MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  recut Structured version   Visualization version   GIF version

Theorem recut 28217
Description: The cut involved in defining surreal reals is a genuine cut. (Contributed by Scott Fenton, 15-Apr-2025.)
Assertion
Ref Expression
recut (𝐴 No → {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} <<s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))})
Distinct variable group:   𝑥,𝐴,𝑛

Proof of Theorem recut
Dummy variables 𝑦 𝑧 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnsex 28183 . . . 4 s ∈ V
21abrexex 7960 . . 3 {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} ∈ V
32a1i 11 . 2 (𝐴 No → {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} ∈ V)
41abrexex 7960 . . 3 {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))} ∈ V
54a1i 11 . 2 (𝐴 No → {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))} ∈ V)
6 1sno 27753 . . . . . . . 8 1s No
76a1i 11 . . . . . . 7 (𝑛 ∈ ℕs → 1s No )
8 nnsno 28189 . . . . . . 7 (𝑛 ∈ ℕs𝑛 No )
9 nnne0s 28198 . . . . . . 7 (𝑛 ∈ ℕs𝑛 ≠ 0s )
107, 8, 9divscld 28115 . . . . . 6 (𝑛 ∈ ℕs → ( 1s /su 𝑛) ∈ No )
11 subscl 27965 . . . . . 6 ((𝐴 No ∧ ( 1s /su 𝑛) ∈ No ) → (𝐴 -s ( 1s /su 𝑛)) ∈ No )
1210, 11sylan2 592 . . . . 5 ((𝐴 No 𝑛 ∈ ℕs) → (𝐴 -s ( 1s /su 𝑛)) ∈ No )
13 eleq1 2816 . . . . 5 (𝑥 = (𝐴 -s ( 1s /su 𝑛)) → (𝑥 No ↔ (𝐴 -s ( 1s /su 𝑛)) ∈ No ))
1412, 13syl5ibrcom 246 . . . 4 ((𝐴 No 𝑛 ∈ ℕs) → (𝑥 = (𝐴 -s ( 1s /su 𝑛)) → 𝑥 No ))
1514rexlimdva 3150 . . 3 (𝐴 No → (∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛)) → 𝑥 No ))
1615abssdv 4061 . 2 (𝐴 No → {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} ⊆ No )
17 addscl 27891 . . . . . 6 ((𝐴 No ∧ ( 1s /su 𝑛) ∈ No ) → (𝐴 +s ( 1s /su 𝑛)) ∈ No )
1810, 17sylan2 592 . . . . 5 ((𝐴 No 𝑛 ∈ ℕs) → (𝐴 +s ( 1s /su 𝑛)) ∈ No )
19 eleq1 2816 . . . . 5 (𝑥 = (𝐴 +s ( 1s /su 𝑛)) → (𝑥 No ↔ (𝐴 +s ( 1s /su 𝑛)) ∈ No ))
2018, 19syl5ibrcom 246 . . . 4 ((𝐴 No 𝑛 ∈ ℕs) → (𝑥 = (𝐴 +s ( 1s /su 𝑛)) → 𝑥 No ))
2120rexlimdva 3150 . . 3 (𝐴 No → (∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛)) → 𝑥 No ))
2221abssdv 4061 . 2 (𝐴 No → {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))} ⊆ No )
23 vex 3473 . . . . . . 7 𝑦 ∈ V
24 eqeq1 2731 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥 = (𝐴 -s ( 1s /su 𝑛)) ↔ 𝑦 = (𝐴 -s ( 1s /su 𝑛))))
2524rexbidv 3173 . . . . . . 7 (𝑥 = 𝑦 → (∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛)) ↔ ∃𝑛 ∈ ℕs 𝑦 = (𝐴 -s ( 1s /su 𝑛))))
2623, 25elab 3665 . . . . . 6 (𝑦 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} ↔ ∃𝑛 ∈ ℕs 𝑦 = (𝐴 -s ( 1s /su 𝑛)))
27 vex 3473 . . . . . . 7 𝑧 ∈ V
28 eqeq1 2731 . . . . . . . . 9 (𝑥 = 𝑧 → (𝑥 = (𝐴 +s ( 1s /su 𝑛)) ↔ 𝑧 = (𝐴 +s ( 1s /su 𝑛))))
2928rexbidv 3173 . . . . . . . 8 (𝑥 = 𝑧 → (∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛)) ↔ ∃𝑛 ∈ ℕs 𝑧 = (𝐴 +s ( 1s /su 𝑛))))
30 oveq2 7422 . . . . . . . . . . 11 (𝑛 = 𝑚 → ( 1s /su 𝑛) = ( 1s /su 𝑚))
3130oveq2d 7430 . . . . . . . . . 10 (𝑛 = 𝑚 → (𝐴 +s ( 1s /su 𝑛)) = (𝐴 +s ( 1s /su 𝑚)))
3231eqeq2d 2738 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑧 = (𝐴 +s ( 1s /su 𝑛)) ↔ 𝑧 = (𝐴 +s ( 1s /su 𝑚))))
3332cbvrexvw 3230 . . . . . . . 8 (∃𝑛 ∈ ℕs 𝑧 = (𝐴 +s ( 1s /su 𝑛)) ↔ ∃𝑚 ∈ ℕs 𝑧 = (𝐴 +s ( 1s /su 𝑚)))
3429, 33bitrdi 287 . . . . . . 7 (𝑥 = 𝑧 → (∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛)) ↔ ∃𝑚 ∈ ℕs 𝑧 = (𝐴 +s ( 1s /su 𝑚))))
3527, 34elab 3665 . . . . . 6 (𝑧 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))} ↔ ∃𝑚 ∈ ℕs 𝑧 = (𝐴 +s ( 1s /su 𝑚)))
3626, 35anbi12i 626 . . . . 5 ((𝑦 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} ∧ 𝑧 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}) ↔ (∃𝑛 ∈ ℕs 𝑦 = (𝐴 -s ( 1s /su 𝑛)) ∧ ∃𝑚 ∈ ℕs 𝑧 = (𝐴 +s ( 1s /su 𝑚))))
37 reeanv 3221 . . . . 5 (∃𝑛 ∈ ℕs𝑚 ∈ ℕs (𝑦 = (𝐴 -s ( 1s /su 𝑛)) ∧ 𝑧 = (𝐴 +s ( 1s /su 𝑚))) ↔ (∃𝑛 ∈ ℕs 𝑦 = (𝐴 -s ( 1s /su 𝑛)) ∧ ∃𝑚 ∈ ℕs 𝑧 = (𝐴 +s ( 1s /su 𝑚))))
3836, 37bitr4i 278 . . . 4 ((𝑦 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} ∧ 𝑧 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}) ↔ ∃𝑛 ∈ ℕs𝑚 ∈ ℕs (𝑦 = (𝐴 -s ( 1s /su 𝑛)) ∧ 𝑧 = (𝐴 +s ( 1s /su 𝑚))))
39 simpl 482 . . . . . . . . 9 ((𝐴 No 𝑛 ∈ ℕs) → 𝐴 No )
4010adantl 481 . . . . . . . . 9 ((𝐴 No 𝑛 ∈ ℕs) → ( 1s /su 𝑛) ∈ No )
4139, 40subsvald 27964 . . . . . . . 8 ((𝐴 No 𝑛 ∈ ℕs) → (𝐴 -s ( 1s /su 𝑛)) = (𝐴 +s ( -us ‘( 1s /su 𝑛))))
4241adantrr 716 . . . . . . 7 ((𝐴 No ∧ (𝑛 ∈ ℕs𝑚 ∈ ℕs)) → (𝐴 -s ( 1s /su 𝑛)) = (𝐴 +s ( -us ‘( 1s /su 𝑛))))
4310negscld 27942 . . . . . . . . . . 11 (𝑛 ∈ ℕs → ( -us ‘( 1s /su 𝑛)) ∈ No )
4443adantr 480 . . . . . . . . . 10 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → ( -us ‘( 1s /su 𝑛)) ∈ No )
45 0sno 27752 . . . . . . . . . . 11 0s No
4645a1i 11 . . . . . . . . . 10 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → 0s No )
476a1i 11 . . . . . . . . . . . 12 (𝑚 ∈ ℕs → 1s No )
48 nnsno 28189 . . . . . . . . . . . 12 (𝑚 ∈ ℕs𝑚 No )
49 nnne0s 28198 . . . . . . . . . . . 12 (𝑚 ∈ ℕs𝑚 ≠ 0s )
5047, 48, 49divscld 28115 . . . . . . . . . . 11 (𝑚 ∈ ℕs → ( 1s /su 𝑚) ∈ No )
5150adantl 481 . . . . . . . . . 10 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → ( 1s /su 𝑚) ∈ No )
52 id 22 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕs𝑛 ∈ ℕs)
5352nnsrecgt0d 28212 . . . . . . . . . . . . 13 (𝑛 ∈ ℕs → 0s <s ( 1s /su 𝑛))
5445a1i 11 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕs → 0s No )
5554, 10sltnegd 27952 . . . . . . . . . . . . 13 (𝑛 ∈ ℕs → ( 0s <s ( 1s /su 𝑛) ↔ ( -us ‘( 1s /su 𝑛)) <s ( -us ‘ 0s )))
5653, 55mpbid 231 . . . . . . . . . . . 12 (𝑛 ∈ ℕs → ( -us ‘( 1s /su 𝑛)) <s ( -us ‘ 0s ))
57 negs0s 27932 . . . . . . . . . . . 12 ( -us ‘ 0s ) = 0s
5856, 57breqtrdi 5183 . . . . . . . . . . 11 (𝑛 ∈ ℕs → ( -us ‘( 1s /su 𝑛)) <s 0s )
5958adantr 480 . . . . . . . . . 10 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → ( -us ‘( 1s /su 𝑛)) <s 0s )
60 id 22 . . . . . . . . . . . 12 (𝑚 ∈ ℕs𝑚 ∈ ℕs)
