MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  recut Structured version   Visualization version   GIF version

Theorem recut 28143
Description: The cut involved in defining surreal reals is a genuine cut. (Contributed by Scott Fenton, 15-Apr-2025.)
Assertion
Ref Expression
recut (𝐴 No → {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} <<s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))})
Distinct variable group:   𝑥,𝐴,𝑛

Proof of Theorem recut
Dummy variables 𝑦 𝑧 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnsex 28109 . . . 4 s ∈ V
21abrexex 7943 . . 3 {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} ∈ V
32a1i 11 . 2 (𝐴 No → {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} ∈ V)
41abrexex 7943 . . 3 {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))} ∈ V
54a1i 11 . 2 (𝐴 No → {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))} ∈ V)
6 1sno 27679 . . . . . . . 8 1s No
76a1i 11 . . . . . . 7 (𝑛 ∈ ℕs → 1s No )
8 nnsno 28115 . . . . . . 7 (𝑛 ∈ ℕs𝑛 No )
9 nnne0s 28124 . . . . . . 7 (𝑛 ∈ ℕs𝑛 ≠ 0s )
107, 8, 9divscld 28041 . . . . . 6 (𝑛 ∈ ℕs → ( 1s /su 𝑛) ∈ No )
11 subscl 27891 . . . . . 6 ((𝐴 No ∧ ( 1s /su 𝑛) ∈ No ) → (𝐴 -s ( 1s /su 𝑛)) ∈ No )
1210, 11sylan2 592 . . . . 5 ((𝐴 No 𝑛 ∈ ℕs) → (𝐴 -s ( 1s /su 𝑛)) ∈ No )
13 eleq1 2813 . . . . 5 (𝑥 = (𝐴 -s ( 1s /su 𝑛)) → (𝑥 No ↔ (𝐴 -s ( 1s /su 𝑛)) ∈ No ))
1412, 13syl5ibrcom 246 . . . 4 ((𝐴 No 𝑛 ∈ ℕs) → (𝑥 = (𝐴 -s ( 1s /su 𝑛)) → 𝑥 No ))
1514rexlimdva 3147 . . 3 (𝐴 No → (∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛)) → 𝑥 No ))
1615abssdv 4058 . 2 (𝐴 No → {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} ⊆ No )
17 addscl 27817 . . . . . 6 ((𝐴 No ∧ ( 1s /su 𝑛) ∈ No ) → (𝐴 +s ( 1s /su 𝑛)) ∈ No )
1810, 17sylan2 592 . . . . 5 ((𝐴 No 𝑛 ∈ ℕs) → (𝐴 +s ( 1s /su 𝑛)) ∈ No )
19 eleq1 2813 . . . . 5 (𝑥 = (𝐴 +s ( 1s /su 𝑛)) → (𝑥 No ↔ (𝐴 +s ( 1s /su 𝑛)) ∈ No ))
2018, 19syl5ibrcom 246 . . . 4 ((𝐴 No 𝑛 ∈ ℕs) → (𝑥 = (𝐴 +s ( 1s /su 𝑛)) → 𝑥 No ))
2120rexlimdva 3147 . . 3 (𝐴 No → (∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛)) → 𝑥 No ))
2221abssdv 4058 . 2 (𝐴 No → {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))} ⊆ No )
23 vex 3470 . . . . . . 7 𝑦 ∈ V
24 eqeq1 2728 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥 = (𝐴 -s ( 1s /su 𝑛)) ↔ 𝑦 = (𝐴 -s ( 1s /su 𝑛))))
2524rexbidv 3170 . . . . . . 7 (𝑥 = 𝑦 → (∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛)) ↔ ∃𝑛 ∈ ℕs 𝑦 = (𝐴 -s ( 1s /su 𝑛))))
2623, 25elab 3661 . . . . . 6 (𝑦 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} ↔ ∃𝑛 ∈ ℕs 𝑦 = (𝐴 -s ( 1s /su 𝑛)))
27 vex 3470 . . . . . . 7 𝑧 ∈ V
28 eqeq1 2728 . . . . . . . . 9 (𝑥 = 𝑧 → (𝑥 = (𝐴 +s ( 1s /su 𝑛)) ↔ 𝑧 = (𝐴 +s ( 1s /su 𝑛))))
2928rexbidv 3170 . . . . . . . 8 (𝑥 = 𝑧 → (∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛)) ↔ ∃𝑛 ∈ ℕs 𝑧 = (𝐴 +s ( 1s /su 𝑛))))
30 oveq2 7410 . . . . . . . . . . 11 (𝑛 = 𝑚 → ( 1s /su 𝑛) = ( 1s /su 𝑚))
3130oveq2d 7418 . . . . . . . . . 10 (𝑛 = 𝑚 → (𝐴 +s ( 1s /su 𝑛)) = (𝐴 +s ( 1s /su 𝑚)))
3231eqeq2d 2735 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑧 = (𝐴 +s ( 1s /su 𝑛)) ↔ 𝑧 = (𝐴 +s ( 1s /su 𝑚))))
3332cbvrexvw 3227 . . . . . . . 8 (∃𝑛 ∈ ℕs 𝑧 = (𝐴 +s ( 1s /su 𝑛)) ↔ ∃𝑚 ∈ ℕs 𝑧 = (𝐴 +s ( 1s /su 𝑚)))
3429, 33bitrdi 287 . . . . . . 7 (𝑥 = 𝑧 → (∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛)) ↔ ∃𝑚 ∈ ℕs 𝑧 = (𝐴 +s ( 1s /su 𝑚))))
3527, 34elab 3661 . . . . . 6 (𝑧 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))} ↔ ∃𝑚 ∈ ℕs 𝑧 = (𝐴 +s ( 1s /su 𝑚)))
3626, 35anbi12i 626 . . . . 5 ((𝑦 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} ∧ 𝑧 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}) ↔ (∃𝑛 ∈ ℕs 𝑦 = (𝐴 -s ( 1s /su 𝑛)) ∧ ∃𝑚 ∈ ℕs 𝑧 = (𝐴 +s ( 1s /su 𝑚))))
37 reeanv 3218 . . . . 5 (∃𝑛 ∈ ℕs𝑚 ∈ ℕs (𝑦 = (𝐴 -s ( 1s /su 𝑛)) ∧ 𝑧 = (𝐴 +s ( 1s /su 𝑚))) ↔ (∃𝑛 ∈ ℕs 𝑦 = (𝐴 -s ( 1s /su 𝑛)) ∧ ∃𝑚 ∈ ℕs 𝑧 = (𝐴 +s ( 1s /su 𝑚))))
3836, 37bitr4i 278 . . . 4 ((𝑦 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} ∧ 𝑧 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}) ↔ ∃𝑛 ∈ ℕs𝑚 ∈ ℕs (𝑦 = (𝐴 -s ( 1s /su 𝑛)) ∧ 𝑧 = (𝐴 +s ( 1s /su 𝑚))))
39 simpl 482 . . . . . . . . 9 ((𝐴 No 𝑛 ∈ ℕs) → 𝐴 No )
4010adantl 481 . . . . . . . . 9 ((𝐴 No 𝑛 ∈ ℕs) → ( 1s /su 𝑛) ∈ No )
4139, 40subsvald 27890 . . . . . . . 8 ((𝐴 No 𝑛 ∈ ℕs) → (𝐴 -s ( 1s /su 𝑛)) = (𝐴 +s ( -us ‘( 1s /su 𝑛))))
4241adantrr 714 . . . . . . 7 ((𝐴 No ∧ (𝑛 ∈ ℕs𝑚 ∈ ℕs)) → (𝐴 -s ( 1s /su 𝑛)) = (𝐴 +s ( -us ‘( 1s /su 𝑛))))
4310negscld 27868 . . . . . . . . . . 11 (𝑛 ∈ ℕs → ( -us ‘( 1s /su 𝑛)) ∈ No )
4443adantr 480 . . . . . . . . . 10 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → ( -us ‘( 1s /su 𝑛)) ∈ No )
45 0sno 27678 . . . . . . . . . . 11 0s No
4645a1i 11 . . . . . . . . . 10 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → 0s No )
476a1i 11 . . . . . . . . . . . 12 (𝑚 ∈ ℕs → 1s No )
48 nnsno 28115 . . . . . . . . . . . 12 (𝑚 ∈ ℕs𝑚 No )
49 nnne0s 28124 . . . . . . . . . . . 12 (𝑚 ∈ ℕs𝑚 ≠ 0s )
5047, 48, 49divscld 28041 . . . . . . . . . . 11 (𝑚 ∈ ℕs → ( 1s /su 𝑚) ∈ No )
5150adantl 481 . . . . . . . . . 10 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → ( 1s /su 𝑚) ∈ No )
52 id 22 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕs𝑛 ∈ ℕs)
5352nnsrecgt0d 28138 . . . . . . . . . . . . 13 (𝑛 ∈ ℕs → 0s <s ( 1s /su 𝑛))
5445a1i 11 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕs → 0s No )
5554, 10sltnegd 27878 . . . . . . . . . . . . 13 (𝑛 ∈ ℕs → ( 0s <s ( 1s /su 𝑛) ↔ ( -us ‘( 1s /su 𝑛)) <s ( -us ‘ 0s )))
5653, 55mpbid 231 . . . . . . . . . . . 12 (𝑛 ∈ ℕs → ( -us ‘( 1s /su 𝑛)) <s ( -us ‘ 0s ))
57 negs0s 27858 . . . . . . . . . . . 12 ( -us ‘ 0s ) = 0s
5856, 57breqtrdi 5180 . . . . . . . . . . 11 (𝑛 ∈ ℕs → ( -us ‘( 1s /su 𝑛)) <s 0s )
5958adantr 480 . . . . . . . . . 10 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → ( -us ‘( 1s /su 𝑛)) <s 0s )
60 id 22 . . . . . . . . . . . 12 (𝑚 ∈ ℕs𝑚 ∈ ℕs)
6160nnsrecgt0d 28138 . . . . . . . . . . 11 (𝑚 ∈ ℕs → 0s <s ( 1s /su 𝑚))
6261adantl 481 . . . . . . . . . 10 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → 0s <s ( 1s /su 𝑚))
6344, 46, 51, 59, 62slttrd 27611 . . . . . . . . 9 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → ( -us ‘( 1s /su 𝑛)) <s ( 1s /su 𝑚))
6463adantl 481 . . . . . . . 8 ((𝐴 No ∧ (𝑛 ∈ ℕs𝑚 ∈ ℕs)) → ( -us ‘( 1s /su 𝑛)) <s ( 1s /su 𝑚))
6544adantl 481 . . . . . . . . 9 ((𝐴 No ∧ (𝑛 ∈ ℕs𝑚 ∈ ℕs)) → ( -us ‘( 1s /su 𝑛)) ∈ No )
6650ad2antll 726 . . . . . . . . 9 ((𝐴 No ∧ (𝑛 ∈ ℕs𝑚 ∈ ℕs)) → ( 1s /su 𝑚) ∈ No )
67 simpl 482 . . . . . . . . 9 ((𝐴 No ∧ (𝑛 ∈ ℕs𝑚 ∈ ℕs)) → 𝐴 No )
6865, 66, 67sltadd2d 27833 . . . . . . . 8 ((𝐴 No ∧ (𝑛 ∈ ℕs𝑚 ∈ ℕs)) → (( -us ‘( 1s /su 𝑛)) <s ( 1s /su 𝑚) ↔ (𝐴 +s ( -us ‘( 1s /su 𝑛))) <s (𝐴 +s ( 1s /su 𝑚))))
6964, 68mpbid 231 . . . . . . 7 ((𝐴 No ∧ (𝑛 ∈ ℕs𝑚 ∈ ℕs)) → (𝐴 +s ( -us ‘( 1s /su 𝑛))) <s (𝐴 +s ( 1s /su 𝑚)))
7042, 69eqbrtrd 5161 . . . . . 6 ((𝐴 No ∧ (𝑛 ∈ ℕs𝑚 ∈ ℕs)) → (𝐴 -s ( 1s /su 𝑛)) <s (𝐴 +s ( 1s /su 𝑚)))
71 breq12 5144 . . . . . 6 ((𝑦 = (𝐴 -s ( 1s /su 𝑛)) ∧ 𝑧 = (𝐴 +s ( 1s /su 𝑚))) → (𝑦 <s 𝑧 ↔ (𝐴 -s ( 1s /su 𝑛)) <s (𝐴 +s ( 1s /su 𝑚))))
7270, 71syl5ibrcom 246 . . . . 5 ((𝐴 No ∧ (𝑛 ∈ ℕs𝑚 ∈ ℕs)) → ((𝑦 = (𝐴 -s ( 1s /su 𝑛)) ∧ 𝑧 = (𝐴 +s ( 1s /su 𝑚))) → 𝑦 <s 𝑧))
7372rexlimdvva 3203 . . . 4 (𝐴 No → (∃𝑛 ∈ ℕs𝑚 ∈ ℕs (𝑦 = (𝐴 -s ( 1s /su 𝑛)) ∧ 𝑧 = (𝐴 +s ( 1s /su 𝑚))) → 𝑦 <s 𝑧))
7438, 73biimtrid 241 . . 3 (𝐴 No → ((𝑦 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} ∧ 𝑧 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}) → 𝑦 <s 𝑧))
75743impib 1113 . 2 ((𝐴 No 𝑦 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} ∧ 𝑧 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}) → 𝑦 <s 𝑧)
763, 5, 16, 22, 75ssltd 27643 1 (𝐴 No → {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} <<s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1533  wcel 2098  {cab 2701  wrex 3062  Vcvv 3466   class class class wbr 5139  cfv 6534  (class class class)co 7402   No csur 27492   <s cslt 27493   <<s csslt 27632   0s c0s 27674   1s c1s 27675   +s cadds 27795   -us cnegs 27851   -s csubs 27852   /su cdivs 28006  scnns 28105
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5276  ax-sep 5290  ax-nul 5297  ax-pow 5354  ax-pr 5418  ax-un 7719  ax-dc 10438
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3771  df-csb 3887  df-dif 3944  df-un 3946  df-in 3948  df-ss 3958  df-pss 3960  df-nul 4316  df-if 4522  df-pw 4597  df-sn 4622  df-pr 4624  df-tp 4626  df-op 4628  df-ot 4630  df-uni 4901  df-int 4942  df-iun 4990  df-br 5140  df-opab 5202  df-mpt 5223  df-tr 5257  df-id 5565  df-eprel 5571  df-po 5579  df-so 5580  df-fr 5622  df-se 5623  df-we 5624  df-xp 5673  df-rel 5674  df-cnv 5675  df-co 5676  df-dm 5677  df-rn 5678  df-res 5679  df-ima 5680  df-pred 6291  df-ord 6358  df-on 6359  df-lim 6360  df-suc 6361  df-iota 6486  df-fun 6536  df-fn 6537  df-f 6538  df-f1 6539  df-fo 6540  df-f1o 6541  df-fv 6542  df-riota 7358  df-ov 7405  df-oprab 7406  df-mpo 7407  df-om 7850  df-1st 7969  df-2nd 7970  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-oadd 8466  df-nadd 8662  df-no 27495  df-slt 27496  df-bday 27497  df-sle 27597  df-sslt 27633  df-scut 27635  df-0s 27676  df-1s 27677  df-made 27693  df-old 27694  df-left 27696  df-right 27697  df-norec 27774  df-norec2 27785  df-adds 27796  df-negs 27853  df-subs 27854  df-muls 27926  df-divs 28007  df-n0s 28106  df-nns 28107
This theorem is referenced by:  renegscl  28145  readdscl  28146  remulscl  28149
  Copyright terms: Public domain W3C validator