MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  remulscllem1 Structured version   Visualization version   GIF version

Theorem remulscllem1 28402
Description: Lemma for remulscl 28404. Split a product of reciprocals of naturals. (Contributed by Scott Fenton, 16-Apr-2025.)
Assertion
Ref Expression
remulscllem1 (∃𝑝 ∈ ℕs𝑞 ∈ ℕs 𝐴 = (𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞))) ↔ ∃𝑛 ∈ ℕs 𝐴 = (𝐵𝐹( 1s /su 𝑛)))
Distinct variable groups:   𝐴,𝑝,𝑞,𝑛   𝐵,𝑝,𝑞,𝑛   𝐹,𝑝,𝑞,𝑛

Proof of Theorem remulscllem1
StepHypRef Expression
1 oveq2 7354 . . . . . . 7 (𝑛 = (𝑝 ·s 𝑞) → ( 1s /su 𝑛) = ( 1s /su (𝑝 ·s 𝑞)))
21oveq2d 7362 . . . . . 6 (𝑛 = (𝑝 ·s 𝑞) → (𝐵𝐹( 1s /su 𝑛)) = (𝐵𝐹( 1s /su (𝑝 ·s 𝑞))))
32eqeq2d 2742 . . . . 5 (𝑛 = (𝑝 ·s 𝑞) → ((𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞))) = (𝐵𝐹( 1s /su 𝑛)) ↔ (𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞))) = (𝐵𝐹( 1s /su (𝑝 ·s 𝑞)))))
4 nnmulscl 28275 . . . . 5 ((𝑝 ∈ ℕs𝑞 ∈ ℕs) → (𝑝 ·s 𝑞) ∈ ℕs)
5 1sno 27771 . . . . . . . . 9 1s No
65a1i 11 . . . . . . . 8 ((𝑝 ∈ ℕs𝑞 ∈ ℕs) → 1s No )
7 nnsno 28253 . . . . . . . . 9 (𝑝 ∈ ℕs𝑝 No )
87adantr 480 . . . . . . . 8 ((𝑝 ∈ ℕs𝑞 ∈ ℕs) → 𝑝 No )
9 nnsno 28253 . . . . . . . . 9 (𝑞 ∈ ℕs𝑞 No )
109adantl 481 . . . . . . . 8 ((𝑝 ∈ ℕs𝑞 ∈ ℕs) → 𝑞 No )
11 nnne0s 28265 . . . . . . . . 9 (𝑝 ∈ ℕs𝑝 ≠ 0s )
1211adantr 480 . . . . . . . 8 ((𝑝 ∈ ℕs𝑞 ∈ ℕs) → 𝑝 ≠ 0s )
13 nnne0s 28265 . . . . . . . . 9 (𝑞 ∈ ℕs𝑞 ≠ 0s )
1413adantl 481 . . . . . . . 8 ((𝑝 ∈ ℕs𝑞 ∈ ℕs) → 𝑞 ≠ 0s )
156, 8, 6, 10, 12, 14divmuldivsd 28170 . . . . . . 7 ((𝑝 ∈ ℕs𝑞 ∈ ℕs) → (( 1s /su 𝑝) ·s ( 1s /su 𝑞)) = (( 1s ·s 1s ) /su (𝑝 ·s 𝑞)))
16 mulsrid 28052 . . . . . . . . 9 ( 1s No → ( 1s ·s 1s ) = 1s )
175, 16ax-mp 5 . . . . . . . 8 ( 1s ·s 1s ) = 1s
1817oveq1i 7356 . . . . . . 7 (( 1s ·s 1s ) /su (𝑝 ·s 𝑞)) = ( 1s /su (𝑝 ·s 𝑞))
1915, 18eqtrdi 2782 . . . . . 6 ((𝑝 ∈ ℕs𝑞 ∈ ℕs) → (( 1s /su 𝑝) ·s ( 1s /su 𝑞)) = ( 1s /su (𝑝 ·s 𝑞)))
2019oveq2d 7362 . . . . 5 ((𝑝 ∈ ℕs𝑞 ∈ ℕs) → (𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞))) = (𝐵𝐹( 1s /su (𝑝 ·s 𝑞))))
213, 4, 20rspcedvdw 3575 . . . 4 ((𝑝 ∈ ℕs𝑞 ∈ ℕs) → ∃𝑛 ∈ ℕs (𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞))) = (𝐵𝐹( 1s /su 𝑛)))
22 eqeq1 2735 . . . . 5 (𝐴 = (𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞))) → (𝐴 = (𝐵𝐹( 1s /su 𝑛)) ↔ (𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞))) = (𝐵𝐹( 1s /su 𝑛))))
2322rexbidv 3156 . . . 4 (𝐴 = (𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞))) → (∃𝑛 ∈ ℕs 𝐴 = (𝐵𝐹( 1s /su 𝑛)) ↔ ∃𝑛 ∈ ℕs (𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞))) = (𝐵𝐹( 1s /su 𝑛))))
2421, 23syl5ibrcom 247 . . 3 ((𝑝 ∈ ℕs𝑞 ∈ ℕs) → (𝐴 = (𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞))) → ∃𝑛 ∈ ℕs 𝐴 = (𝐵𝐹( 1s /su 𝑛))))
2524rexlimivv 3174 . 2 (∃𝑝 ∈ ℕs𝑞 ∈ ℕs 𝐴 = (𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞))) → ∃𝑛 ∈ ℕs 𝐴 = (𝐵𝐹( 1s /su 𝑛)))
265a1i 11 . . . . . . . . 9 (𝑛 ∈ ℕs → 1s No )
27 nnsno 28253 . . . . . . . . 9 (𝑛 ∈ ℕs𝑛 No )
28 nnne0s 28265 . . . . . . . . 9 (𝑛 ∈ ℕs𝑛 ≠ 0s )
2926, 27, 28divscld 28162 . . . . . . . 8 (𝑛 ∈ ℕs → ( 1s /su 𝑛) ∈ No )
3029mulsridd 28053 . . . . . . 7 (𝑛 ∈ ℕs → (( 1s /su 𝑛) ·s 1s ) = ( 1s /su 𝑛))
3130eqcomd 2737 . . . . . 6 (𝑛 ∈ ℕs → ( 1s /su 𝑛) = (( 1s /su 𝑛) ·s 1s ))
3231oveq2d 7362 . . . . 5 (𝑛 ∈ ℕs → (𝐵𝐹( 1s /su 𝑛)) = (𝐵𝐹(( 1s /su 𝑛) ·s 1s )))
33 1nns 28277 . . . . . 6 1s ∈ ℕs
34 oveq2 7354 . . . . . . . . . 10 (𝑝 = 𝑛 → ( 1s /su 𝑝) = ( 1s /su 𝑛))
3534oveq1d 7361 . . . . . . . . 9 (𝑝 = 𝑛 → (( 1s /su 𝑝) ·s ( 1s /su 𝑞)) = (( 1s /su 𝑛) ·s ( 1s /su 𝑞)))
3635oveq2d 7362 . . . . . . . 8 (𝑝 = 𝑛 → (𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞))) = (𝐵𝐹(( 1s /su 𝑛) ·s ( 1s /su 𝑞))))
3736eqeq2d 2742 . . . . . . 7 (𝑝 = 𝑛 → ((𝐵𝐹( 1s /su 𝑛)) = (𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞))) ↔ (𝐵𝐹( 1s /su 𝑛)) = (𝐵𝐹(( 1s /su 𝑛) ·s ( 1s /su 𝑞)))))
38 oveq2 7354 . . . . . . . . . . 11 (𝑞 = 1s → ( 1s /su 𝑞) = ( 1s /su 1s ))
39 divs1 28143 . . . . . . . . . . . 12 ( 1s No → ( 1s /su 1s ) = 1s )
405, 39ax-mp 5 . . . . . . . . . . 11 ( 1s /su 1s ) = 1s
4138, 40eqtrdi 2782 . . . . . . . . . 10 (𝑞 = 1s → ( 1s /su 𝑞) = 1s )
4241oveq2d 7362 . . . . . . . . 9 (𝑞 = 1s → (( 1s /su 𝑛) ·s ( 1s /su 𝑞)) = (( 1s /su 𝑛) ·s 1s ))
4342oveq2d 7362 . . . . . . . 8 (𝑞 = 1s → (𝐵𝐹(( 1s /su 𝑛) ·s ( 1s /su 𝑞))) = (𝐵𝐹(( 1s /su 𝑛) ·s 1s )))
4443eqeq2d 2742 . . . . . . 7 (𝑞 = 1s → ((𝐵𝐹( 1s /su 𝑛)) = (𝐵𝐹(( 1s /su 𝑛) ·s ( 1s /su 𝑞))) ↔ (𝐵𝐹( 1s /su 𝑛)) = (𝐵𝐹(( 1s /su 𝑛) ·s 1s ))))
4537, 44rspc2ev 3585 . . . . . 6 ((𝑛 ∈ ℕs ∧ 1s ∈ ℕs ∧ (𝐵𝐹( 1s /su 𝑛)) = (𝐵𝐹(( 1s /su 𝑛) ·s 1s ))) → ∃𝑝 ∈ ℕs𝑞 ∈ ℕs (𝐵𝐹( 1s /su 𝑛)) = (𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞))))
4633, 45mp3an2 1451 . . . . 5 ((𝑛 ∈ ℕs ∧ (𝐵𝐹( 1s /su 𝑛)) = (𝐵𝐹(( 1s /su 𝑛) ·s 1s ))) → ∃𝑝 ∈ ℕs𝑞 ∈ ℕs (𝐵𝐹( 1s /su 𝑛)) = (𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞))))
4732, 46mpdan 687 . . . 4 (𝑛 ∈ ℕs → ∃𝑝 ∈ ℕs𝑞 ∈ ℕs (𝐵𝐹( 1s /su 𝑛)) = (𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞))))
48 eqeq1 2735 . . . . 5 (𝐴 = (𝐵𝐹( 1s /su 𝑛)) → (𝐴 = (𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞))) ↔ (𝐵𝐹( 1s /su 𝑛)) = (𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞)))))
49482rexbidv 3197 . . . 4 (𝐴 = (𝐵𝐹( 1s /su 𝑛)) → (∃𝑝 ∈ ℕs𝑞 ∈ ℕs 𝐴 = (𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞))) ↔ ∃𝑝 ∈ ℕs𝑞 ∈ ℕs (𝐵𝐹( 1s /su 𝑛)) = (𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞)))))
5047, 49syl5ibrcom 247 . . 3 (𝑛 ∈ ℕs → (𝐴 = (𝐵𝐹( 1s /su 𝑛)) → ∃𝑝 ∈ ℕs𝑞 ∈ ℕs 𝐴 = (𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞)))))
5150rexlimiv 3126 . 2 (∃𝑛 ∈ ℕs 𝐴 = (𝐵𝐹( 1s /su 𝑛)) → ∃𝑝 ∈ ℕs𝑞 ∈ ℕs 𝐴 = (𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞))))
5225, 51impbii 209 1 (∃𝑝 ∈ ℕs𝑞 ∈ ℕs 𝐴 = (𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞))) ↔ ∃𝑛 ∈ ℕs 𝐴 = (𝐵𝐹( 1s /su 𝑛)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wcel 2111  wne 2928  wrex 3056  (class class class)co 7346   No csur 27578   0s c0s 27766   1s c1s 27767   ·s cmuls 28045   /su cdivs 28126  scnns 28243
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-dc 10337
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-ot 4582  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-se 5568  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-oadd 8389  df-nadd 8581  df-no 27581  df-slt 27582  df-bday 27583  df-sle 27684  df-sslt 27721  df-scut 27723  df-0s 27768  df-1s 27769  df-made 27788  df-old 27789  df-left 27791  df-right 27792  df-norec 27881  df-norec2 27892  df-adds 27903  df-negs 27963  df-subs 27964  df-muls 28046  df-divs 28127  df-n0s 28244  df-nns 28245
This theorem is referenced by:  remulscl  28404
  Copyright terms: Public domain W3C validator