈ ℕs 𝑧 = (𝐴 -s ( 1s /su 𝑛)) ∧ ( -us𝑧) = 𝑦))
7063, 67, 693bitr3ri 301 . . . . . . . . . 10 (∃𝑧(∃𝑛 ∈ ℕs 𝑧 = (𝐴 -s ( 1s /su 𝑛)) ∧ ( -us𝑧) = 𝑦) ↔ ∃𝑛 ∈ ℕs ( -us ‘(𝐴 -s ( 1s /su 𝑛))) = 𝑦)
7162, 70bitri 274 . . . . . . . . 9 (∃𝑧 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} ( -us𝑧) = 𝑦 ↔ ∃𝑛 ∈ ℕs ( -us ‘(𝐴 -s ( 1s /su 𝑛))) = 𝑦)
726, 43subsvald 28017 . . . . . . . . . . . . . 14 ((𝐴 No 𝑛 ∈ ℕs) → (𝐴 -s ( 1s /su 𝑛)) = (𝐴 +s ( -us ‘( 1s /su 𝑛))))
7372fveq2d 6900 . . . . . . . . . . . . 13 ((𝐴 No 𝑛 ∈ ℕs) → ( -us ‘(𝐴 -s ( 1s /su 𝑛))) = ( -us ‘(𝐴 +s ( -us ‘( 1s /su 𝑛)))))
7443negscld 27995 . . . . . . . . . . . . . 14 ((𝐴 No 𝑛 ∈ ℕs) → ( -us ‘( 1s /su 𝑛)) ∈ No )
75 negsdi 28008 . . . . . . . . . . . . . 14 ((𝐴 No ∧ ( -us ‘( 1s /su 𝑛)) ∈ No ) → ( -us ‘(𝐴 +s ( -us ‘( 1s /su 𝑛)))) = (( -us𝐴) +s ( -us ‘( -us ‘( 1s /su 𝑛)))))
7674, 75syldan 589 . . . . . . . . . . . . 13 ((𝐴 No 𝑛 ∈ ℕs) → ( -us ‘(𝐴 +s ( -us ‘( 1s /su 𝑛)))) = (( -us𝐴) +s ( -us ‘( -us ‘( 1s /su 𝑛)))))
77 negnegs 28002 . . . . . . . . . . . . . . 15 (( 1s /su 𝑛) ∈ No → ( -us ‘( -us ‘( 1s /su 𝑛))) = ( 1s /su 𝑛))
7843, 77syl 17 . . . . . . . . . . . . . 14 ((𝐴 No 𝑛 ∈ ℕs) → ( -us ‘( -us ‘( 1s /su 𝑛))) = ( 1s /su 𝑛))
7978oveq2d 7435 . . . . . . . . . . . . 13 ((𝐴 No 𝑛 ∈ ℕs) → (( -us𝐴) +s ( -us ‘( -us ‘( 1s /su 𝑛)))) = (( -us𝐴) +s ( 1s /su 𝑛)))
8073, 76, 793eqtrd 2769 . . . . . . . . . . . 12 ((𝐴 No 𝑛 ∈ ℕs) → ( -us ‘(𝐴 -s ( 1s /su 𝑛))) = (( -us𝐴) +s ( 1s /su 𝑛)))
8180eqeq1d 2727 . . . . . . . . . . 11 ((𝐴 No 𝑛 ∈ ℕs) → (( -us ‘(𝐴 -s ( 1s /su 𝑛))) = 𝑦 ↔ (( -us𝐴) +s ( 1s /su 𝑛)) = 𝑦))
82 eqcom 2732 . . . . . . . . . . 11 ((( -us𝐴) +s ( 1s /su 𝑛)) = 𝑦𝑦 = (( -us𝐴) +s ( 1s /su 𝑛)))
8381, 82bitrdi 286 . . . . . . . . . 10 ((𝐴 No 𝑛 ∈ ℕs) → (( -us ‘(𝐴 -s ( 1s /su 𝑛))) = 𝑦𝑦 = (( -us𝐴) +s ( 1s /su 𝑛))))
8483rexbidva 3166 . . . . . . . . 9 (𝐴 No → (∃𝑛 ∈ ℕs ( -us ‘(𝐴 -s ( 1s /su 𝑛))) = 𝑦 ↔ ∃𝑛 ∈ ℕs 𝑦 = (( -us𝐴) +s ( 1s /su 𝑛))))
8571, 84bitrid 282 . . . . . . . 8 (𝐴 No → (∃𝑧 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} ( -us𝑧) = 𝑦 ↔ ∃𝑛 ∈ ℕs 𝑦 = (( -us𝐴) +s ( 1s /su 𝑛))))
8659, 85bitrd 278 . . . . . . 7 (𝐴 No → (𝑦 ∈ ( -us “ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))}) ↔ ∃𝑛 ∈ ℕs 𝑦 = (( -us𝐴) +s ( 1s /su 𝑛))))
8786eqabdv 2859 . . . . . 6 (𝐴 No → ( -us “ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))}) = {𝑦 ∣ ∃𝑛 ∈ ℕs 𝑦 = (( -us𝐴) +s ( 1s /su 𝑛))})
8855, 87oveq12d 7437 . . . . 5 (𝐴 No → (( -us “ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}) |s ( -us “ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))})) = ({𝑦 ∣ ∃𝑛 ∈ ℕs 𝑦 = (( -us𝐴) -s ( 1s /su 𝑛))} |s {𝑦 ∣ ∃𝑛 ∈ ℕs 𝑦 = (( -us𝐴) +s ( 1s /su 𝑛))}))
8988adantr 479 . . . 4 ((𝐴 No ∧ (∃𝑛 ∈ ℕs (( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ 𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}))) → (( -us “ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}) |s ( -us “ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))})) = ({𝑦 ∣ ∃𝑛 ∈ ℕs 𝑦 = (( -us𝐴) -s ( 1s /su 𝑛))} |s {𝑦 ∣ ∃𝑛 ∈ ℕs 𝑦 = (( -us𝐴) +s ( 1s /su 𝑛))}))
9021, 89eqtrd 2765 . . 3 ((𝐴 No ∧ (∃𝑛 ∈ ℕs (( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ 𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}))) → ( -us𝐴) = ({𝑦 ∣ ∃𝑛 ∈ ℕs 𝑦 = (( -us𝐴) -s ( 1s /su 𝑛))} |s {𝑦 ∣ ∃𝑛 ∈ ℕs 𝑦 = (( -us𝐴) +s ( 1s /su 𝑛))}))
912, 17, 90jca32 514 . 2 ((𝐴 No ∧ (∃𝑛 ∈ ℕs (( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ 𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}))) → (( -us𝐴) ∈ No ∧ (∃𝑛 ∈ ℕs (( -us𝑛) <s ( -us𝐴) ∧ ( -us𝐴) <s 𝑛) ∧ ( -us𝐴) = ({𝑦 ∣ ∃𝑛 ∈ ℕs 𝑦 = (( -us𝐴) -s ( 1s /su 𝑛))} |s {𝑦 ∣ ∃𝑛 ∈ ℕs 𝑦 = (( -us𝐴) +s ( 1s /su 𝑛))}))))
92 elreno 28295 . 2 (𝐴 ∈ ℝs ↔ (𝐴 No ∧ (∃𝑛 ∈ ℕs (( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ 𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}))))
93 elreno 28295 . 2 (( -us𝐴) ∈ ℝs ↔ (( -us𝐴) ∈ No ∧ (∃𝑛 ∈ ℕs (( -us𝑛) <s ( -us𝐴) ∧ ( -us𝐴) <s 𝑛) ∧ ( -us𝐴) = ({𝑦 ∣ ∃𝑛 ∈ ℕs 𝑦 = (( -us𝐴) -s ( 1s /su 𝑛))} |s {𝑦 ∣ ∃𝑛 ∈ ℕs 𝑦 = (( -us𝐴) +s ( 1s /su 𝑛))}))))
9491, 92, 933imtr4i 291 1 (𝐴 ∈ ℝs → ( -us𝐴) ∈ ℝs)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wex 1773  wcel 2098  {cab 2702  wrex 3059  wss 3944   class class class wbr 5149  cima 5681   Fn wfn 6544  cfv 6549  (class class class)co 7419   No csur 27618   <s cslt 27619   <<s csslt 27759   |s cscut 27761   1s c1s 27802   +s cadds 27922   -us cnegs 27978   -s csubs 27979   /su cdivs 28137  scnns 28236  screno 28293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-dc 10471
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-ot 4639  df-uni 4910  df-int 4951  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-oadd 8491  df-nadd 8687  df-no 27621  df-slt 27622  df-bday 27623  df-sle 27724  df-sslt 27760  df-scut 27762  df-0s 27803  df-1s 27804  df-made 27820  df-old 27821  df-left 27823  df-right 27824  df-norec 27901  df-norec2 27912  df-adds 27923  df-negs 27980  df-subs 27981  df-muls 28057  df-divs 28138  df-n0s 28237  df-nns 28238  df-reno 28294
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator