MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  remulscllem1 Structured version   Visualization version   GIF version

Theorem remulscllem1 28327
Description: Lemma for remulscl 28329. Split a product of reciprocals of naturals. (Contributed by Scott Fenton, 16-Apr-2025.)
Assertion
Ref Expression
remulscllem1 (∃𝑝 ∈ ℕs𝑞 ∈ ℕs 𝐴 = (𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞))) ↔ ∃𝑛 ∈ ℕs 𝐴 = (𝐵𝐹( 1s /su 𝑛)))
Distinct variable groups:   𝐴,𝑝,𝑞,𝑛   𝐵,𝑝,𝑞,𝑛   𝐹,𝑝,𝑞,𝑛

Proof of Theorem remulscllem1
StepHypRef Expression
1 oveq2 7377 . . . . . . 7 (𝑛 = (𝑝 ·s 𝑞) → ( 1s /su 𝑛) = ( 1s /su (𝑝 ·s 𝑞)))
21oveq2d 7385 . . . . . 6 (𝑛 = (𝑝 ·s 𝑞) → (𝐵𝐹( 1s /su 𝑛)) = (𝐵𝐹( 1s /su (𝑝 ·s 𝑞))))
32eqeq2d 2740 . . . . 5 (𝑛 = (𝑝 ·s 𝑞) → ((𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞))) = (𝐵𝐹( 1s /su 𝑛)) ↔ (𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞))) = (𝐵𝐹( 1s /su (𝑝 ·s 𝑞)))))
4 nnmulscl 28215 . . . . 5 ((𝑝 ∈ ℕs𝑞 ∈ ℕs) → (𝑝 ·s 𝑞) ∈ ℕs)
5 1sno 27715 . . . . . . . . 9 1s No
65a1i 11 . . . . . . . 8 ((𝑝 ∈ ℕs𝑞 ∈ ℕs) → 1s No )
7 nnsno 28193 . . . . . . . . 9 (𝑝 ∈ ℕs𝑝 No )
87adantr 480 . . . . . . . 8 ((𝑝 ∈ ℕs𝑞 ∈ ℕs) → 𝑝 No )
9 nnsno 28193 . . . . . . . . 9 (𝑞 ∈ ℕs𝑞 No )
109adantl 481 . . . . . . . 8 ((𝑝 ∈ ℕs𝑞 ∈ ℕs) → 𝑞 No )
11 nnne0s 28205 . . . . . . . . 9 (𝑝 ∈ ℕs𝑝 ≠ 0s )
1211adantr 480 . . . . . . . 8 ((𝑝 ∈ ℕs𝑞 ∈ ℕs) → 𝑝 ≠ 0s )
13 nnne0s 28205 . . . . . . . . 9 (𝑞 ∈ ℕs𝑞 ≠ 0s )
1413adantl 481 . . . . . . . 8 ((𝑝 ∈ ℕs𝑞 ∈ ℕs) → 𝑞 ≠ 0s )
156, 8, 6, 10, 12, 14divmuldivsd 28110 . . . . . . 7 ((𝑝 ∈ ℕs𝑞 ∈ ℕs) → (( 1s /su 𝑝) ·s ( 1s /su 𝑞)) = (( 1s ·s 1s ) /su (𝑝 ·s 𝑞)))
16 mulsrid 27992 . . . . . . . . 9 ( 1s No → ( 1s ·s 1s ) = 1s )
175, 16ax-mp 5 . . . . . . . 8 ( 1s ·s 1s ) = 1s
1817oveq1i 7379 . . . . . . 7 (( 1s ·s 1s ) /su (𝑝 ·s 𝑞)) = ( 1s /su (𝑝 ·s 𝑞))
1915, 18eqtrdi 2780 . . . . . 6 ((𝑝 ∈ ℕs𝑞 ∈ ℕs) → (( 1s /su 𝑝) ·s ( 1s /su 𝑞)) = ( 1s /su (𝑝 ·s 𝑞)))
2019oveq2d 7385 . . . . 5 ((𝑝 ∈ ℕs𝑞 ∈ ℕs) → (𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞))) = (𝐵𝐹( 1s /su (𝑝 ·s 𝑞))))
213, 4, 20rspcedvdw 3588 . . . 4 ((𝑝 ∈ ℕs𝑞 ∈ ℕs) → ∃𝑛 ∈ ℕs (𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞))) = (𝐵𝐹( 1s /su 𝑛)))
