MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0reno Structured version   Visualization version   GIF version

Theorem 0reno 28238
Description: Surreal zero is a surreal real. (Contributed by Scott Fenton, 15-Apr-2025.)
Assertion
Ref Expression
0reno 0s ∈ ℝs

Proof of Theorem 0reno
Dummy variables 𝑥 𝑛 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0sno 27772 . 2 0s No
2 1nns 28228 . . . 4 1s ∈ ℕs
3 0slt1s 27775 . . . . . . 7 0s <s 1s
4 1sno 27773 . . . . . . . 8 1s No
5 sltneg 27970 . . . . . . . 8 (( 0s No ∧ 1s No ) → ( 0s <s 1s ↔ ( -us ‘ 1s ) <s ( -us ‘ 0s )))
61, 4, 5mp2an 691 . . . . . . 7 ( 0s <s 1s ↔ ( -us ‘ 1s ) <s ( -us ‘ 0s ))
73, 6mpbi 229 . . . . . 6 ( -us ‘ 1s ) <s ( -us ‘ 0s )
8 negs0s 27952 . . . . . 6 ( -us ‘ 0s ) = 0s
97, 8breqtri 5173 . . . . 5 ( -us ‘ 1s ) <s 0s
109, 3pm3.2i 470 . . . 4 (( -us ‘ 1s ) <s 0s ∧ 0s <s 1s )
11 fveq2 6897 . . . . . . 7 (𝑛 = 1s → ( -us𝑛) = ( -us ‘ 1s ))
1211breq1d 5158 . . . . . 6 (𝑛 = 1s → (( -us𝑛) <s 0s ↔ ( -us ‘ 1s ) <s 0s ))
13 breq2 5152 . . . . . 6 (𝑛 = 1s → ( 0s <s 𝑛 ↔ 0s <s 1s ))
1412, 13anbi12d 631 . . . . 5 (𝑛 = 1s → ((( -us𝑛) <s 0s ∧ 0s <s 𝑛) ↔ (( -us ‘ 1s ) <s 0s ∧ 0s <s 1s )))
1514rspcev 3609 . . . 4 (( 1s ∈ ℕs ∧ (( -us ‘ 1s ) <s 0s ∧ 0s <s 1s )) → ∃𝑛 ∈ ℕs (( -us𝑛) <s 0s ∧ 0s <s 𝑛))
162, 10, 15mp2an 691 . . 3 𝑛 ∈ ℕs (( -us𝑛) <s 0s ∧ 0s <s 𝑛)
174a1i 11 . . . . . . . . . . 11 (𝑛 ∈ ℕs → 1s No )
18 nnsno 28209 . . . . . . . . . . 11 (𝑛 ∈ ℕs𝑛 No )
19 nnne0s 28218 . . . . . . . . . . 11 (𝑛 ∈ ℕs𝑛 ≠ 0s )
2017, 18, 19divscld 28135 . . . . . . . . . 10 (𝑛 ∈ ℕs → ( 1s /su 𝑛) ∈ No )
2120negsval2d 27988 . . . . . . . . 9 (𝑛 ∈ ℕs → ( -us ‘( 1s /su 𝑛)) = ( 0s -s ( 1s /su 𝑛)))
2221eqeq2d 2739 . . . . . . . 8 (𝑛 ∈ ℕs → (𝑥 = ( -us ‘( 1s /su 𝑛)) ↔ 𝑥 = ( 0s -s ( 1s /su 𝑛))))
2322bicomd 222 . . . . . . 7 (𝑛 ∈ ℕs → (𝑥 = ( 0s -s ( 1s /su 𝑛)) ↔ 𝑥 = ( -us ‘( 1s /su 𝑛))))
2423rexbiia 3089 . . . . . 6 (∃𝑛 ∈ ℕs 𝑥 = ( 0s -s ( 1s /su 𝑛)) ↔ ∃𝑛 ∈ ℕs 𝑥 = ( -us ‘( 1s /su 𝑛)))
2524abbii 2798 . . . . 5 {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = ( 0s -s ( 1s /su 𝑛))} = {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = ( -us ‘( 1s /su 𝑛))}
26 addslid 27898 . . . . . . . . 9 (( 1s /su 𝑛) ∈ No → ( 0s +s ( 1s /su 𝑛)) = ( 1s /su 𝑛))
2720, 26syl 17 . . . . . . . 8 (𝑛 ∈ ℕs → ( 0s +s ( 1s /su 𝑛)) = ( 1s /su 𝑛))
2827eqeq2d 2739 . . . . . . 7 (𝑛 ∈ ℕs → (𝑥 = ( 0s +s ( 1s /su 𝑛)) ↔ 𝑥 = ( 1s /su 𝑛)))
2928rexbiia 3089 . . . . . 6 (∃𝑛 ∈ ℕs 𝑥 = ( 0s +s ( 1s /su 𝑛)) ↔ ∃𝑛 ∈ ℕs 𝑥 = ( 1s /su 𝑛))
3029abbii 2798 . . . . 5 {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = ( 0s +s ( 1s /su 𝑛))} = {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = ( 1s /su 𝑛)}
3125, 30oveq12i 7432 . . . 4 ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = ( 0s -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = ( 0s +s ( 1s /su 𝑛))}) = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = ( -us ‘( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = ( 1s /su 𝑛)})
32 nnsex 28203 . . . . . . . . 9 s ∈ V
3332abrexex 7966 . . . . . . . 8 {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = ( -us ‘( 1s /su 𝑛))} ∈ V
3433a1i 11 . . . . . . 7 (⊤ → {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = ( -us ‘( 1s /su 𝑛))} ∈ V)
35 snex 5433 . . . . . . . 8 { 0s } ∈ V
3635a1i 11 . . . . . . 7 (⊤ → { 0s } ∈ V)
3720negscld 27962 . . . . . . . . . . 11 (𝑛 ∈ ℕs → ( -us ‘( 1s /su 𝑛)) ∈ No )
38 eleq1 2817 . . . . . . . . . . 11 (𝑥 = ( -us ‘( 1s /su 𝑛)) → (𝑥 No ↔ ( -us ‘( 1s /su 𝑛)) ∈ No ))
3937, 38syl5ibrcom 246 . . . . . . . . . 10 (𝑛 ∈ ℕs → (𝑥 = ( -us ‘( 1s /su 𝑛)) → 𝑥 No ))
4039rexlimiv 3145 . . . . . . . . 9 (∃𝑛 ∈ ℕs 𝑥 = ( -us ‘( 1s /su 𝑛)) → 𝑥 No )
4140a1i 11 . . . . . . . 8 (⊤ → (∃𝑛 ∈ ℕs 𝑥 = ( -us ‘( 1s /su 𝑛)) → 𝑥 No ))
4241abssdv 4063 . . . . . . 7 (⊤ → {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = ( -us ‘( 1s /su 𝑛))} ⊆ No )
431a1i 11 . . . . . . . 8 (⊤ → 0s No )
4443snssd 4813 . . . . . . 7 (⊤ → { 0s } ⊆ No )
45 vex 3475 . . . . . . . . . . . 12 𝑧 ∈ V
46 eqeq1 2732 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (𝑥 = ( -us ‘( 1s /su 𝑛)) ↔ 𝑧 = ( -us ‘( 1s /su 𝑛))))
4746rexbidv 3175 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (∃𝑛 ∈ ℕs 𝑥 = ( -us ‘( 1s /su 𝑛)) ↔ ∃𝑛 ∈ ℕs 𝑧 = ( -us ‘( 1s /su 𝑛))))
4845, 47elab 3667 . . . . . . . . . . 11 (𝑧 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = ( -us ‘( 1s /su 𝑛))} ↔ ∃𝑛 ∈ ℕs 𝑧 = ( -us ‘( 1s /su 𝑛)))
49 velsn 4645 . . . . . . . . . . 11 (𝑦 ∈ { 0s } ↔ 𝑦 = 0s )
5048, 49anbi12i 627 . . . . . . . . . 10 ((𝑧 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = ( -us ‘( 1s /su 𝑛))} ∧ 𝑦 ∈ { 0s }) ↔ (∃𝑛 ∈ ℕs 𝑧 = ( -us ‘( 1s /su 𝑛)) ∧ 𝑦 = 0s ))
51 r19.41v 3185 . . . . . . . . . 10 (∃𝑛 ∈ ℕs (𝑧 = ( -us ‘( 1s /su 𝑛)) ∧ 𝑦 = 0s ) ↔ (∃𝑛 ∈ ℕs 𝑧 = ( -us ‘( 1s /su 𝑛)) ∧ 𝑦 = 0s ))
5250, 51bitr4i 278 . . . . . . . . 9 ((𝑧 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = ( -us ‘( 1s /su 𝑛))} ∧ 𝑦 ∈ { 0s }) ↔ ∃𝑛 ∈ ℕs (𝑧 = ( -us ‘( 1s /su 𝑛)) ∧ 𝑦 = 0s ))
53 muls02 28054 . . . . . . . . . . . . . . 15 (𝑛 No → ( 0s ·s 𝑛) = 0s )
5418, 53syl 17 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕs → ( 0s ·s 𝑛) = 0s )
5554, 3eqbrtrdi 5187 . . . . . . . . . . . . 13 (𝑛 ∈ ℕs → ( 0s ·s 𝑛) <s 1s )
561a1i 11 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕs → 0s No )
57 nnsgt0 28220 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕs → 0s <s 𝑛)
5856, 17, 18, 57sltmuldivd 28140 . . . . . . . . . . . . 13 (𝑛 ∈ ℕs → (( 0s ·s 𝑛) <s 1s ↔ 0s <s ( 1s /su 𝑛)))
5955, 58mpbid 231 . . . . . . . . . . . 12 (𝑛 ∈ ℕs → 0s <s ( 1s /su 𝑛))
6020slt0neg2d 27976 . . . . . . . . . . . 12 (𝑛 ∈ ℕs → ( 0s <s ( 1s /su 𝑛) ↔ ( -us ‘( 1s /su 𝑛)) <s 0s ))
6159, 60mpbid 231 . . . . . . . . . . 11 (𝑛 ∈ ℕs → ( -us ‘( 1s /su 𝑛)) <s 0s )
62 breq12 5153 . . . . . . . . . . 11 ((𝑧 = ( -us ‘( 1s /su 𝑛)) ∧ 𝑦 = 0s ) → (𝑧 <s 𝑦 ↔ ( -us ‘( 1s /su 𝑛)) <s 0s ))
6361, 62syl5ibrcom 246 . . . . . . . . . 10 (𝑛 ∈ ℕs → ((𝑧 = ( -us ‘( 1s /su 𝑛)) ∧ 𝑦 = 0s ) → 𝑧 <s 𝑦))
6463rexlimiv 3145 . . . . . . . . 9 (∃𝑛 ∈ ℕs (𝑧 = ( -us ‘( 1s /su 𝑛)) ∧ 𝑦 = 0s ) → 𝑧 <s 𝑦)
6552, 64sylbi 216 . . . . . . . 8 ((𝑧 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = ( -us ‘( 1s /su 𝑛))} ∧ 𝑦 ∈ { 0s }) → 𝑧 <s 𝑦)
66653adant1 1128 . . . . . . 7 ((⊤ ∧ 𝑧 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = ( -us ‘( 1s /su 𝑛))} ∧ 𝑦 ∈ { 0s }) → 𝑧 <s 𝑦)
6734, 36, 42, 44, 66ssltd 27737 . . . . . 6 (⊤ → {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = ( -us ‘( 1s /su 𝑛))} <<s { 0s })
6832abrexex 7966 . . . . . . . 8 {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = ( 1s /su 𝑛)} ∈ V
6968a1i 11 . . . . . . 7 (⊤ → {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = ( 1s /su 𝑛)} ∈ V)
70 eleq1 2817 . . . . . . . . . . 11 (𝑥 = ( 1s /su 𝑛) → (𝑥 No ↔ ( 1s /su 𝑛) ∈ No ))
7120, 70syl5ibrcom 246 . . . . . . . . . 10 (𝑛 ∈ ℕs → (𝑥 = ( 1s /su 𝑛) → 𝑥 No ))
7271rexlimiv 3145 . . . . . . . . 9 (∃𝑛 ∈ ℕs 𝑥 = ( 1s /su 𝑛) → 𝑥 No )
7372a1i 11 . . . . . . . 8 (⊤ → (∃𝑛 ∈ ℕs 𝑥 = ( 1s /su 𝑛) → 𝑥 No ))
7473abssdv 4063 . . . . . . 7 (⊤ → {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = ( 1s /su 𝑛)} ⊆ No )
75 eqeq1 2732 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (𝑥 = ( 1s /su 𝑛) ↔ 𝑧 = ( 1s /su 𝑛)))
7675rexbidv 3175 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (∃𝑛 ∈ ℕs 𝑥 = ( 1s /su 𝑛) ↔ ∃𝑛 ∈ ℕs 𝑧 = ( 1s /su 𝑛)))
7745, 76elab 3667 . . . . . . . . . . 11 (𝑧 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = ( 1s /su 𝑛)} ↔ ∃𝑛 ∈ ℕs 𝑧 = ( 1s /su 𝑛))
7849, 77anbi12i 627 . . . . . . . . . 10 ((𝑦 ∈ { 0s } ∧ 𝑧 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = ( 1s /su 𝑛)}) ↔ (𝑦 = 0s ∧ ∃𝑛 ∈ ℕs 𝑧 = ( 1s /su 𝑛)))
79 r19.42v 3187 . . . . . . . . . 10 (∃𝑛 ∈ ℕs (𝑦 = 0s𝑧 = ( 1s /su 𝑛)) ↔ (𝑦 = 0s ∧ ∃𝑛 ∈ ℕs 𝑧 = ( 1s /su 𝑛)))
8078, 79bitr4i 278 . . . . . . . . 9 ((𝑦 ∈ { 0s } ∧ 𝑧 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = ( 1s /su 𝑛)}) ↔ ∃𝑛 ∈ ℕs (𝑦 = 0s𝑧 = ( 1s /su 𝑛)))
81 breq12 5153 . . . . . . . . . . . 12 ((𝑦 = 0s𝑧 = ( 1s /su 𝑛)) → (𝑦 <s 𝑧 ↔ 0s <s ( 1s /su 𝑛)))
8259, 81syl5ibrcom 246 . . . . . . . . . . 11 (𝑛 ∈ ℕs → ((𝑦 = 0s𝑧 = ( 1s /su 𝑛)) → 𝑦 <s 𝑧))
8382rexlimiv 3145 . . . . . . . . . 10 (∃𝑛 ∈ ℕs (𝑦 = 0s𝑧 = ( 1s /su 𝑛)) → 𝑦 <s 𝑧)
