MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  renegscl Structured version   Visualization version   GIF version

Theorem renegscl 28401
Description: The surreal reals are closed under negation. Part of theorem 13(ii) of [Conway] p. 24. (Contributed by Scott Fenton, 15-Apr-2025.)
Assertion
Ref Expression
renegscl (𝐴 ∈ ℝs → ( -us𝐴) ∈ ℝs)

Proof of Theorem renegscl
Dummy variables 𝑛 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 negscl 27994 . . . 4 (𝐴 No → ( -us𝐴) ∈ No )
21adantr 480 . . 3 ((𝐴 No ∧ (∃𝑛 ∈ ℕs (( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ 𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}))) → ( -us𝐴) ∈ No )
3 nnsno 28269 . . . . . . . . . . . 12 (𝑛 ∈ ℕs𝑛 No )
43adantl 481 . . . . . . . . . . 11 ((𝐴 No 𝑛 ∈ ℕs) → 𝑛 No )
54negscld 27995 . . . . . . . . . 10 ((𝐴 No 𝑛 ∈ ℕs) → ( -us𝑛) ∈ No )
6 simpl 482 . . . . . . . . . 10 ((𝐴 No 𝑛 ∈ ℕs) → 𝐴 No )
75, 6sltnegd 28005 . . . . . . . . 9 ((𝐴 No 𝑛 ∈ ℕs) → (( -us𝑛) <s 𝐴 ↔ ( -us𝐴) <s ( -us ‘( -us𝑛))))
8 negnegs 28002 . . . . . . . . . . 11 (𝑛 No → ( -us ‘( -us𝑛)) = 𝑛)
94, 8syl 17 . . . . . . . . . 10 ((𝐴 No 𝑛 ∈ ℕs) → ( -us ‘( -us𝑛)) = 𝑛)
109breq2d 5131 . . . . . . . . 9 ((𝐴 No 𝑛 ∈ ℕs) → (( -us𝐴) <s ( -us ‘( -us𝑛)) ↔ ( -us𝐴) <s 𝑛))
117, 10bitrd 279 . . . . . . . 8 ((𝐴 No 𝑛 ∈ ℕs) → (( -us𝑛) <s 𝐴 ↔ ( -us𝐴) <s 𝑛))
126, 4sltnegd 28005 . . . . . . . 8 ((𝐴 No 𝑛 ∈ ℕs) → (𝐴 <s 𝑛 ↔ ( -us𝑛) <s ( -us𝐴)))
1311, 12anbi12d 632 . . . . . . 7 ((𝐴 No 𝑛 ∈ ℕs) → ((( -us𝑛) <s 𝐴𝐴 <s 𝑛) ↔ (( -us𝐴) <s 𝑛 ∧ ( -us𝑛) <s ( -us𝐴))))
1413biancomd 463 . . . . . 6 ((𝐴 No 𝑛 ∈ ℕs) → ((( -us𝑛) <s 𝐴𝐴 <s 𝑛) ↔ (( -us𝑛) <s ( -us𝐴) ∧ ( -us𝐴) <s 𝑛)))
1514rexbidva 3162 . . . . 5 (𝐴 No → (∃𝑛 ∈ ℕs (( -us𝑛) <s 𝐴𝐴 <s 𝑛) ↔ ∃𝑛 ∈ ℕs (( -us𝑛) <s ( -us𝐴) ∧ ( -us𝐴) <s 𝑛)))
1615biimpa 476 . . . 4 ((𝐴 No ∧ ∃𝑛 ∈ ℕs (( -us𝑛) <s 𝐴𝐴 <s 𝑛)) → ∃𝑛 ∈ ℕs (( -us𝑛) <s ( -us𝐴) ∧ ( -us𝐴) <s 𝑛))
1716adantrr 717 . . 3 ((𝐴 No ∧ (∃𝑛 ∈ ℕs (( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ 𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}))) → ∃𝑛 ∈ ℕs (( -us𝑛) <s ( -us𝐴) ∧ ( -us𝐴) <s 𝑛))
18 recut 28399 . . . . . 6 (𝐴 No → {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} <<s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))})
1918adantr 480 . . . . 5 ((𝐴 No ∧ (∃𝑛 ∈ ℕs (( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ 𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}))) → {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} <<s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))})
20 simprr 772 . . . . 5 ((𝐴 No ∧ (∃𝑛 ∈ ℕs (( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ 𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}))) → 𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}))
2119, 20negsunif 28013 . . . 4 ((𝐴 No ∧ (∃𝑛 ∈ ℕs (( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ 𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}))) → ( -us𝐴) = (( -us “ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}) |s ( -us “ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))})))
22 negsfn 27981 . . . . . . . . 9 -us Fn No
23 ssltss2 27753 . . . . . . . . . 10 ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} <<s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))} → {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))} ⊆ No )
2418, 23syl 17 . . . . . . . . 9 (𝐴 No → {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))} ⊆ No )
25 fvelimab 6951 . . . . . . . . 9 (( -us Fn No ∧ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))} ⊆ No ) → (𝑦 ∈ ( -us “ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}) ↔ ∃𝑧 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))} ( -us𝑧) = 𝑦))
2622, 24, 25sylancr 587 . . . . . . . 8 (𝐴 No → (𝑦 ∈ ( -us “ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}) ↔ ∃𝑧 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))} ( -us𝑧) = 𝑦))
27 eqeq1 2739 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝑥 = (𝐴 +s ( 1s /su 𝑛)) ↔ 𝑧 = (𝐴 +s ( 1s /su 𝑛))))
2827rexbidv 3164 . . . . . . . . . . 11 (𝑥 = 𝑧 → (∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛)) ↔ ∃𝑛 ∈ ℕs 𝑧 = (𝐴 +s ( 1s /su 𝑛))))
2928rexab 3678 . . . . . . . . . 10 (∃𝑧 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))} ( -us𝑧) = 𝑦 ↔ ∃𝑧(∃𝑛 ∈ ℕs 𝑧 = (𝐴 +s ( 1s /su 𝑛)) ∧ ( -us𝑧) = 𝑦))
30 rexcom4 3269 . . . . . . . . . . 11 (∃𝑛 ∈ ℕs𝑧(𝑧 = (𝐴 +s ( 1s /su 𝑛)) ∧ ( -us𝑧) = 𝑦) ↔ ∃𝑧𝑛 ∈ ℕs (𝑧 = (𝐴 +s ( 1s /su 𝑛)) ∧ ( -us𝑧) = 𝑦))
31 ovex 7438 . . . . . . . . . . . . 13 (𝐴 +s ( 1s /su 𝑛)) ∈ V
32 fveqeq2 6885 . . . . . . . . . . . . 13 (𝑧 = (𝐴 +s ( 1s /su 𝑛)) → (( -us𝑧) = 𝑦 ↔ ( -us ‘(𝐴 +s ( 1s /su 𝑛))) = 𝑦))
3331, 32ceqsexv 3511 . . . . . . . . . . . 12 (∃𝑧(𝑧 = (𝐴 +s ( 1s /su 𝑛)) ∧ ( -us𝑧) = 𝑦) ↔ ( -us ‘(𝐴 +s ( 1s /su 𝑛))) = 𝑦)
3433rexbii 3083 . . . . . . . . . . 11 (∃𝑛 ∈ ℕs𝑧(𝑧 = (𝐴 +s ( 1s /su 𝑛)) ∧ ( -us𝑧) = 𝑦) ↔ ∃𝑛 ∈ ℕs ( -us ‘(𝐴 +s ( 1s /su 𝑛))) = 𝑦)
35 r19.41v 3174 . . . . . . . . . . . 12 (∃𝑛 ∈ ℕs (𝑧 = (𝐴 +s ( 1s /su 𝑛)) ∧ ( -us𝑧) = 𝑦) ↔ (∃𝑛 ∈ ℕs 𝑧 = (𝐴 +s ( 1s /su 𝑛)) ∧ ( -us𝑧) = 𝑦))
3635exbii 1848 . . . . . . . . . . 11 (∃𝑧𝑛 ∈ ℕs (𝑧 = (𝐴 +s ( 1s /su 𝑛)) ∧ ( -us𝑧) = 𝑦) ↔ ∃𝑧(∃𝑛 ∈ ℕs 𝑧 = (𝐴 +s ( 1s /su 𝑛)) ∧ ( -us𝑧) = 𝑦))
3730, 34, 363bitr3ri 302 . . . . . . . . . 10 (∃𝑧(∃𝑛 ∈ ℕs 𝑧 = (𝐴 +s ( 1s /su 𝑛)) ∧ ( -us𝑧) = 𝑦) ↔ ∃𝑛 ∈ ℕs ( -us ‘(𝐴 +s ( 1s /su 𝑛))) = 𝑦)
3829, 37bitri 275 . . . . . . . . 9 (∃𝑧 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))} ( -us𝑧) = 𝑦 ↔ ∃𝑛 ∈ ℕs ( -us ‘(𝐴 +s ( 1s /su 𝑛))) = 𝑦)
39 1sno 27791 . . . . . . . . . . . . . . . . 17 1s No
4039a1i 11 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕs → 1s No )
41 nnne0s 28281 . . . . . . . . . . . . . . . 16 (𝑛 ∈ ℕs𝑛 ≠ 0s )
4240, 3, 41divscld 28178 . . . . . . . . . . . . . . 15 (𝑛 ∈ ℕs → ( 1s /su 𝑛) ∈ No )
4342adantl 481 . . . . . . . . . . . . . 14 ((𝐴 No 𝑛 ∈ ℕs) → ( 1s /su 𝑛) ∈ No )
44 negsdi 28008 . . . . . . . . . . . . . 14 ((𝐴 No ∧ ( 1s /su 𝑛) ∈ No ) → ( -us ‘(𝐴 +s ( 1s /su 𝑛))) = (( -us𝐴) +s ( -us ‘( 1s /su 𝑛))))
4543, 44syldan 591 . . . . . . . . . . . . 13 ((𝐴 No 𝑛 ∈ ℕs) → ( -us ‘(𝐴 +s ( 1s /su 𝑛))) = (( -us𝐴) +s ( -us ‘( 1s /su 𝑛))))
461adantr 480 . . . . . . . . . . . . . 14 ((𝐴 No 𝑛 ∈ ℕs) → ( -us𝐴) ∈ No )
4746, 43subsvald 28017 . . . . . . . . . . . . 13 ((𝐴 No 𝑛 ∈ ℕs) → (( -us𝐴) -s ( 1s /su 𝑛)) = (( -us𝐴) +s ( -us ‘( 1s /su 𝑛))))
4845, 47eqtr4d 2773 . . . . . . . . . . . 12 ((𝐴 No 𝑛 ∈ ℕs) → ( -us ‘(𝐴 +s ( 1s /su 𝑛))) = (( -us𝐴) -s ( 1s /su 𝑛)))
4948eqeq1d 2737 . . . . . . . . . . 11 ((𝐴 No 𝑛 ∈ ℕs) → (( -us ‘(𝐴 +s ( 1s /su 𝑛))) = 𝑦 ↔ (( -us𝐴) -s ( 1s /su 𝑛)) = 𝑦))
50 eqcom 2742 . . . . . . . . . . 11 ((( -us𝐴) -s ( 1s /su 𝑛)) = 𝑦𝑦 = (( -us𝐴) -s ( 1s /su 𝑛)))
5149, 50bitrdi 287 . . . . . . . . . 10 ((𝐴 No 𝑛 ∈ ℕs) → (( -us ‘(𝐴 +s ( 1s /su 𝑛))) = 𝑦𝑦 = (( -us𝐴) -s ( 1s /su 𝑛))))
5251rexbidva 3162 . . . . . . . . 9 (𝐴 No → (∃𝑛 ∈ ℕs ( -us ‘(𝐴 +s ( 1s /su 𝑛))) = 𝑦 ↔ ∃𝑛 ∈ ℕs 𝑦 = (( -us𝐴) -s ( 1s /su 𝑛))))
5338, 52bitrid 283 . . . . . . . 8 (𝐴 No → (∃𝑧 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))} ( -us𝑧) = 𝑦 ↔ ∃𝑛 ∈ ℕs 𝑦 = (( -us𝐴) -s ( 1s /su 𝑛))))
5426, 53bitrd 279 . . . . . . 7 (𝐴 No → (𝑦 ∈ ( -us “ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}) ↔ ∃𝑛 ∈ ℕs 𝑦 = (( -us𝐴) -s ( 1s /su 𝑛))))
5554eqabdv 2868 . . . . . 6 (𝐴 No → ( -us “ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}) = {𝑦 ∣ ∃𝑛 ∈ ℕs 𝑦 = (( -us𝐴) -s ( 1s /su 𝑛))})
56 ssltss1 27752 . . . . . . . . . 10 ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} <<s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))} → {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} ⊆ No )
5718, 56syl 17 . . . . . . . . 9 (𝐴 No → {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} ⊆ No )
58 fvelimab 6951 . . . . . . . . 9 (( -us Fn No ∧ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} ⊆ No ) → (𝑦 ∈ ( -us “ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))}) ↔ ∃𝑧 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} ( -us𝑧) = 𝑦))
5922, 57, 58sylancr 587 . . . . . . . 8 (𝐴 No → (𝑦 ∈ ( -us “ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))}) ↔ ∃𝑧 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} ( -us𝑧) = 𝑦))
60 eqeq1 2739 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (𝑥 = (𝐴 -s ( 1s /su 𝑛)) ↔ 𝑧 = (𝐴 -s ( 1s /su 𝑛))))
6160rexbidv 3164 . . . . . . . . . . 11 (𝑥 = 𝑧 → (∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛)) ↔ ∃𝑛 ∈ ℕs 𝑧 = (𝐴 -s ( 1s /su 𝑛))))
6261rexab 3678 . . . . . . . . . 10 (∃𝑧 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} ( -us𝑧) = 𝑦 ↔ ∃𝑧(∃𝑛 ∈ ℕs 𝑧 = (𝐴 -s ( 1s /su 𝑛)) ∧ ( -us𝑧) = 𝑦))
63 rexcom4 3269 . . . . . . . . . . 11 (∃𝑛 ∈ ℕs𝑧(𝑧 = (𝐴 -s ( 1s /su 𝑛)) ∧ ( -us𝑧) = 𝑦) ↔ ∃𝑧𝑛 ∈ ℕs (𝑧 = (𝐴 -s ( 1s /su 𝑛)) ∧ ( -us𝑧) = 𝑦))
64 ovex 7438 . . . . . . . . . . . . 13 (𝐴 -s ( 1s /su 𝑛)) ∈ V
65 fveqeq2 6885 . . . . . . . . . . . . 13 (𝑧 = (𝐴 -s ( 1s /su 𝑛)) → (( -us𝑧) = 𝑦 ↔ ( -us ‘(𝐴 -s ( 1s /su 𝑛))) = 𝑦))
6664, 65ceqsexv 3511 . . . . . . . . . . . 12 (∃𝑧(𝑧 = (𝐴 -s ( 1s /su 𝑛)) ∧ ( -us𝑧) = 𝑦) ↔ ( -us ‘(𝐴 -s ( 1s /su 𝑛))) = 𝑦)
6766rexbii 3083 . . . . . . . . . . 11 (∃𝑛 ∈ ℕs𝑧(𝑧 = (𝐴 -s ( 1s /su 𝑛)) ∧ ( -us𝑧) = 𝑦) ↔ ∃𝑛 ∈ ℕs ( -us ‘(𝐴 -s ( 1s /su 𝑛))) = 𝑦)
68 r19.41v 3174 . . . . . . . . . . . 12 (∃𝑛 ∈ ℕs (𝑧 = (𝐴 -s ( 1s /su 𝑛)) ∧ ( -us𝑧) = 𝑦) ↔ (∃𝑛 ∈ ℕs 𝑧 = (𝐴 -s ( 1s /su 𝑛)) ∧ ( -us𝑧) = 𝑦))
6968exbii 1848 . . . . . . . . . . 11 (∃𝑧𝑛 ∈ ℕs (𝑧 = (𝐴 -s ( 1s /su 𝑛)) ∧ ( -us𝑧) = 𝑦) ↔ ∃𝑧(∃𝑛 ∈ ℕs 𝑧 = (𝐴 -s ( 1s /su 𝑛)) ∧ ( -us𝑧) = 𝑦))
7063, 67, 693bitr3ri 302 . . . . . . . . . 10 (∃𝑧(∃𝑛 ∈ ℕs 𝑧 = (𝐴 -s ( 1s /su 𝑛)) ∧ ( -us𝑧) = 𝑦) ↔ ∃𝑛 ∈ ℕs ( -us ‘(𝐴 -s ( 1s /su 𝑛))) = 𝑦)
7162, 70bitri 275 . . . . . . . . 9 (∃𝑧 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} ( -us𝑧) = 𝑦 ↔ ∃𝑛 ∈ ℕs ( -us ‘(𝐴 -s ( 1s /su 𝑛))) = 𝑦)
726, 43subsvald 28017 . . . . . . . . . . . . . 14 ((𝐴 No 𝑛 ∈ ℕs) → (𝐴 -s ( 1s /su 𝑛)) = (𝐴 +s ( -us ‘( 1s /su 𝑛))))
7372fveq2d 6880 . . . . . . . . . . . . 13 ((𝐴 No 𝑛 ∈ ℕs) → ( -us ‘(𝐴 -s ( 1s /su 𝑛))) = ( -us ‘(𝐴 +s ( -us ‘( 1s /su 𝑛)))))
7443negscld 27995 . . . . . . . . . . . . . 14 ((𝐴 No 𝑛 ∈ ℕs) → ( -us ‘( 1s /su 𝑛)) ∈ No )
75 negsdi 28008 . . . . . . . . . . . . . 14 ((𝐴 No ∧ ( -us ‘( 1s /su 𝑛)) ∈ No ) → ( -us ‘(𝐴 +s ( -us ‘( 1s /su 𝑛)))) = (( -us𝐴) +s ( -us ‘( -us ‘( 1s /su 𝑛)))))
7674, 75syldan 591 . . . . . . . . . . . . 13 ((𝐴 No 𝑛 ∈ ℕs) → ( -us ‘(𝐴 +s ( -us ‘( 1s /su 𝑛)))) = (( -us𝐴) +s ( -us ‘( -us ‘( 1s /su 𝑛)))))
77 negnegs 28002 . . . . . . . . . . . . . . 15 (( 1s /su 𝑛) ∈ No → ( -us ‘( -us ‘( 1s /su 𝑛))) = ( 1s /su 𝑛))
7843, 77syl 17 . . . . . . . . . . . . . 14 ((𝐴 No 𝑛 ∈ ℕs) → ( -us ‘( -us ‘( 1s /su 𝑛))) = ( 1s /su 𝑛))
7978oveq2d 7421 . . . . . . . . . . . . 13 ((𝐴 No 𝑛 ∈ ℕs) → (( -us𝐴) +s ( -us ‘( -us ‘( 1s /su 𝑛)))) = (( -us𝐴) +s ( 1s /su 𝑛)))
8073, 76, 793eqtrd 2774 . . . . . . . . . . . 12 ((𝐴 No 𝑛 ∈ ℕs) → ( -us ‘(𝐴 -s ( 1s /su 𝑛))) = (( -us𝐴) +s ( 1s /su 𝑛)))
8180eqeq1d 2737 . . . . . . . . . . 11 ((𝐴 No 𝑛 ∈ ℕs) → (( -us ‘(𝐴 -s ( 1s /su 𝑛))) = 𝑦 ↔ (( -us𝐴) +s ( 1s /su 𝑛)) = 𝑦))
82 eqcom 2742 . . . . . . . . . . 11 ((( -us𝐴) +s ( 1s /su 𝑛)) = 𝑦𝑦 = (( -us𝐴) +s ( 1s /su 𝑛)))
8381, 82bitrdi 287 . . . . . . . . . 10 ((𝐴 No 𝑛 ∈ ℕs) → (( -us ‘(𝐴 -s ( 1s /su 𝑛))) = 𝑦𝑦 = (( -us𝐴) +s ( 1s /su 𝑛))))
8483rexbidva 3162 . . . . . . . . 9 (𝐴 No → (∃𝑛 ∈ ℕs ( -us ‘(𝐴 -s ( 1s /su 𝑛))) = 𝑦 ↔ ∃𝑛 ∈ ℕs 𝑦 = (( -us𝐴) +s ( 1s /su 𝑛))))
8571, 84bitrid 283 . . . . . . . 8 (𝐴 No → (∃𝑧 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} ( -us𝑧) = 𝑦 ↔ ∃𝑛 ∈ ℕs 𝑦 = (( -us𝐴) +s ( 1s /su 𝑛))))
8659, 85bitrd 279 . . . . . . 7 (𝐴 No → (𝑦 ∈ ( -us “ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))}) ↔ ∃𝑛 ∈ ℕs 𝑦 = (( -us𝐴) +s ( 1s /su 𝑛))))
8786eqabdv 2868 . . . . . 6 (𝐴 No → ( -us “ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))}) = {𝑦 ∣ ∃𝑛 ∈ ℕs 𝑦 = (( -us𝐴) +s ( 1s /su 𝑛))})
8855, 87oveq12d 7423 . . . . 5 (𝐴 No → (( -us “ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}) |s ( -us “ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))})) = ({𝑦 ∣ ∃𝑛 ∈ ℕs 𝑦 = (( -us𝐴) -s ( 1s /su 𝑛))} |s {𝑦 ∣ ∃𝑛 ∈ ℕs 𝑦 = (( -us𝐴) +s ( 1s /su 𝑛))}))
8988adantr 480 . . . 4 ((𝐴 No ∧ (∃𝑛 ∈ ℕs (( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ 𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}))) → (( -us “ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}) |s ( -us “ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))})) = ({𝑦 ∣ ∃𝑛 ∈ ℕs 𝑦 = (( -us𝐴) -s ( 1s /su 𝑛))} |s {𝑦 ∣ ∃𝑛 ∈ ℕs 𝑦 = (( -us𝐴) +s ( 1s /su 𝑛))}))
9021, 89eqtrd 2770 . . 3 ((𝐴 No ∧ (∃𝑛 ∈ ℕs (( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ 𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}))) → ( -us𝐴) = ({𝑦 ∣ ∃𝑛 ∈ ℕs 𝑦 = (( -us𝐴) -s ( 1s /su 𝑛))} |s {𝑦 ∣ ∃𝑛 ∈ ℕs 𝑦 = (( -us𝐴) +s ( 1s /su 𝑛))}))
912, 17, 90jca32 515 . 2 ((𝐴 No ∧ (∃𝑛 ∈ ℕs (( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ 𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}))) → (( -us𝐴) ∈ No ∧ (∃𝑛 ∈ ℕs (( -us𝑛) <s ( -us𝐴) ∧ ( -us𝐴) <s 𝑛) ∧ ( -us𝐴) = ({𝑦 ∣ ∃𝑛 ∈ ℕs 𝑦 = (( -us𝐴) -s ( 1s /su 𝑛))} |s {𝑦 ∣ ∃𝑛 ∈ ℕs 𝑦 = (( -us𝐴) +s ( 1s /su 𝑛))}))))
92 elreno 28398 . 2 (𝐴 ∈ ℝs ↔ (𝐴 No ∧ (∃𝑛 ∈ ℕs (( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ 𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}))))
93 elreno 28398 . 2 (( -us𝐴) ∈ ℝs ↔ (( -us𝐴) ∈ No ∧ (∃𝑛 ∈ ℕs (( -us𝑛) <s ( -us𝐴) ∧ ( -us𝐴) <s 𝑛) ∧ ( -us𝐴) = ({𝑦 ∣ ∃𝑛 ∈ ℕs 𝑦 = (( -us𝐴) -s ( 1s /su 𝑛))} |s {𝑦 ∣ ∃𝑛 ∈ ℕs 𝑦 = (( -us𝐴) +s ( 1s /su 𝑛))}))))
9491, 92, 933imtr4i 292 1 (𝐴 ∈ ℝs → ( -us𝐴) ∈ ℝs)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2108  {cab 2713  wrex 3060  wss 3926   class class class wbr 5119  cima 5657   Fn wfn 6526  cfv 6531  (class class class)co 7405   No csur 27603   <s cslt 27604   <<s csslt 27744   |s cscut 27746   1s c1s 27787   +s cadds 27918   -us cnegs 27977   -s csubs 27978   /su cdivs 28142  scnns 28259  screno 28396
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-dc 10460
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-ot 4610  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-nadd 8678  df-no 27606  df-slt 27607  df-bday 27608  df-sle 27709  df-sslt 27745  df-scut 27747  df-0s 27788  df-1s 27789  df-made 27807  df-old 27808  df-left 27810  df-right 27811  df-norec 27897  df-norec2 27908  df-adds 27919  df-negs 27979  df-subs 27980  df-muls 28062  df-divs 28143  df-n0s 28260  df-nns 28261  df-reno 28397
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator