| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > n0ons | Structured version Visualization version GIF version | ||
| Description: A surreal natural is a surreal ordinal. (Contributed by Scott Fenton, 2-Apr-2025.) |
| Ref | Expression |
|---|---|
| n0ons | ⊢ (𝐴 ∈ ℕ0s → 𝐴 ∈ Ons) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0sno 28216 | . . . . 5 ⊢ (𝐴 ∈ ℕ0s → 𝐴 ∈ No ) | |
| 2 | 1sno 27739 | . . . . 5 ⊢ 1s ∈ No | |
| 3 | subscl 27966 | . . . . 5 ⊢ ((𝐴 ∈ No ∧ 1s ∈ No ) → (𝐴 -s 1s ) ∈ No ) | |
| 4 | 1, 2, 3 | sylancl 586 | . . . 4 ⊢ (𝐴 ∈ ℕ0s → (𝐴 -s 1s ) ∈ No ) |
| 5 | ovex 7420 | . . . . 5 ⊢ (𝐴 -s 1s ) ∈ V | |
| 6 | 5 | snelpw 5405 | . . . 4 ⊢ ((𝐴 -s 1s ) ∈ No ↔ {(𝐴 -s 1s )} ∈ 𝒫 No ) |
| 7 | 4, 6 | sylib 218 | . . 3 ⊢ (𝐴 ∈ ℕ0s → {(𝐴 -s 1s )} ∈ 𝒫 No ) |
| 8 | n0scut 28226 | . . 3 ⊢ (𝐴 ∈ ℕ0s → 𝐴 = ({(𝐴 -s 1s )} |s ∅)) | |
| 9 | oveq1 7394 | . . . . 5 ⊢ (𝑥 = {(𝐴 -s 1s )} → (𝑥 |s ∅) = ({(𝐴 -s 1s )} |s ∅)) | |
| 10 | 9 | eqeq2d 2740 | . . . 4 ⊢ (𝑥 = {(𝐴 -s 1s )} → (𝐴 = (𝑥 |s ∅) ↔ 𝐴 = ({(𝐴 -s 1s )} |s ∅))) |
| 11 | 10 | rspcev 3588 | . . 3 ⊢ (({(𝐴 -s 1s )} ∈ 𝒫 No ∧ 𝐴 = ({(𝐴 -s 1s )} |s ∅)) → ∃𝑥 ∈ 𝒫 No 𝐴 = (𝑥 |s ∅)) |
| 12 | 7, 8, 11 | syl2anc 584 | . 2 ⊢ (𝐴 ∈ ℕ0s → ∃𝑥 ∈ 𝒫 No 𝐴 = (𝑥 |s ∅)) |
| 13 | elons2 28159 | . 2 ⊢ (𝐴 ∈ Ons ↔ ∃𝑥 ∈ 𝒫 No 𝐴 = (𝑥 |s ∅)) | |
| 14 | 12, 13 | sylibr 234 | 1 ⊢ (𝐴 ∈ ℕ0s → 𝐴 ∈ Ons) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ∅c0 4296 𝒫 cpw 4563 {csn 4589 (class class class)co 7387 No csur 27551 |s cscut 27694 1s c1s 27735 -s csubs 27926 Onscons 28152 ℕ0scnn0s 28206 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-ot 4598 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-se 5592 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-nadd 8630 df-no 27554 df-slt 27555 df-bday 27556 df-sle 27657 df-sslt 27693 df-scut 27695 df-0s 27736 df-1s 27737 df-made 27755 df-old 27756 df-left 27758 df-right 27759 df-norec 27845 df-norec2 27856 df-adds 27867 df-negs 27927 df-subs 27928 df-ons 28153 df-n0s 28208 |
| This theorem is referenced by: onltn0s 28248 n0cutlt 28249 bdayn0p1 28258 bdayn0sf1o 28259 |
| Copyright terms: Public domain | W3C validator |