MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  remulscllem1 Structured version   Visualization version   GIF version

Theorem remulscllem1 28450
Description: Lemma for remulscl 28452. Split a product of reciprocals of naturals. (Contributed by Scott Fenton, 16-Apr-2025.)
Assertion
Ref Expression
remulscllem1 (∃𝑝 ∈ ℕs𝑞 ∈ ℕs 𝐴 = (𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞))) ↔ ∃𝑛 ∈ ℕs 𝐴 = (𝐵𝐹( 1s /su 𝑛)))
Distinct variable groups:   𝐴,𝑝,𝑞,𝑛   𝐵,𝑝,𝑞,𝑛   𝐹,𝑝,𝑞,𝑛

Proof of Theorem remulscllem1
StepHypRef Expression
1 oveq2 7456 . . . . . . 7 (𝑛 = (𝑝 ·s 𝑞) → ( 1s /su 𝑛) = ( 1s /su (𝑝 ·s 𝑞)))
21oveq2d 7464 . . . . . 6 (𝑛 = (𝑝 ·s 𝑞) → (𝐵𝐹( 1s /su 𝑛)) = (𝐵𝐹( 1s /su (𝑝 ·s 𝑞))))
32eqeq2d 2751 . . . . 5 (𝑛 = (𝑝 ·s 𝑞) → ((𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞))) = (𝐵𝐹( 1s /su 𝑛)) ↔ (𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞))) = (𝐵𝐹( 1s /su (𝑝 ·s 𝑞)))))
4 nnmulscl 28368 . . . . 5 ((𝑝 ∈ ℕs𝑞 ∈ ℕs) → (𝑝 ·s 𝑞) ∈ ℕs)
5 1sno 27890 . . . . . . . . 9 1s No
65a1i 11 . . . . . . . 8 ((𝑝 ∈ ℕs𝑞 ∈ ℕs) → 1s No )
7 nnsno 28347 . . . . . . . . 9 (𝑝 ∈ ℕs𝑝 No )
87adantr 480 . . . . . . . 8 ((𝑝 ∈ ℕs𝑞 ∈ ℕs) → 𝑝 No )
9 nnsno 28347 . . . . . . . . 9 (𝑞 ∈ ℕs𝑞 No )
109adantl 481 . . . . . . . 8 ((𝑝 ∈ ℕs𝑞 ∈ ℕs) → 𝑞 No )
11 nnne0s 28358 . . . . . . . . 9 (𝑝 ∈ ℕs𝑝 ≠ 0s )
1211adantr 480 . . . . . . . 8 ((𝑝 ∈ ℕs𝑞 ∈ ℕs) → 𝑝 ≠ 0s )
13 nnne0s 28358 . . . . . . . . 9 (𝑞 ∈ ℕs𝑞 ≠ 0s )
1413adantl 481 . . . . . . . 8 ((𝑝 ∈ ℕs𝑞 ∈ ℕs) → 𝑞 ≠ 0s )
156, 8, 6, 10, 12, 14divmuldivsd 28274 . . . . . . 7 ((𝑝 ∈ ℕs𝑞 ∈ ℕs) → (( 1s /su 𝑝) ·s ( 1s /su 𝑞)) = (( 1s ·s 1s ) /su (𝑝 ·s 𝑞)))
16 mulsrid 28157 . . . . . . . . 9 ( 1s No → ( 1s ·s 1s ) = 1s )
175, 16ax-mp 5 . . . . . . . 8 ( 1s ·s 1s ) = 1s
1817oveq1i 7458 . . . . . . 7 (( 1s ·s 1s ) /su (𝑝 ·s 𝑞)) = ( 1s /su (𝑝 ·s 𝑞))
1915, 18eqtrdi 2796 . . . . . 6 ((𝑝 ∈ ℕs𝑞 ∈ ℕs) → (( 1s /su 𝑝) ·s ( 1s /su 𝑞)) = ( 1s /su (𝑝 ·s 𝑞)))
2019oveq2d 7464 . . . . 5 ((𝑝 ∈ ℕs𝑞 ∈ ℕs) → (𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞))) = (𝐵𝐹( 1s /su (𝑝 ·s 𝑞))))
213, 4, 20rspcedvdw 3638 . . . 4 ((𝑝 ∈ ℕs𝑞 ∈ ℕs) → ∃𝑛 ∈ ℕs (𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞))) = (𝐵𝐹( 1s /su 𝑛)))
