MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0reno Structured version   Visualization version   GIF version

Theorem 0reno 28447
Description: Surreal zero is a surreal real. (Contributed by Scott Fenton, 15-Apr-2025.)
Assertion
Ref Expression
0reno 0s ∈ ℝs

Proof of Theorem 0reno
Dummy variables 𝑥 𝑛 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 0sno 27889 . 2 0s No
2 1nns 28370 . . . 4 1s ∈ ℕs
3 0slt1s 27892 . . . . . . 7 0s <s 1s
4 1sno 27890 . . . . . . . 8 1s No
5 sltneg 28095 . . . . . . . 8 (( 0s No ∧ 1s No ) → ( 0s <s 1s ↔ ( -us ‘ 1s ) <s ( -us ‘ 0s )))
61, 4, 5mp2an 691 . . . . . . 7 ( 0s <s 1s ↔ ( -us ‘ 1s ) <s ( -us ‘ 0s ))
73, 6mpbi 230 . . . . . 6 ( -us ‘ 1s ) <s ( -us ‘ 0s )
8 negs0s 28076 . . . . . 6 ( -us ‘ 0s ) = 0s
97, 8breqtri 5191 . . . . 5 ( -us ‘ 1s ) <s 0s
109, 3pm3.2i 470 . . . 4 (( -us ‘ 1s ) <s 0s ∧ 0s <s 1s )
11 fveq2 6920 . . . . . . 7 (𝑛 = 1s → ( -us𝑛) = ( -us ‘ 1s ))
1211breq1d 5176 . . . . . 6 (𝑛 = 1s → (( -us𝑛) <s 0s ↔ ( -us ‘ 1s ) <s 0s ))
13 breq2 5170 . . . . . 6 (𝑛 = 1s → ( 0s <s 𝑛 ↔ 0s <s 1s ))
1412, 13anbi12d 631 . . . . 5 (𝑛 = 1s → ((( -us𝑛) <s 0s ∧ 0s <s 𝑛) ↔ (( -us ‘ 1s ) <s 0s ∧ 0s <s 1s )))
1514rspcev 3635 . . . 4 (( 1s ∈ ℕs ∧ (( -us ‘ 1s ) <s 0s ∧ 0s <s 1s )) → ∃𝑛 ∈ ℕs (( -us𝑛) <s 0s ∧ 0s <s 𝑛))
162, 10, 15mp2an 691 . . 3 𝑛 ∈ ℕs (( -us𝑛) <s 0s ∧ 0s <s 𝑛)
174a1i 11 . . . . . . . . . . 11 (𝑛 ∈ ℕs → 1s No )
18 nnsno 28347 . . . . . . . . . . 11 (𝑛 ∈ ℕs𝑛 No )
19 nnne0s 28358 . . . . . . . . . . 11 (𝑛 ∈ ℕs𝑛 ≠ 0s )
2017, 18, 19divscld 28266 . . . . . . . . . 10 (𝑛 ∈ ℕs → ( 1s /su 𝑛) ∈ No )
2120negsval2d 28115 . . . . . . . . 9 (𝑛 ∈ ℕs → ( -us ‘( 1s /su 𝑛)) = ( 0s -s ( 1s /su 𝑛)))
2221eqeq2d 2751 . . . . . . . 8 (𝑛 ∈ ℕs → (𝑥 = ( -us ‘( 1s /su 𝑛)) ↔ 𝑥 = ( 0s -s ( 1s /su 𝑛))))
2322bicomd 223 . . . . . . 7 (𝑛 ∈ ℕs → (𝑥 = ( 0s -s ( 1s /su 𝑛)) ↔ 𝑥 = ( -us ‘( 1s /su 𝑛))))
2423rexbiia 3098 . . . . . 6 (∃𝑛 ∈ ℕs 𝑥 = ( 0s -s ( 1s /su 𝑛)) ↔ ∃𝑛 ∈ ℕs 𝑥 = ( -us ‘( 1s /su 𝑛)))
2524abbii 2812 . . . . 5 {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = ( 0s -s ( 1s /su 𝑛))} = {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = ( -us ‘( 1s /su 𝑛))}
26 addslid 28019 . . . . . . . . 9 (( 1s /su 𝑛) ∈ No → ( 0s +s ( 1s /su 𝑛)) = ( 1s /su 𝑛))
2720, 26syl 17 . . . . . . . 8 (𝑛 ∈ ℕs → ( 0s +s ( 1s /su 𝑛)) = ( 1s /su 𝑛))
2827eqeq2d 2751 . . . . . . 7 (𝑛 ∈ ℕs → (𝑥 = ( 0s +s ( 1s /su 𝑛)) ↔ 𝑥 = ( 1s /su 𝑛)))
2928rexbiia 3098 . . . . . 6 (∃𝑛 ∈ ℕs 𝑥 = ( 0s +s ( 1s /su 𝑛)) ↔ ∃𝑛 ∈ ℕs 𝑥 = ( 1s /su 𝑛))
3029abbii 2812 . . . . 5 {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = ( 0s +s ( 1s /su 𝑛))} = {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = ( 1s /su 𝑛)}
3125, 30oveq12i 7460 . . . 4 ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = ( 0s -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = ( 0s +s ( 1s /su 𝑛))}) = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = ( -us ‘( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = ( 1s /su 𝑛)})
32 nnsex 28341 . . . . . . . . 9 s ∈ V
3332abrexex 8003 . . . . . . . 8 {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = ( -us ‘( 1s /su 𝑛))} ∈ V
3433a1i 11 . . . . . . 7 (⊤ → {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = ( -us ‘( 1s /su 𝑛))} ∈ V)
35 snex 5451 . . . . . . . 8 { 0s } ∈ V
3635a1i 11 . . . . . . 7 (⊤ → { 0s } ∈ V)
3720negscld 28087 . . . . . . . . . . 11 (𝑛 ∈ ℕs → ( -us ‘( 1s /su 𝑛)) ∈ No )
38 eleq1 2832 . . . . . . . . . . 11 (𝑥 = ( -us ‘( 1s /su 𝑛)) → (𝑥 No ↔ ( -us ‘( 1s /su 𝑛)) ∈ No ))
3937, 38syl5ibrcom 247 . . . . . . . . . 10 (𝑛 ∈ ℕs → (𝑥 = ( -us ‘( 1s /su 𝑛)) → 𝑥 No ))
4039rexlimiv 3154 . . . . . . . . 9 (∃𝑛 ∈ ℕs 𝑥 = ( -us ‘( 1s /su 𝑛)) → 𝑥 No )
4140a1i 11 . . . . . . . 8 (⊤ → (∃𝑛 ∈ ℕs 𝑥 = ( -us ‘( 1s /su 𝑛)) → 𝑥 No ))
4241abssdv 4091 . . . . . . 7 (⊤ → {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = ( -us ‘( 1s /su 𝑛))} ⊆ No )
431a1i 11 . . . . . . . 8 (⊤ → 0s No )
4443snssd 4834 . . . . . . 7 (⊤ → { 0s } ⊆ No )
45 vex 3492 . . . . . . . . . . . 12 𝑧 ∈ V
46 eqeq1 2744 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (𝑥 = ( -us ‘( 1s /su 𝑛)) ↔ 𝑧 = ( -us ‘( 1s /su 𝑛))))
4746rexbidv 3185 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (∃𝑛 ∈ ℕs 𝑥 = ( -us ‘( 1s /su 𝑛)) ↔ ∃𝑛 ∈ ℕs 𝑧 = ( -us ‘( 1s /su 𝑛))))
4845, 47elab 3694 . . . . . . . . . . 11 (𝑧 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = ( -us ‘( 1s /su 𝑛))} ↔ ∃𝑛 ∈ ℕs 𝑧 = ( -us ‘( 1s /su 𝑛)))
49 velsn 4664 . . . . . . . . . . 11 (𝑦 ∈ { 0s } ↔ 𝑦 = 0s )
5048, 49anbi12i 627 . . . . . . . . . 10 ((𝑧 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = ( -us ‘( 1s /su 𝑛))} ∧ 𝑦 ∈ { 0s }) ↔ (∃𝑛 ∈ ℕs 𝑧 = ( -us ‘( 1s /su 𝑛)) ∧ 𝑦 = 0s ))
51 r19.41v 3195 . . . . . . . . . 10 (∃𝑛 ∈ ℕs (𝑧 = ( -us ‘( 1s /su 𝑛)) ∧ 𝑦 = 0s ) ↔ (∃𝑛 ∈ ℕs 𝑧 = ( -us ‘( 1s /su 𝑛)) ∧ 𝑦 = 0s ))
5250, 51bitr4i 278 . . . . . . . . 9 ((𝑧 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = ( -us ‘( 1s /su 𝑛))} ∧ 𝑦 ∈ { 0s }) ↔ ∃𝑛 ∈ ℕs (𝑧 = ( -us ‘( 1s /su 𝑛)) ∧ 𝑦 = 0s ))
53 muls02 28185 . . . . . . . . . . . . . . 15 (𝑛 No → ( 0s ·s 𝑛) = 0s )
5418, 53syl 17 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕs → ( 0s ·s 𝑛) = 0s )
5554, 3eqbrtrdi 5205 . . . . . . . . . . . . 13 (𝑛 ∈ ℕs → ( 0s ·s 𝑛) <s 1s )
561a1i 11 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕs → 0s No )
57 nnsgt0 28360 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕs → 0s <s 𝑛)
5856, 17, 18, 57sltmuldivd 28271 . . . . . . . . . . . . 13 (𝑛 ∈ ℕs → (( 0s ·s 𝑛) <s 1s ↔ 0s <s ( 1s /su 𝑛)))
5955, 58mpbid 232 . . . . . . . . . . . 12 (𝑛 ∈ ℕs → 0s <s ( 1s /su 𝑛))
6020slt0neg2d 28101 . . . . . . . . . . . 12 (𝑛 ∈ ℕs → ( 0s <s ( 1s /su 𝑛) ↔ ( -us ‘( 1s /su 𝑛)) <s 0s ))
6159, 60mpbid 232 . . . . . . . . . . 11 (𝑛 ∈ ℕs → ( -us ‘( 1s /su 𝑛)) <s 0s )
62 breq12 5171 . . . . . . . . . . 11 ((𝑧 = ( -us ‘( 1s /su 𝑛)) ∧ 𝑦 = 0s ) → (𝑧 <s 𝑦 ↔ ( -us ‘( 1s /su 𝑛)) <s 0s ))
6361, 62syl5ibrcom 247 . . . . . . . . . 10 (𝑛 ∈ ℕs → ((𝑧 = ( -us ‘( 1s /su 𝑛)) ∧ 𝑦 = 0s ) → 𝑧 <s 𝑦))
6463rexlimiv 3154 . . . . . . . . 9 (∃𝑛 ∈ ℕs (𝑧 = ( -us ‘( 1s /su 𝑛)) ∧ 𝑦 = 0s ) → 𝑧 <s 𝑦)
6552, 64sylbi 217 . . . . . . . 8 ((𝑧 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = ( -us ‘( 1s /su 𝑛))} ∧ 𝑦 ∈ { 0s }) → 𝑧 <s 𝑦)
66653adant1 1130 . . . . . . 7 ((⊤ ∧ 𝑧 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = ( -us ‘( 1s /su 𝑛))} ∧ 𝑦 ∈ { 0s }) → 𝑧 <s 𝑦)
6734, 36, 42, 44, 66ssltd 27854 . . . . . 6 (⊤ → {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = ( -us ‘( 1s /su 𝑛))} <<s { 0s })
6832abrexex 8003 . . . . . . . 8 {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = ( 1s /su 𝑛)} ∈ V
6968a1i 11 . . . . . . 7 (⊤ → {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = ( 1s /su 𝑛)} ∈ V)
70 eleq1 2832 . . . . . . . . . . 11 (𝑥 = ( 1s /su 𝑛) → (𝑥 No ↔ ( 1s /su 𝑛) ∈ No ))
7120, 70syl5ibrcom 247 . . . . . . . . . 10 (𝑛 ∈ ℕs → (𝑥 = ( 1s /su 𝑛) → 𝑥 No ))
7271rexlimiv 3154 . . . . . . . . 9 (∃𝑛 ∈ ℕs 𝑥 = ( 1s /su 𝑛) → 𝑥 No )
7372a1i 11 . . . . . . . 8 (⊤ → (∃𝑛 ∈ ℕs 𝑥 = ( 1s /su 𝑛) → 𝑥 No ))
7473abssdv 4091 . . . . . . 7 (⊤ → {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = ( 1s /su 𝑛)} ⊆ No )
75 eqeq1 2744 . . . . . . . . . . . . 13 (𝑥 = 𝑧 → (𝑥 = ( 1s /su 𝑛) ↔ 𝑧 = ( 1s /su 𝑛)))
7675rexbidv 3185 . . . . . . . . . . . 12 (𝑥 = 𝑧 → (∃𝑛 ∈ ℕs 𝑥 = ( 1s /su 𝑛) ↔ ∃𝑛 ∈ ℕs 𝑧 = ( 1s /su 𝑛)))
7745, 76elab 3694 . . . . . . . . . . 11 (𝑧 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = ( 1s /su 𝑛)} ↔ ∃𝑛 ∈ ℕs 𝑧 = ( 1s /su 𝑛))
7849, 77anbi12i 627 . . . . . . . . . 10 ((𝑦 ∈ { 0s } ∧ 𝑧 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = ( 1s /su 𝑛)}) ↔ (𝑦 = 0s ∧ ∃𝑛 ∈ ℕs 𝑧 = ( 1s /su 𝑛)))
79 r19.42v 3197 . . . . . . . . . 10 (∃𝑛 ∈ ℕs (𝑦 = 0s𝑧 = ( 1s /su 𝑛)) ↔ (𝑦 = 0s ∧ ∃𝑛 ∈ ℕs 𝑧 = ( 1s /su 𝑛)))
8078, 79bitr4i 278 . . . . . . . . 9 ((𝑦 ∈ { 0s } ∧ 𝑧 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = ( 1s /su 𝑛)}) ↔ ∃𝑛 ∈ ℕs (𝑦 = 0s𝑧 = ( 1s /su 𝑛)))
