MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  remulscllem1 Structured version   Visualization version   GIF version

Theorem remulscllem1 28403
Description: Lemma for remulscl 28405. Split a product of reciprocals of naturals. (Contributed by Scott Fenton, 16-Apr-2025.)
Assertion
Ref Expression
remulscllem1 (∃𝑝 ∈ ℕs𝑞 ∈ ℕs 𝐴 = (𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞))) ↔ ∃𝑛 ∈ ℕs 𝐴 = (𝐵𝐹( 1s /su 𝑛)))
Distinct variable groups:   𝐴,𝑝,𝑞,𝑛   𝐵,𝑝,𝑞,𝑛   𝐹,𝑝,𝑞,𝑛

Proof of Theorem remulscllem1
StepHypRef Expression
1 oveq2 7413 . . . . . . 7 (𝑛 = (𝑝 ·s 𝑞) → ( 1s /su 𝑛) = ( 1s /su (𝑝 ·s 𝑞)))
21oveq2d 7421 . . . . . 6 (𝑛 = (𝑝 ·s 𝑞) → (𝐵𝐹( 1s /su 𝑛)) = (𝐵𝐹( 1s /su (𝑝 ·s 𝑞))))
32eqeq2d 2746 . . . . 5 (𝑛 = (𝑝 ·s 𝑞) → ((𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞))) = (𝐵𝐹( 1s /su 𝑛)) ↔ (𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞))) = (𝐵𝐹( 1s /su (𝑝 ·s 𝑞)))))
4 nnmulscl 28291 . . . . 5 ((𝑝 ∈ ℕs𝑞 ∈ ℕs) → (𝑝 ·s 𝑞) ∈ ℕs)
5 1sno 27791 . . . . . . . . 9 1s No
65a1i 11 . . . . . . . 8 ((𝑝 ∈ ℕs𝑞 ∈ ℕs) → 1s No )
7 nnsno 28269 . . . . . . . . 9 (𝑝 ∈ ℕs𝑝 No )
87adantr 480 . . . . . . . 8 ((𝑝 ∈ ℕs𝑞 ∈ ℕs) → 𝑝 No )
9 nnsno 28269 . . . . . . . . 9 (𝑞 ∈ ℕs𝑞 No )
109adantl 481 . . . . . . . 8 ((𝑝 ∈ ℕs𝑞 ∈ ℕs) → 𝑞 No )
11 nnne0s 28281 . . . . . . . . 9 (𝑝 ∈ ℕs𝑝 ≠ 0s )
1211adantr 480 . . . . . . . 8 ((𝑝 ∈ ℕs𝑞 ∈ ℕs) → 𝑝 ≠ 0s )
13 nnne0s 28281 . . . . . . . . 9 (𝑞 ∈ ℕs𝑞 ≠ 0s )
1413adantl 481 . . . . . . . 8 ((𝑝 ∈ ℕs𝑞 ∈ ℕs) → 𝑞 ≠ 0s )
156, 8, 6, 10, 12, 14divmuldivsd 28186 . . . . . . 7 ((𝑝 ∈ ℕs𝑞 ∈ ℕs) → (( 1s /su 𝑝) ·s ( 1s /su 𝑞)) = (( 1s ·s 1s ) /su (𝑝 ·s 𝑞)))
16 mulsrid 28068 . . . . . . . . 9 ( 1s No → ( 1s ·s 1s ) = 1s )
175, 16ax-mp 5 . . . . . . . 8 ( 1s ·s 1s ) = 1s
1817oveq1i 7415 . . . . . . 7 (( 1s ·s 1s ) /su (𝑝 ·s 𝑞)) = ( 1s /su (𝑝 ·s 𝑞))
1915, 18eqtrdi 2786 . . . . . 6 ((𝑝 ∈ ℕs𝑞 ∈ ℕs) → (( 1s /su 𝑝) ·s ( 1s /su 𝑞)) = ( 1s /su (𝑝 ·s 𝑞)))
2019oveq2d 7421 . . . . 5 ((𝑝 ∈ ℕs𝑞 ∈ ℕs) → (𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞))) = (𝐵𝐹( 1s /su (𝑝 ·s 𝑞))))
213, 4, 20rspcedvdw 3604 . . . 4 ((𝑝 ∈ ℕs𝑞 ∈ ℕs) → ∃𝑛 ∈ ℕs (𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞))) = (𝐵𝐹( 1s /su 𝑛)))
22 eqeq1 2739 . . . . 5 (𝐴 = (𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞))) → (𝐴 = (𝐵𝐹( 1s /su 𝑛)) ↔ (𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞))) = (𝐵𝐹( 1s /su 𝑛))))
2322rexbidv 3164 . . . 4 (𝐴 = (𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞))) → (∃𝑛 ∈ ℕs 𝐴 = (𝐵𝐹( 1s /su 𝑛)) ↔ ∃𝑛 ∈ ℕs (𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞))) = (𝐵𝐹( 1s /su 𝑛))))
2421, 23syl5ibrcom 247 . . 3 ((𝑝 ∈ ℕs𝑞 ∈ ℕs) → (𝐴 = (𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞))) → ∃𝑛 ∈ ℕs 𝐴 = (𝐵𝐹( 1s /su 𝑛))))
2524rexlimivv 3186 . 2 (∃𝑝 ∈ ℕs𝑞 ∈ ℕs 𝐴 = (𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞))) → ∃𝑛 ∈ ℕs 𝐴 = (𝐵𝐹( 1s /su 𝑛)))
265a1i 11 . . . . . . . . 9 (𝑛 ∈ ℕs → 1s No )
27 nnsno 28269 . . . . . . . . 9 (𝑛 ∈ ℕs𝑛 No )
28 nnne0s 28281 . . . . . . . . 9 (𝑛 ∈ ℕs𝑛 ≠ 0s )
2926, 27, 28divscld 28178 . . . . . . . 8 (𝑛 ∈ ℕs → ( 1s /su 𝑛) ∈ No )
3029mulsridd 28069 . . . . . . 7 (𝑛 ∈ ℕs → (( 1s /su 𝑛) ·s 1s ) = ( 1s /su 𝑛))
3130eqcomd 2741 . . . . . 6 (𝑛 ∈ ℕs → ( 1s /su 𝑛) = (( 1s /su 𝑛) ·s 1s ))
3231oveq2d 7421 . . . . 5 (𝑛 ∈ ℕs → (𝐵𝐹( 1s /su 𝑛)) = (𝐵𝐹(( 1s /su 𝑛) ·s 1s )))
33 1nns 28293 . . . . . 6 1s ∈ ℕs
34 oveq2 7413 . . . . . . . . . 10 (𝑝 = 𝑛 → ( 1s /su 𝑝) = ( 1s /su 𝑛))
3534oveq1d 7420 . . . . . . . . 9 (𝑝 = 𝑛 → (( 1s /su 𝑝) ·s ( 1s /su 𝑞)) = (( 1s /su 𝑛) ·s ( 1s /su 𝑞)))
3635oveq2d 7421 . . . . . . . 8 (𝑝 = 𝑛 → (𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞))) = (𝐵𝐹(( 1s /su 𝑛) ·s ( 1s /su 𝑞))))
3736eqeq2d 2746 . . . . . . 7 (𝑝 = 𝑛 → ((𝐵𝐹( 1s /su 𝑛)) = (𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞))) ↔ (𝐵𝐹( 1s /su 𝑛)) = (𝐵𝐹(( 1s /su 𝑛) ·s ( 1s /su 𝑞)))))
38 oveq2 7413 . . . . . . . . . . 11 (𝑞 = 1s → ( 1s /su 𝑞) = ( 1s /su 1s ))
39 divs1 28159 . . . . . . . . . . . 12 ( 1s No → ( 1s /su 1s ) = 1s )
405, 39ax-mp 5 . . . . . . . . . . 11 ( 1s /su 1s ) = 1s
4138, 40eqtrdi 2786 . . . . . . . . . 10 (𝑞 = 1s → ( 1s /su 𝑞) = 1s )
4241oveq2d 7421 . . . . . . . . 9 (𝑞 = 1s → (( 1s /su 𝑛) ·s ( 1s /su 𝑞)) = (( 1s /su 𝑛) ·s 1s ))
4342oveq2d 7421 . . . . . . . 8 (𝑞 = 1s → (𝐵𝐹(( 1s /su 𝑛) ·s ( 1s /su 𝑞))) = (𝐵𝐹(( 1s /su 𝑛) ·s 1s )))
4443eqeq2d 2746 . . . . . . 7 (𝑞 = 1s → ((𝐵𝐹( 1s /su 𝑛)) = (𝐵𝐹(( 1s /su 𝑛) ·s ( 1s /su 𝑞))) ↔ (𝐵𝐹( 1s /su 𝑛)) = (𝐵𝐹(( 1s /su 𝑛) ·s 1s ))))
4537, 44rspc2ev 3614 . . . . . 6 ((𝑛 ∈ ℕs ∧ 1s ∈ ℕs ∧ (𝐵𝐹( 1s /su 𝑛)) = (𝐵𝐹(( 1s /su 𝑛) ·s 1s ))) → ∃𝑝 ∈ ℕs𝑞 ∈ ℕs (𝐵𝐹( 1s /su 𝑛)) = (𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞))))
4633, 45mp3an2 1451 . . . . 5 ((𝑛 ∈ ℕs ∧ (𝐵𝐹( 1s /su 𝑛)) = (𝐵𝐹(( 1s /su 𝑛) ·s 1s ))) → ∃𝑝 ∈ ℕs𝑞 ∈ ℕs (𝐵𝐹( 1s /su 𝑛)) = (𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞))))
4732, 46mpdan 687 . . . 4 (𝑛 ∈ ℕs → ∃𝑝 ∈ ℕs𝑞 ∈ ℕs (𝐵𝐹( 1s /su 𝑛)) = (𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞))))
48 eqeq1 2739 . . . . 5 (𝐴 = (𝐵𝐹( 1s /su 𝑛)) → (𝐴 = (𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞))) ↔ (𝐵𝐹( 1s /su 𝑛)) = (𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞)))))
49482rexbidv 3206 . . . 4 (𝐴 = (𝐵𝐹( 1s /su 𝑛)) → (∃𝑝 ∈ ℕs𝑞 ∈ ℕs 𝐴 = (𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞))) ↔ ∃𝑝 ∈ ℕs𝑞 ∈ ℕs (𝐵𝐹( 1s /su 𝑛)) = (𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞)))))
5047, 49syl5ibrcom 247 . . 3 (𝑛 ∈ ℕs → (𝐴 = (𝐵𝐹( 1s /su 𝑛)) → ∃𝑝 ∈ ℕs𝑞 ∈ ℕs 𝐴 = (𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞)))))
5150rexlimiv 3134 . 2 (∃𝑛 ∈ ℕs 𝐴 = (𝐵𝐹( 1s /su 𝑛)) → ∃𝑝 ∈ ℕs𝑞 ∈ ℕs 𝐴 = (𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞))))
5225, 51impbii 209 1 (∃𝑝 ∈ ℕs𝑞 ∈ ℕs 𝐴 = (𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞))) ↔ ∃𝑛 ∈ ℕs 𝐴 = (𝐵𝐹( 1s /su 𝑛)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wcel 2108  wne 2932  wrex 3060  (class class class)co 7405   No csur 27603   0s c0s 27786   1s c1s 27787   ·s cmuls 28061   /su cdivs 28142  scnns 28259
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-dc 10460
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-ot 4610  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-oadd 8484  df-nadd 8678  df-no 27606  df-slt 27607  df-bday 27608  df-sle 27709  df-sslt 27745  df-scut 27747  df-0s 27788  df-1s 27789  df-made 27807  df-old 27808  df-left 27810  df-right 27811  df-norec 27897  df-norec2 27908  df-adds 27919  df-negs 27979  df-subs 27980  df-muls 28062  df-divs 28143  df-n0s 28260  df-nns 28261
This theorem is referenced by:  remulscl  28405
  Copyright terms: Public domain W3C validator