22 eqeq1 2744 . . . . 5 (𝐴 = (𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞))) → (𝐴 = (𝐵𝐹( 1s /su 𝑛)) ↔ (𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞))) = (𝐵𝐹( 1s /su 𝑛))))
2322rexbidv 3185 . . . 4 (𝐴 = (𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞))) → (∃𝑛 ∈ ℕs 𝐴 = (𝐵𝐹( 1s /su 𝑛)) ↔ ∃𝑛 ∈ ℕs (𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞))) = (𝐵𝐹( 1s /su 𝑛))))
2421, 23syl5ibrcom 247 . . 3 ((𝑝 ∈ ℕs𝑞 ∈ ℕs) → (𝐴 = (𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞))) → ∃𝑛 ∈ ℕs 𝐴 = (𝐵𝐹( 1s /su 𝑛))))
2524rexlimivv 3207 . 2 (∃𝑝 ∈ ℕs𝑞 ∈ ℕs 𝐴 = (𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞))) → ∃𝑛 ∈ ℕs 𝐴 = (𝐵𝐹( 1s /su 𝑛)))
265a1i 11 . . . . . . . . 9 (𝑛 ∈ ℕs → 1s No )
27 nnsno 28347 . . . . . . . . 9 (𝑛 ∈ ℕs𝑛 No )
28 nnne0s 28358 . . . . . . . . 9 (𝑛 ∈ ℕs𝑛 ≠ 0s )
2926, 27, 28divscld 28266 . . . . . . . 8 (𝑛 ∈ ℕs → ( 1s /su 𝑛) ∈ No )
3029mulsridd 28158 . . . . . . 7 (𝑛 ∈ ℕs → (( 1s /su 𝑛) ·s 1s ) = ( 1s /su 𝑛))
3130eqcomd 2746 . . . . . 6 (𝑛 ∈ ℕs → ( 1s /su 𝑛) = (( 1s /su 𝑛) ·s 1s ))
3231oveq2d 7464 . . . . 5 (𝑛 ∈ ℕs → (𝐵𝐹( 1s /su 𝑛)) = (𝐵𝐹(( 1s /su 𝑛) ·s 1s )))
33 1nns 28370 . . . . . 6 1s ∈ ℕs
34 oveq2 7456 . . . . . . . . . 10 (𝑝 = 𝑛 → ( 1s /su 𝑝) = ( 1s /su 𝑛))
3534oveq1d 7463 . . . . . . . . 9 (𝑝 = 𝑛 → (( 1s /su 𝑝) ·s ( 1s /su 𝑞)) = (( 1s /su 𝑛) ·s ( 1s /su 𝑞)))
3635oveq2d 7464 . . . . . . . 8 (𝑝 = 𝑛 → (𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞))) = (𝐵𝐹(( 1s /su 𝑛) ·s ( 1s /su 𝑞))))
3736eqeq2d 2751 . . . . . . 7 (𝑝 = 𝑛 → ((𝐵𝐹( 1s /su 𝑛)) = (𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞))) ↔ (𝐵𝐹( 1s /su 𝑛)) = (𝐵𝐹(( 1s /su 𝑛) ·s ( 1s /su 𝑞)))))
38 oveq2 7456 . . . . . . . . . . 11 (𝑞 = 1s → ( 1s /su 𝑞) = ( 1s /su 1s ))
39 divs1 28247 . . . . . . . . . . . 12 ( 1s No → ( 1s /su 1s ) = 1s )
405, 39ax-mp 5 . . . . . . . . . . 11 ( 1s /su 1s ) = 1s
4138, 40eqtrdi 2796 . . . . . . . . . 10 (𝑞 = 1s → ( 1s /su 𝑞) = 1s )
4241oveq2d 7464 . . . . . . . . 9 (𝑞 = 1s → (( 1s /su 𝑛) ·s ( 1s /su 𝑞)) = (( 1s /su 𝑛) ·s 1s ))
4342oveq2d 7464 . . . . . . . 8 (𝑞 = 1s → (𝐵𝐹(( 1s /su 𝑛) ·s ( 1s /su 𝑞))) = (𝐵𝐹(( 1s /su 𝑛) ·s 1s )))
4443eqeq2d 2751 . . . . . . 7 (𝑞 = 1s → ((𝐵𝐹( 1s /su 𝑛)) = (𝐵𝐹(( 1s /su 𝑛) ·s ( 1s /su 𝑞))) ↔ (𝐵𝐹( 1s /su 𝑛)) = (𝐵𝐹(( 1s /su 𝑛) ·s 1s ))))
4537, 44rspc2ev 3648 . . . . . 6 ((𝑛 ∈ ℕs ∧ 1s ∈ ℕs ∧ (𝐵𝐹( 1s /su 𝑛)) = (𝐵𝐹(( 1s /su 𝑛) ·s 1s ))) → ∃𝑝 ∈ ℕs𝑞 ∈ ℕs (𝐵𝐹( 1s /su 𝑛)) = (𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞))))
4633, 45mp3an2 1449 . . . . 5 ((𝑛 ∈ ℕs ∧ (𝐵𝐹( 1s /su 𝑛)) = (𝐵𝐹(( 1s /su 𝑛) ·s 1s ))) → ∃𝑝 ∈ ℕs𝑞 ∈ ℕs (𝐵𝐹( 1s /su 𝑛)) = (𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞))))
4732, 46mpdan 686 . . . 4 (𝑛 ∈ ℕs → ∃𝑝 ∈ ℕs𝑞 ∈ ℕs (𝐵𝐹( 1s /su 𝑛)) = (𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞))))
48 eqeq1 2744 . . . . 5 (𝐴 = (𝐵𝐹( 1s /su 𝑛)) → (𝐴 = (𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞))) ↔ (𝐵𝐹( 1s /su 𝑛)) = (𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞)))))
49482rexbidv 3228 . . . 4 (𝐴 = (𝐵𝐹( 1s /su 𝑛)) → (∃𝑝 ∈ ℕs𝑞 ∈ ℕs 𝐴 = (𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞))) ↔ ∃𝑝 ∈ ℕs𝑞 ∈ ℕs (𝐵𝐹( 1s /su 𝑛)) = (𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞)))))
5047, 49syl5ibrcom 247 . . 3 (𝑛 ∈ ℕs → (𝐴 = (𝐵𝐹( 1s /su 𝑛)) → ∃𝑝 ∈ ℕs𝑞 ∈ ℕs 𝐴 = (𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞)))))
5150rexlimiv 3154 . 2 (∃𝑛 ∈ ℕs 𝐴 = (𝐵𝐹( 1s /su 𝑛)) → ∃𝑝 ∈ ℕs𝑞 ∈ ℕs 𝐴 = (𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞))))
5225, 51impbii 209 1 (∃𝑝 ∈ ℕs𝑞 ∈ ℕs 𝐴 = (𝐵𝐹(( 1s /su 𝑝) ·s ( 1s /su 𝑞))) ↔ ∃𝑛 ∈ ℕs 𝐴 = (𝐵𝐹( 1s /su 𝑛)))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wcel 2108  wne 2946  wrex 3076  (class class class)co 7448   No csur 27702   0s c0s 27885   1s c1s 27886   ·s cmuls 28150   /su cdivs 28231  scnns 28337
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-dc 10515
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-ot 4657  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-2o 8523  df-oadd 8526  df-nadd 8722  df-no 27705  df-slt 27706  df-bday 27707  df-sle 27808  df-sslt 27844  df-scut 27846  df-0s 27887  df-1s 27888  df-made 27904  df-old 27905  df-left 27907  df-right 27908  df-norec 27989  df-norec2 28000  df-adds 28011  df-negs 28071  df-subs 28072  df-muls 28151  df-divs 28232  df-n0s 28338  df-nns 28339
This theorem is referenced by:  remulscl  28452
  Copyright terms: Public domain W3C validator