81 breq12 5171 . . . . . . . . . . . 12 ((𝑦 = 0s𝑧 = ( 1s /su 𝑛)) → (𝑦 <s 𝑧 ↔ 0s <s ( 1s /su 𝑛)))
8259, 81syl5ibrcom 247 . . . . . . . . . . 11 (𝑛 ∈ ℕs → ((𝑦 = 0s𝑧 = ( 1s /su 𝑛)) → 𝑦 <s 𝑧))
8382rexlimiv 3154 . . . . . . . . . 10 (∃𝑛 ∈ ℕs (𝑦 = 0s𝑧 = ( 1s /su 𝑛)) → 𝑦 <s 𝑧)
8483a1i 11 . . . . . . . . 9 (⊤ → (∃𝑛 ∈ ℕs (𝑦 = 0s𝑧 = ( 1s /su 𝑛)) → 𝑦 <s 𝑧))
8580, 84biimtrid 242 . . . . . . . 8 (⊤ → ((𝑦 ∈ { 0s } ∧ 𝑧 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = ( 1s /su 𝑛)}) → 𝑦 <s 𝑧))
86853impib 1116 . . . . . . 7 ((⊤ ∧ 𝑦 ∈ { 0s } ∧ 𝑧 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = ( 1s /su 𝑛)}) → 𝑦 <s 𝑧)
8736, 69, 44, 74, 86ssltd 27854 . . . . . 6 (⊤ → { 0s } <<s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = ( 1s /su 𝑛)})
8867, 87cuteq0 27895 . . . . 5 (⊤ → ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = ( -us ‘( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = ( 1s /su 𝑛)}) = 0s )
8988mptru 1544 . . . 4 ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = ( -us ‘( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = ( 1s /su 𝑛)}) = 0s
9031, 89eqtr2i 2769 . . 3 0s = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = ( 0s -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = ( 0s +s ( 1s /su 𝑛))})
9116, 90pm3.2i 470 . 2 (∃𝑛 ∈ ℕs (( -us𝑛) <s 0s ∧ 0s <s 𝑛) ∧ 0s = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = ( 0s -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = ( 0s +s ( 1s /su 𝑛))}))
92 elreno 28445 . 2 ( 0s ∈ ℝs ↔ ( 0s No ∧ (∃𝑛 ∈ ℕs (( -us𝑛) <s 0s ∧ 0s <s 𝑛) ∧ 0s = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = ( 0s -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = ( 0s +s ( 1s /su 𝑛))}))))
931, 91, 92mpbir2an 710 1 0s ∈ ℝs
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wtru 1538  wcel 2108  {cab 2717  wrex 3076  Vcvv 3488  {csn 4648   class class class wbr 5166  cfv 6573  (class class class)co 7448   No csur 27702   <s cslt 27703   |s cscut 27845   0s c0s 27885   1s c1s 27886   +s cadds 28010   -us cnegs 28069   -s csubs 28070   ·s cmuls 28150   /su cdivs 28231  scnns 28337  screno 28443
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-dc 10515
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-ot 4657  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-nadd 8722  df-no 27705  df-slt 27706  df-bday 27707  df-sle 27808  df-sslt 27844  df-scut 27846  df-0s 27887  df-1s 27888  df-made 27904  df-old 27905  df-left 27907  df-right 27908  df-norec 27989  df-norec2 28000  df-adds 28011  df-negs 28071  df-subs 28072  df-muls 28151  df-divs 28232  df-n0s 28338  df-nns 28339  df-reno 28444
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator