MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  recut Structured version   Visualization version   GIF version

Theorem recut 28296
Description: The cut involved in defining surreal reals is a genuine cut. (Contributed by Scott Fenton, 15-Apr-2025.)
Assertion
Ref Expression
recut (𝐴 No → {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} <<s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))})
Distinct variable group:   𝑥,𝐴,𝑛

Proof of Theorem recut
Dummy variables 𝑦 𝑧 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnsex 28240 . . . 4 s ∈ V
21abrexex 7967 . . 3 {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} ∈ V
32a1i 11 . 2 (𝐴 No → {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} ∈ V)
41abrexex 7967 . . 3 {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))} ∈ V
54a1i 11 . 2 (𝐴 No → {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))} ∈ V)
6 1sno 27806 . . . . . . . 8 1s No
76a1i 11 . . . . . . 7 (𝑛 ∈ ℕs → 1s No )
8 nnsno 28246 . . . . . . 7 (𝑛 ∈ ℕs𝑛 No )
9 nnne0s 28257 . . . . . . 7 (𝑛 ∈ ℕs𝑛 ≠ 0s )
107, 8, 9divscld 28172 . . . . . 6 (𝑛 ∈ ℕs → ( 1s /su 𝑛) ∈ No )
11 subscl 28018 . . . . . 6 ((𝐴 No ∧ ( 1s /su 𝑛) ∈ No ) → (𝐴 -s ( 1s /su 𝑛)) ∈ No )
1210, 11sylan2 591 . . . . 5 ((𝐴 No 𝑛 ∈ ℕs) → (𝐴 -s ( 1s /su 𝑛)) ∈ No )
13 eleq1 2813 . . . . 5 (𝑥 = (𝐴 -s ( 1s /su 𝑛)) → (𝑥 No ↔ (𝐴 -s ( 1s /su 𝑛)) ∈ No ))
1412, 13syl5ibrcom 246 . . . 4 ((𝐴 No 𝑛 ∈ ℕs) → (𝑥 = (𝐴 -s ( 1s /su 𝑛)) → 𝑥 No ))
1514rexlimdva 3144 . . 3 (𝐴 No → (∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛)) → 𝑥 No ))
1615abssdv 4061 . 2 (𝐴 No → {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} ⊆ No )
17 addscl 27944 . . . . . 6 ((𝐴 No ∧ ( 1s /su 𝑛) ∈ No ) → (𝐴 +s ( 1s /su 𝑛)) ∈ No )
1810, 17sylan2 591 . . . . 5 ((𝐴 No 𝑛 ∈ ℕs) → (𝐴 +s ( 1s /su 𝑛)) ∈ No )
19 eleq1 2813 . . . . 5 (𝑥 = (𝐴 +s ( 1s /su 𝑛)) → (𝑥 No ↔ (𝐴 +s ( 1s /su 𝑛)) ∈ No ))
2018, 19syl5ibrcom 246 . . . 4 ((𝐴 No 𝑛 ∈ ℕs) → (𝑥 = (𝐴 +s ( 1s /su 𝑛)) → 𝑥 No ))
2120rexlimdva 3144 . . 3 (𝐴 No → (∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛)) → 𝑥 No ))
2221abssdv 4061 . 2 (𝐴 No → {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))} ⊆ No )
23 vex 3465 . . . . . . 7 𝑦 ∈ V
24 eqeq1 2729 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥 = (𝐴 -s ( 1s /su 𝑛)) ↔ 𝑦 = (𝐴 -s ( 1s /su 𝑛))))
2524rexbidv 3168 . . . . . . 7 (𝑥 = 𝑦 → (∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛)) ↔ ∃𝑛 ∈ ℕs 𝑦 = (𝐴 -s ( 1s /su 𝑛))))
2623, 25elab 3664 . . . . . 6 (𝑦 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} ↔ ∃𝑛 ∈ ℕs 𝑦 = (𝐴 -s ( 1s /su 𝑛)))
27 vex 3465 . . . . . . 7 𝑧 ∈ V
28 eqeq1 2729 . . . . . . . . 9 (𝑥 = 𝑧 → (𝑥 = (𝐴 +s ( 1s /su 𝑛)) ↔ 𝑧 = (𝐴 +s ( 1s /su 𝑛))))
2928rexbidv 3168 . . . . . . . 8 (𝑥 = 𝑧 → (∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛)) ↔ ∃𝑛 ∈ ℕs 𝑧 = (𝐴 +s ( 1s /su 𝑛))))
30 oveq2 7427 . . . . . . . . . . 11 (𝑛 = 𝑚 → ( 1s /su 𝑛) = ( 1s /su 𝑚))
3130oveq2d 7435 . . . . . . . . . 10 (𝑛 = 𝑚 → (𝐴 +s ( 1s /su 𝑛)) = (𝐴 +s ( 1s /su 𝑚)))
3231eqeq2d 2736 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑧 = (𝐴 +s ( 1s /su 𝑛)) ↔ 𝑧 = (𝐴 +s ( 1s /su 𝑚))))
3332cbvrexvw 3225 . . . . . . . 8 (∃𝑛 ∈ ℕs 𝑧 = (𝐴 +s ( 1s /su 𝑛)) ↔ ∃𝑚 ∈ ℕs 𝑧 = (𝐴 +s ( 1s /su 𝑚)))
3429, 33bitrdi 286 . . . . . . 7 (𝑥 = 𝑧 → (∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛)) ↔ ∃𝑚 ∈ ℕs 𝑧 = (𝐴 +s ( 1s /su 𝑚))))
3527, 34elab 3664 . . . . . 6 (𝑧 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))} ↔ ∃𝑚 ∈ ℕs 𝑧 = (𝐴 +s ( 1s /su 𝑚)))
3626, 35anbi12i 626 . . . . 5 ((𝑦 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} ∧ 𝑧 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}) ↔ (∃𝑛 ∈ ℕs 𝑦 = (𝐴 -s ( 1s /su 𝑛)) ∧ ∃𝑚 ∈ ℕs 𝑧 = (𝐴 +s ( 1s /su 𝑚))))
37 reeanv 3216 . . . . 5 (∃𝑛 ∈ ℕs𝑚 ∈ ℕs (𝑦 = (𝐴 -s ( 1s /su 𝑛)) ∧ 𝑧 = (𝐴 +s ( 1s /su 𝑚))) ↔ (∃𝑛 ∈ ℕs 𝑦 = (𝐴 -s ( 1s /su 𝑛)) ∧ ∃𝑚 ∈ ℕs 𝑧 = (𝐴 +s ( 1s /su 𝑚))))
3836, 37bitr4i 277 . . . 4 ((𝑦 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} ∧ 𝑧 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}) ↔ ∃𝑛 ∈ ℕs𝑚 ∈ ℕs (𝑦 = (𝐴 -s ( 1s /su 𝑛)) ∧ 𝑧 = (𝐴 +s ( 1s /su 𝑚))))
39 simpl 481 . . . . . . . . 9 ((𝐴 No 𝑛 ∈ ℕs) → 𝐴 No )
4010adantl 480 . . . . . . . . 9 ((𝐴 No 𝑛 ∈ ℕs) → ( 1s /su 𝑛) ∈ No )
4139, 40subsvald 28017 . . . . . . . 8 ((𝐴 No 𝑛 ∈ ℕs) → (𝐴 -s ( 1s /su 𝑛)) = (𝐴 +s ( -us ‘( 1s /su 𝑛))))
4241adantrr 715 . . . . . . 7 ((𝐴 No ∧ (𝑛 ∈ ℕs𝑚 ∈ ℕs)) → (𝐴 -s ( 1s /su 𝑛)) = (𝐴 +s ( -us ‘( 1s /su 𝑛))))
4310negscld 27995 . . . . . . . . . . 11 (𝑛 ∈ ℕs → ( -us ‘( 1s /su 𝑛)) ∈ No )
4443adantr 479 . . . . . . . . . 10 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → ( -us ‘( 1s /su 𝑛)) ∈ No )
45 0sno 27805 . . . . . . . . . . 11 0s No
4645a1i 11 . . . . . . . . . 10 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → 0s No )
476a1i 11 . . . . . . . . . . . 12 (𝑚 ∈ ℕs → 1s No )
48 nnsno 28246 . . . . . . . . . . . 12 (𝑚 ∈ ℕs𝑚 No )
49 nnne0s 28257 . . . . . . . . . . . 12 (𝑚 ∈ ℕs𝑚 ≠ 0s )
5047, 48, 49divscld 28172 . . . . . . . . . . 11 (𝑚 ∈ ℕs → ( 1s /su 𝑚) ∈ No )
5150adantl 480 . . . . . . . . . 10 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → ( 1s /su 𝑚) ∈ No )
52 id 22 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕs𝑛 ∈ ℕs)
5352nnsrecgt0d 28271 . . . . . . . . . . . . 13 (𝑛 ∈ ℕs → 0s <s ( 1s /su 𝑛))
5445a1i 11 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕs → 0s No )
5554, 10sltnegd 28005 . . . . . . . . . . . . 13 (𝑛 ∈ ℕs → ( 0s <s ( 1s /su 𝑛) ↔ ( -us ‘( 1s /su 𝑛)) <s ( -us ‘ 0s )))
5653, 55mpbid 231 . . . . . . . . . . . 12 (𝑛 ∈ ℕs → ( -us ‘( 1s /su 𝑛)) <s ( -us ‘ 0s ))
57 negs0s 27985 . . . . . . . . . . . 12 ( -us ‘ 0s ) = 0s
5856, 57breqtrdi 5190 . . . . . . . . . . 11 (𝑛 ∈ ℕs → ( -us ‘( 1s /su 𝑛)) <s 0s )
5958adantr 479 . . . . . . . . . 10 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → ( -us ‘( 1s /su 𝑛)) <s 0s )
60 id 22 . . . . . . . . . . . 12 (𝑚 ∈ ℕs𝑚 ∈ ℕs)
6160nnsrecgt0d 28271 . . . . . . . . . . 11 (𝑚 ∈ ℕs → 0s <s ( 1s /su 𝑚))
6261adantl 480 . . . . . . . . . 10 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → 0s <s ( 1s /su 𝑚))
6344, 46, 51, 59, 62slttrd 27738 . . . . . . . . 9 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → ( -us ‘( 1s /su 𝑛)) <s ( 1s /su 𝑚))
6463adantl 480 . . . . . . . 8 ((𝐴 No ∧ (𝑛 ∈ ℕs𝑚 ∈ ℕs)) → ( -us ‘( 1s /su 𝑛)) <s ( 1s /su 𝑚))
6544adantl 480 . . . . . . . . 9 ((𝐴 No ∧ (𝑛 ∈ ℕs𝑚 ∈ ℕs)) → ( -us ‘( 1s /su 𝑛)) ∈ No )
6650ad2antll 727 . . . . . . . . 9 ((𝐴 No ∧ (𝑛 ∈ ℕs𝑚 ∈ ℕs)) → ( 1s /su 𝑚) ∈ No )
67 simpl 481 . . . . . . . . 9 ((𝐴 No ∧ (𝑛 ∈ ℕs𝑚 ∈ ℕs)) → 𝐴 No )
6865, 66, 67sltadd2d 27960 . . . . . . . 8 ((𝐴 No ∧ (𝑛 ∈ ℕs𝑚 ∈ ℕs)) → (( -us ‘( 1s /su 𝑛)) <s ( 1s /su 𝑚) ↔ (𝐴 +s ( -us ‘( 1s /su 𝑛))) <s (𝐴 +s ( 1s /su 𝑚))))
6964, 68mpbid 231 . . . . . . 7 ((𝐴 No ∧ (𝑛 ∈ ℕs𝑚 ∈ ℕs)) → (𝐴 +s ( -us ‘( 1s /su 𝑛))) <s (𝐴 +s ( 1s /su 𝑚)))
7042, 69eqbrtrd 5171 . . . . . 6 ((𝐴 No ∧ (𝑛 ∈ ℕs𝑚 ∈ ℕs)) → (𝐴 -s ( 1s /su 𝑛)) <s (𝐴 +s ( 1s /su 𝑚)))
71 breq12 5154 . . . . . 6 ((𝑦 = (𝐴 -s ( 1s /su 𝑛)) ∧ 𝑧 = (𝐴 +s ( 1s /su 𝑚))) → (𝑦 <s 𝑧 ↔ (𝐴 -s ( 1s /su 𝑛)) <s (𝐴 +s ( 1s /su 𝑚))))
7270, 71syl5ibrcom 246 . . . . 5 ((𝐴 No ∧ (𝑛 ∈ ℕs𝑚 ∈ ℕs)) → ((𝑦 = (𝐴 -s ( 1s /su 𝑛)) ∧ 𝑧 = (𝐴 +s ( 1s /su 𝑚))) → 𝑦 <s 𝑧))
7372rexlimdvva 3201 . . . 4 (𝐴 No → (∃𝑛 ∈ ℕs𝑚 ∈ ℕs (𝑦 = (𝐴 -s ( 1s /su 𝑛)) ∧ 𝑧 = (𝐴 +s ( 1s /su 𝑚))) → 𝑦 <s 𝑧))
7438, 73biimtrid 241 . . 3 (𝐴 No → ((𝑦 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} ∧ 𝑧 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}) → 𝑦 <s 𝑧))
75743impib 1113 . 2 ((𝐴 No 𝑦 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} ∧ 𝑧 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}) → 𝑦 <s 𝑧)
763, 5, 16, 22, 75ssltd 27770 1 (𝐴 No → {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} <<s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1533  wcel 2098  {cab 2702  wrex 3059  Vcvv 3461   class class class wbr 5149  cfv 6549  (class class class)co 7419   No csur 27618   <s cslt 27619   <<s csslt 27759   0s c0s 27801   1s c1s 27802   +s cadds 27922   -us cnegs 27978   -s csubs 27979   /su cdivs 28137  scnns 28236
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-dc 10471
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-ot 4639  df-uni 4910  df-int 4951  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-1st 7994  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-oadd 8491  df-nadd 8687  df-no 27621  df-slt 27622  df-bday 27623  df-sle 27724  df-sslt 27760  df-scut 27762  df-0s 27803  df-1s 27804  df-made 27820  df-old 27821  df-left 27823  df-right 27824  df-norec 27901  df-norec2 27912  df-adds 27923  df-negs 27980  df-subs 27981  df-muls 28057  df-divs 28138  df-n0s 28237  df-nns 28238
This theorem is referenced by:  renegscl  28298  readdscl  28299  remulscl  28302
  Copyright terms: Public domain W3C validator