6160nnsrecgt0d 28212 . . . . . . . . . . 11 (𝑚 ∈ ℕs → 0s <s ( 1s /su 𝑚))
6261adantl 481 . . . . . . . . . 10 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → 0s <s ( 1s /su 𝑚))
6344, 46, 51, 59, 62slttrd 27685 . . . . . . . . 9 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → ( -us ‘( 1s /su 𝑛)) <s ( 1s /su 𝑚))
6463adantl 481 . . . . . . . 8 ((𝐴 No ∧ (𝑛 ∈ ℕs𝑚 ∈ ℕs)) → ( -us ‘( 1s /su 𝑛)) <s ( 1s /su 𝑚))
6544adantl 481 . . . . . . . . 9 ((𝐴 No ∧ (𝑛 ∈ ℕs𝑚 ∈ ℕs)) → ( -us ‘( 1s /su 𝑛)) ∈ No )
6650ad2antll 728 . . . . . . . . 9 ((𝐴 No ∧ (𝑛 ∈ ℕs𝑚 ∈ ℕs)) → ( 1s /su 𝑚) ∈ No )
67 simpl 482 . . . . . . . . 9 ((𝐴 No ∧ (𝑛 ∈ ℕs𝑚 ∈ ℕs)) → 𝐴 No )
6865, 66, 67sltadd2d 27907 . . . . . . . 8 ((𝐴 No ∧ (𝑛 ∈ ℕs𝑚 ∈ ℕs)) → (( -us ‘( 1s /su 𝑛)) <s ( 1s /su 𝑚) ↔ (𝐴 +s ( -us ‘( 1s /su 𝑛))) <s (𝐴 +s ( 1s /su 𝑚))))
6964, 68mpbid 231 . . . . . . 7 ((𝐴 No ∧ (𝑛 ∈ ℕs𝑚 ∈ ℕs)) → (𝐴 +s ( -us ‘( 1s /su 𝑛))) <s (𝐴 +s ( 1s /su 𝑚)))
7042, 69eqbrtrd 5164 . . . . . 6 ((𝐴 No ∧ (𝑛 ∈ ℕs𝑚 ∈ ℕs)) → (𝐴 -s ( 1s /su 𝑛)) <s (𝐴 +s ( 1s /su 𝑚)))
71 breq12 5147 . . . . . 6 ((𝑦 = (𝐴 -s ( 1s /su 𝑛)) ∧ 𝑧 = (𝐴 +s ( 1s /su 𝑚))) → (𝑦 <s 𝑧 ↔ (𝐴 -s ( 1s /su 𝑛)) <s (𝐴 +s ( 1s /su 𝑚))))
7270, 71syl5ibrcom 246 . . . . 5 ((𝐴 No ∧ (𝑛 ∈ ℕs𝑚 ∈ ℕs)) → ((𝑦 = (𝐴 -s ( 1s /su 𝑛)) ∧ 𝑧 = (𝐴 +s ( 1s /su 𝑚))) → 𝑦 <s 𝑧))
7372rexlimdvva 3206 . . . 4 (𝐴 No → (∃𝑛 ∈ ℕs𝑚 ∈ ℕs (𝑦 = (𝐴 -s ( 1s /su 𝑛)) ∧ 𝑧 = (𝐴 +s ( 1s /su 𝑚))) → 𝑦 <s 𝑧))
7438, 73biimtrid 241 . . 3 (𝐴 No → ((𝑦 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} ∧ 𝑧 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}) → 𝑦 <s 𝑧))
75743impib 1114 . 2 ((𝐴 No 𝑦 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} ∧ 𝑧 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}) → 𝑦 <s 𝑧)
763, 5, 16, 22, 75ssltd 27717 1 (𝐴 No → {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} <<s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1534  wcel 2099  {cab 2704  wrex 3065  Vcvv 3469   class class class wbr 5142  cfv 6542  (class class class)co 7414   No csur 27566   <s cslt 27567   <<s csslt 27706   0s c0s 27748   1s c1s 27749   +s cadds 27869   -us cnegs 27925   -s csubs 27926   /su cdivs 28080  scnns 28179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5359  ax-pr 5423  ax-un 7734  ax-dc 10463
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-ot 4633  df-uni 4904  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-se 5628  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7865  df-1st 7987  df-2nd 7988  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-nadd 8680  df-no 27569  df-slt 27570  df-bday 27571  df-sle 27671  df-sslt 27707  df-scut 27709  df-0s 27750  df-1s 27751  df-made 27767  df-old 27768  df-left 27770  df-right 27771  df-norec 27848  df-norec2 27859  df-adds 27870  df-negs 27927  df-subs 27928  df-muls 28000  df-divs 28081  df-n0s 28180  df-nns 28181
This theorem is referenced by:  renegscl  28219  readdscl  28220  remulscl  28223
  Copyright terms: Public domain W3C validator