8483a1i 11 . . . . . . . . 9 (⊤ → (∃𝑛 ∈ ℕs (𝑦 = 0s𝑧 = ( 1s /su 𝑛)) → 𝑦 <s 𝑧))
8580, 84biimtrid 241 . . . . . . . 8 (⊤ → ((𝑦 ∈ { 0s } ∧ 𝑧 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = ( 1s /su 𝑛)}) → 𝑦 <s 𝑧))
86853impib 1114 . . . . . . 7 ((⊤ ∧ 𝑦 ∈ { 0s } ∧ 𝑧 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = ( 1s /su 𝑛)}) → 𝑦 <s 𝑧)
8736, 69, 44, 74, 86ssltd 27737 . . . . . 6 (⊤ → { 0s } <<s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = ( 1s /su 𝑛)})
8867, 87cuteq0 27778 . . . . 5 (⊤ → ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = ( -us ‘( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = ( 1s /su 𝑛)}) = 0s )
8988mptru 1541 . . . 4 ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = ( -us ‘( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = ( 1s /su 𝑛)}) = 0s
9031, 89eqtr2i 2757 . . 3 0s = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = ( 0s -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = ( 0s +s ( 1s /su 𝑛))})
9116, 90pm3.2i 470 . 2 (∃𝑛 ∈ ℕs (( -us𝑛) <s 0s ∧ 0s <s 𝑛) ∧ 0s = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = ( 0s -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = ( 0s +s ( 1s /su 𝑛))}))
92 elreno 28236 . 2 ( 0s ∈ ℝs ↔ ( 0s No ∧ (∃𝑛 ∈ ℕs (( -us𝑛) <s 0s ∧ 0s <s 𝑛) ∧ 0s = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = ( 0s -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = ( 0s +s ( 1s /su 𝑛))}))))
931, 91, 92mpbir2an 710 1 0s ∈ ℝs
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1534  wtru 1535  wcel 2099  {cab 2705  wrex 3067  Vcvv 3471  {csn 4629   class class class wbr 5148  cfv 6548  (class class class)co 7420   No csur 27586   <s cslt 27587   |s cscut 27728   0s c0s 27768   1s c1s 27769   +s cadds 27889   -us cnegs 27945   -s csubs 27946   ·s cmuls 28019   /su cdivs 28100  scnns 28199  screno 28234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-dc 10470
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-ot 4638  df-uni 4909  df-int 4950  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-se 5634  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6305  df-ord 6372  df-on 6373  df-lim 6374  df-suc 6375  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-om 7871  df-1st 7993  df-2nd 7994  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-1o 8487  df-2o 8488  df-oadd 8491  df-nadd 8687  df-no 27589  df-slt 27590  df-bday 27591  df-sle 27691  df-sslt 27727  df-scut 27729  df-0s 27770  df-1s 27771  df-made 27787  df-old 27788  df-left 27790  df-right 27791  df-norec 27868  df-norec2 27879  df-adds 27890  df-negs 27947  df-subs 27948  df-muls 28020  df-divs 28101  df-n0s 28200  df-nns 28201  df-reno 28235
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator