MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  recut Structured version   Visualization version   GIF version

Theorem recut 28408
Description: The cut involved in defining surreal reals is a genuine cut. (Contributed by Scott Fenton, 15-Apr-2025.)
Assertion
Ref Expression
recut (𝐴 No → {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} <<s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))})
Distinct variable group:   𝑥,𝐴,𝑛

Proof of Theorem recut
Dummy variables 𝑦 𝑧 𝑚 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnsex 28257 . . . 4 s ∈ V
21abrexex 7903 . . 3 {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} ∈ V
32a1i 11 . 2 (𝐴 No → {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} ∈ V)
41abrexex 7903 . . 3 {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))} ∈ V
54a1i 11 . 2 (𝐴 No → {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))} ∈ V)
6 1sno 27781 . . . . . . . 8 1s No
76a1i 11 . . . . . . 7 (𝑛 ∈ ℕs → 1s No )
8 nnsno 28263 . . . . . . 7 (𝑛 ∈ ℕs𝑛 No )
9 nnne0s 28275 . . . . . . 7 (𝑛 ∈ ℕs𝑛 ≠ 0s )
107, 8, 9divscld 28172 . . . . . 6 (𝑛 ∈ ℕs → ( 1s /su 𝑛) ∈ No )
11 subscl 28012 . . . . . 6 ((𝐴 No ∧ ( 1s /su 𝑛) ∈ No ) → (𝐴 -s ( 1s /su 𝑛)) ∈ No )
1210, 11sylan2 593 . . . . 5 ((𝐴 No 𝑛 ∈ ℕs) → (𝐴 -s ( 1s /su 𝑛)) ∈ No )
13 eleq1 2821 . . . . 5 (𝑥 = (𝐴 -s ( 1s /su 𝑛)) → (𝑥 No ↔ (𝐴 -s ( 1s /su 𝑛)) ∈ No ))
1412, 13syl5ibrcom 247 . . . 4 ((𝐴 No 𝑛 ∈ ℕs) → (𝑥 = (𝐴 -s ( 1s /su 𝑛)) → 𝑥 No ))
1514rexlimdva 3135 . . 3 (𝐴 No → (∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛)) → 𝑥 No ))
1615abssdv 4017 . 2 (𝐴 No → {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} ⊆ No )
17 addscl 27934 . . . . . 6 ((𝐴 No ∧ ( 1s /su 𝑛) ∈ No ) → (𝐴 +s ( 1s /su 𝑛)) ∈ No )
1810, 17sylan2 593 . . . . 5 ((𝐴 No 𝑛 ∈ ℕs) → (𝐴 +s ( 1s /su 𝑛)) ∈ No )
19 eleq1 2821 . . . . 5 (𝑥 = (𝐴 +s ( 1s /su 𝑛)) → (𝑥 No ↔ (𝐴 +s ( 1s /su 𝑛)) ∈ No ))
2018, 19syl5ibrcom 247 . . . 4 ((𝐴 No 𝑛 ∈ ℕs) → (𝑥 = (𝐴 +s ( 1s /su 𝑛)) → 𝑥 No ))
2120rexlimdva 3135 . . 3 (𝐴 No → (∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛)) → 𝑥 No ))
2221abssdv 4017 . 2 (𝐴 No → {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))} ⊆ No )
23 vex 3442 . . . . . . 7 𝑦 ∈ V
24 eqeq1 2737 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥 = (𝐴 -s ( 1s /su 𝑛)) ↔ 𝑦 = (𝐴 -s ( 1s /su 𝑛))))
2524rexbidv 3158 . . . . . . 7 (𝑥 = 𝑦 → (∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛)) ↔ ∃𝑛 ∈ ℕs 𝑦 = (𝐴 -s ( 1s /su 𝑛))))
2623, 25elab 3632 . . . . . 6 (𝑦 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} ↔ ∃𝑛 ∈ ℕs 𝑦 = (𝐴 -s ( 1s /su 𝑛)))
27 vex 3442 . . . . . . 7 𝑧 ∈ V
28 eqeq1 2737 . . . . . . . . 9 (𝑥 = 𝑧 → (𝑥 = (𝐴 +s ( 1s /su 𝑛)) ↔ 𝑧 = (𝐴 +s ( 1s /su 𝑛))))
2928rexbidv 3158 . . . . . . . 8 (𝑥 = 𝑧 → (∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛)) ↔ ∃𝑛 ∈ ℕs 𝑧 = (𝐴 +s ( 1s /su 𝑛))))
30 oveq2 7363 . . . . . . . . . . 11 (𝑛 = 𝑚 → ( 1s /su 𝑛) = ( 1s /su 𝑚))
3130oveq2d 7371 . . . . . . . . . 10 (𝑛 = 𝑚 → (𝐴 +s ( 1s /su 𝑛)) = (𝐴 +s ( 1s /su 𝑚)))
3231eqeq2d 2744 . . . . . . . . 9 (𝑛 = 𝑚 → (𝑧 = (𝐴 +s ( 1s /su 𝑛)) ↔ 𝑧 = (𝐴 +s ( 1s /su 𝑚))))
3332cbvrexvw 3213 . . . . . . . 8 (∃𝑛 ∈ ℕs 𝑧 = (𝐴 +s ( 1s /su 𝑛)) ↔ ∃𝑚 ∈ ℕs 𝑧 = (𝐴 +s ( 1s /su 𝑚)))
3429, 33bitrdi 287 . . . . . . 7 (𝑥 = 𝑧 → (∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛)) ↔ ∃𝑚 ∈ ℕs 𝑧 = (𝐴 +s ( 1s /su 𝑚))))
3527, 34elab 3632 . . . . . 6 (𝑧 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))} ↔ ∃𝑚 ∈ ℕs 𝑧 = (𝐴 +s ( 1s /su 𝑚)))
3626, 35anbi12i 628 . . . . 5 ((𝑦 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} ∧ 𝑧 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}) ↔ (∃𝑛 ∈ ℕs 𝑦 = (𝐴 -s ( 1s /su 𝑛)) ∧ ∃𝑚 ∈ ℕs 𝑧 = (𝐴 +s ( 1s /su 𝑚))))
37 reeanv 3206 . . . . 5 (∃𝑛 ∈ ℕs𝑚 ∈ ℕs (𝑦 = (𝐴 -s ( 1s /su 𝑛)) ∧ 𝑧 = (𝐴 +s ( 1s /su 𝑚))) ↔ (∃𝑛 ∈ ℕs 𝑦 = (𝐴 -s ( 1s /su 𝑛)) ∧ ∃𝑚 ∈ ℕs 𝑧 = (𝐴 +s ( 1s /su 𝑚))))
3836, 37bitr4i 278 . . . 4 ((𝑦 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} ∧ 𝑧 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}) ↔ ∃𝑛 ∈ ℕs𝑚 ∈ ℕs (𝑦 = (𝐴 -s ( 1s /su 𝑛)) ∧ 𝑧 = (𝐴 +s ( 1s /su 𝑚))))
39 simpl 482 . . . . . . . . 9 ((𝐴 No 𝑛 ∈ ℕs) → 𝐴 No )
4010adantl 481 . . . . . . . . 9 ((𝐴 No 𝑛 ∈ ℕs) → ( 1s /su 𝑛) ∈ No )
4139, 40subsvald 28011 . . . . . . . 8 ((𝐴 No 𝑛 ∈ ℕs) → (𝐴 -s ( 1s /su 𝑛)) = (𝐴 +s ( -us ‘( 1s /su 𝑛))))
4241adantrr 717 . . . . . . 7 ((𝐴 No ∧ (𝑛 ∈ ℕs𝑚 ∈ ℕs)) → (𝐴 -s ( 1s /su 𝑛)) = (𝐴 +s ( -us ‘( 1s /su 𝑛))))
4310negscld 27989 . . . . . . . . . . 11 (𝑛 ∈ ℕs → ( -us ‘( 1s /su 𝑛)) ∈ No )
4443adantr 480 . . . . . . . . . 10 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → ( -us ‘( 1s /su 𝑛)) ∈ No )
45 0sno 27780 . . . . . . . . . . 11 0s No
4645a1i 11 . . . . . . . . . 10 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → 0s No )
476a1i 11 . . . . . . . . . . . 12 (𝑚 ∈ ℕs → 1s No )
48 nnsno 28263 . . . . . . . . . . . 12 (𝑚 ∈ ℕs𝑚 No )
49 nnne0s 28275 . . . . . . . . . . . 12 (𝑚 ∈ ℕs𝑚 ≠ 0s )
5047, 48, 49divscld 28172 . . . . . . . . . . 11 (𝑚 ∈ ℕs → ( 1s /su 𝑚) ∈ No )
5150adantl 481 . . . . . . . . . 10 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → ( 1s /su 𝑚) ∈ No )
52 id 22 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕs𝑛 ∈ ℕs)
5352nnsrecgt0d 28289 . . . . . . . . . . . . 13 (𝑛 ∈ ℕs → 0s <s ( 1s /su 𝑛))
5445a1i 11 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕs → 0s No )
5554, 10sltnegd 27999 . . . . . . . . . . . . 13 (𝑛 ∈ ℕs → ( 0s <s ( 1s /su 𝑛) ↔ ( -us ‘( 1s /su 𝑛)) <s ( -us ‘ 0s )))
5653, 55mpbid 232 . . . . . . . . . . . 12 (𝑛 ∈ ℕs → ( -us ‘( 1s /su 𝑛)) <s ( -us ‘ 0s ))
57 negs0s 27978 . . . . . . . . . . . 12 ( -us ‘ 0s ) = 0s
5856, 57breqtrdi 5136 . . . . . . . . . . 11 (𝑛 ∈ ℕs → ( -us ‘( 1s /su 𝑛)) <s 0s )
5958adantr 480 . . . . . . . . . 10 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → ( -us ‘( 1s /su 𝑛)) <s 0s )
60 id 22 . . . . . . . . . . . 12 (𝑚 ∈ ℕs𝑚 ∈ ℕs)
6160nnsrecgt0d 28289 . . . . . . . . . . 11 (𝑚 ∈ ℕs → 0s <s ( 1s /su 𝑚))
6261adantl 481 . . . . . . . . . 10 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → 0s <s ( 1s /su 𝑚))
6344, 46, 51, 59, 62slttrd 27708 . . . . . . . . 9 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → ( -us ‘( 1s /su 𝑛)) <s ( 1s /su 𝑚))
6463adantl 481 . . . . . . . 8 ((𝐴 No ∧ (𝑛 ∈ ℕs𝑚 ∈ ℕs)) → ( -us ‘( 1s /su 𝑛)) <s ( 1s /su 𝑚))
6544adantl 481 . . . . . . . . 9 ((𝐴 No ∧ (𝑛 ∈ ℕs𝑚 ∈ ℕs)) → ( -us ‘( 1s /su 𝑛)) ∈ No )
6650ad2antll 729 . . . . . . . . 9 ((𝐴 No ∧ (𝑛 ∈ ℕs𝑚 ∈ ℕs)) → ( 1s /su 𝑚) ∈ No )
67 simpl 482 . . . . . . . . 9 ((𝐴 No ∧ (𝑛 ∈ ℕs𝑚 ∈ ℕs)) → 𝐴 No )
6865, 66, 67sltadd2d 27950 . . . . . . . 8 ((𝐴 No ∧ (𝑛 ∈ ℕs𝑚 ∈ ℕs)) → (( -us ‘( 1s /su 𝑛)) <s ( 1s /su 𝑚) ↔ (𝐴 +s ( -us ‘( 1s /su 𝑛))) <s (𝐴 +s ( 1s /su 𝑚))))
6964, 68mpbid 232 . . . . . . 7 ((𝐴 No ∧ (𝑛 ∈ ℕs𝑚 ∈ ℕs)) → (𝐴 +s ( -us ‘( 1s /su 𝑛))) <s (𝐴 +s ( 1s /su 𝑚)))
7042, 69eqbrtrd 5117 . . . . . 6 ((𝐴 No ∧ (𝑛 ∈ ℕs𝑚 ∈ ℕs)) → (𝐴 -s ( 1s /su 𝑛)) <s (𝐴 +s ( 1s /su 𝑚)))
71 breq12 5100 . . . . . 6 ((𝑦 = (𝐴 -s ( 1s /su 𝑛)) ∧ 𝑧 = (𝐴 +s ( 1s /su 𝑚))) → (𝑦 <s 𝑧 ↔ (𝐴 -s ( 1s /su 𝑛)) <s (𝐴 +s ( 1s /su 𝑚))))
7270, 71syl5ibrcom 247 . . . . 5 ((𝐴 No ∧ (𝑛 ∈ ℕs𝑚 ∈ ℕs)) → ((𝑦 = (𝐴 -s ( 1s /su 𝑛)) ∧ 𝑧 = (𝐴 +s ( 1s /su 𝑚))) → 𝑦 <s 𝑧))
7372rexlimdvva 3191 . . . 4 (𝐴 No → (∃𝑛 ∈ ℕs𝑚 ∈ ℕs (𝑦 = (𝐴 -s ( 1s /su 𝑛)) ∧ 𝑧 = (𝐴 +s ( 1s /su 𝑚))) → 𝑦 <s 𝑧))
7438, 73biimtrid 242 . . 3 (𝐴 No → ((𝑦 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} ∧ 𝑧 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}) → 𝑦 <s 𝑧))
75743impib 1116 . 2 ((𝐴 No 𝑦 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} ∧ 𝑧 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}) → 𝑦 <s 𝑧)
763, 5, 16, 22, 75ssltd 27741 1 (𝐴 No → {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} <<s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  {cab 2711  wrex 3058  Vcvv 3438   class class class wbr 5095  cfv 6489  (class class class)co 7355   No csur 27588   <s cslt 27589   <<s csslt 27730   0s c0s 27776   1s c1s 27777   +s cadds 27912   -us cnegs 27971   -s csubs 27972   /su cdivs 28136  scnns 28253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-dc 10347
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2883  df-ne 2931  df-ral 3050  df-rex 3059  df-rmo 3348  df-reu 3349  df-rab 3398  df-v 3440  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-ot 4586  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-1o 8394  df-2o 8395  df-oadd 8398  df-nadd 8590  df-no 27591  df-slt 27592  df-bday 27593  df-sle 27694  df-sslt 27731  df-scut 27733  df-0s 27778  df-1s 27779  df-made 27798  df-old 27799  df-left 27801  df-right 27802  df-norec 27891  df-norec2 27902  df-adds 27913  df-negs 27973  df-subs 27974  df-muls 28056  df-divs 28137  df-n0s 28254  df-nns 28255
This theorem is referenced by:  renegscl  28410  readdscl  28411  remulscl  28414
  Copyright terms: Public domain W3C validator