22 eqeq1 2733 . . . . 5 (𝐴 = (𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞))) → (𝐴 = (𝐵𝐹( 1s /su 𝑛)) ↔ (𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞))) = (𝐵𝐹( 1s /su 𝑛))))
2322rexbidv 3157 . . . 4 (𝐴 = (𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞))) → (∃𝑛 ∈ ℕs 𝐴 = (𝐵𝐹( 1s /su 𝑛)) ↔ ∃𝑛 ∈ ℕs (𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞))) = (𝐵𝐹( 1s /su 𝑛))))
2421, 23syl5ibrcom 247 . . 3 ((𝑝 ∈ ℕs𝑞 ∈ ℕs) → (𝐴 = (𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞))) → ∃𝑛 ∈ ℕs 𝐴 = (𝐵𝐹( 1s /su 𝑛))))
2524rexlimivv 3177 . 2 (∃𝑝 ∈ ℕs𝑞 ∈ ℕs 𝐴 = (𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞))) → ∃𝑛 ∈ ℕs 𝐴 = (𝐵𝐹( 1s /su 𝑛)))
265a1i 11 . . . . . . . . 9 (𝑛 ∈ ℕs → 1s No )
27 nnsno 28193 . . . . . . . . 9 (𝑛 ∈ ℕs𝑛 No )
28 nnne0s 28205 . . . . . . . . 9 (𝑛 ∈ ℕs𝑛 ≠ 0s )
2926, 27, 28divscld 28102 . . . . . . . 8 (𝑛 ∈ ℕs → ( 1s /su 𝑛) ∈ No )
3029mulsridd 27993 . . . . . . 7 (𝑛 ∈ ℕs → (( 1s /su 𝑛) ·s 1s ) = ( 1s /su 𝑛))
3130eqcomd 2735 . . . . . 6 (𝑛 ∈ ℕs → ( 1s /su 𝑛) = (( 1s /su 𝑛) ·s 1s ))
3231oveq2d 7385 . . . . 5 (𝑛 ∈ ℕs → (𝐵𝐹( 1s /su 𝑛)) = (𝐵𝐹(( 1s /su 𝑛) ·s 1s )))
33 1nns 28217 . . . . . 6 1s ∈ ℕs
34 oveq2 7377 . . . . . . . . . 10 (𝑝 = 𝑛 → ( 1s /su 𝑝) = ( 1s /su 𝑛))
3534oveq1d 7384 . . . . . . . . 9 (𝑝 = 𝑛 → (( 1s /su 𝑝) ·s ( 1s /su 𝑞)) = (( 1s /su 𝑛) ·s ( 1s /su 𝑞)))
3635oveq2d 7385 . . . . . . . 8 (𝑝 = 𝑛 → (𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞))) = (𝐵𝐹(( 1s /su 𝑛) ·s ( 1s /su 𝑞))))
3736eqeq2d 2740 . . . . . . 7 (𝑝 = 𝑛 → ((𝐵𝐹( 1s /su 𝑛)) = (𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞))) ↔ (𝐵𝐹( 1s /su 𝑛)) = (𝐵𝐹(( 1s /su 𝑛) ·s ( 1s /su 𝑞)))))
38 oveq2 7377 . . . . . . . . . . 11 (𝑞 = 1s → ( 1s /su 𝑞) = ( 1s /su 1s ))
39 divs1 28083 . . . . . . . . . . . 12 ( 1s No → ( 1s /su 1s ) = 1s )
405, 39ax-mp 5 . . . . . . . . . . 11 ( 1s /su 1s ) = 1s
4138, 40eqtrdi 2780 . . . . . . . . . 10 (𝑞 = 1s → ( 1s /su 𝑞) = 1s )
4241oveq2d 7385 . . . . . . . . 9 (𝑞 = 1s → (( 1s /su 𝑛) ·s ( 1s /su 𝑞)) = (( 1s /su 𝑛) ·s 1s ))
4342oveq2d 7385 . . . . . . . 8 (𝑞 = 1s → (𝐵𝐹(( 1s /su 𝑛) ·s ( 1s /su 𝑞))) = (𝐵𝐹(( 1s /su 𝑛) ·s 1s )))
4443eqeq2d 2740 . . . . . . 7 (𝑞 = 1s → ((𝐵𝐹( 1s /su 𝑛)) = (𝐵𝐹(( 1s /su 𝑛) ·s ( 1s /su 𝑞))) ↔ (𝐵𝐹( 1s /su 𝑛)) = (𝐵𝐹(( 1s /su 𝑛) ·s 1s ))))
4537, 44rspc2ev 3598 . . . . . 6 ((𝑛 ∈ ℕs ∧ 1s ∈ ℕs ∧ (𝐵𝐹( 1s /su 𝑛)) = (𝐵𝐹(( 1s /su 𝑛) ·s 1s ))) → ∃𝑝 ∈ ℕs𝑞 ∈ ℕs (𝐵𝐹( 1s /su 𝑛)) = (𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞))))
4633, 45mp3an2 1451 . . . . 5 ((𝑛 ∈ ℕs ∧ (𝐵𝐹( 1s /su 𝑛)) = (𝐵𝐹(( 1s /su 𝑛) ·s 1s ))) → ∃𝑝 ∈ ℕs𝑞 ∈ ℕs (𝐵𝐹( 1s /su 𝑛)) = (𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞))))
4732, 46mpdan 687 . . . 4 (𝑛 ∈ ℕs → ∃𝑝 ∈ ℕs𝑞 ∈ ℕs (𝐵𝐹( 1s /su 𝑛)) = (𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞))))
48 eqeq1 2733 . . . . 5 (𝐴 = (𝐵𝐹( 1s /su 𝑛)) → (𝐴 = (𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞))) ↔ (𝐵𝐹( 1s /su 𝑛)) = (𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞)))))
49482rexbidv 3200 . . . 4 (𝐴 = (𝐵𝐹( 1s /su 𝑛)) → (∃𝑝 ∈ ℕs𝑞 ∈ ℕs 𝐴 = (𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞))) ↔ ∃𝑝 ∈ ℕs𝑞 ∈ ℕs (𝐵𝐹( 1s /su 𝑛)) = (𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞)))))
5047, 49syl5ibrcom 247 . . 3 (𝑛 ∈ ℕs → (𝐴 = (𝐵𝐹( 1s /su 𝑛)) → ∃𝑝 ∈ ℕs𝑞 ∈ ℕs 𝐴 = (𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞)))))
5150rexlimiv 3127 . 2 (∃𝑛 ∈ ℕs 𝐴 = (𝐵𝐹( 1s /su 𝑛)) → ∃𝑝 ∈ ℕs𝑞 ∈ ℕs 𝐴 = (𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞))))
5225, 51impbii 209 1 (∃𝑝 ∈ ℕs𝑞 ∈ ℕs 𝐴 = (𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞))) ↔ ∃𝑛 ∈ ℕs 𝐴 = (𝐵𝐹( 1s /su 𝑛)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wrex 3053  (class class class)co 7369   No csur 27527   0s c0s 27710   1s c1s 27711   ·s cmuls 27985   /su cdivs 28066  scnns 28183
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-dc 10375
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-ot 4594  df-uni 4868  df-int 4907  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-oadd 8415  df-nadd 8607  df-no 27530  df-slt 27531  df-bday 27532  df-sle 27633  df-sslt 27669  df-scut 27671  df-0s 27712  df-1s 27713  df-made 27731  df-old 27732  df-left 27734  df-right 27735  df-norec 27821  df-norec2 27832  df-adds 27843  df-negs 27903  df-subs 27904  df-muls 27986  df-divs 28067  df-n0s 28184  df-nns 28185
This theorem is referenced by:  remulscl  28329
  Copyright terms: Public domain W3C validator