| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > n0ons | Structured version Visualization version GIF version | ||
| Description: A surreal natural is a surreal ordinal. (Contributed by Scott Fenton, 2-Apr-2025.) |
| Ref | Expression |
|---|---|
| n0ons | ⊢ (𝐴 ∈ ℕ0s → 𝐴 ∈ Ons) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0sno 28192 | . . . . 5 ⊢ (𝐴 ∈ ℕ0s → 𝐴 ∈ No ) | |
| 2 | 1sno 27715 | . . . . 5 ⊢ 1s ∈ No | |
| 3 | subscl 27942 | . . . . 5 ⊢ ((𝐴 ∈ No ∧ 1s ∈ No ) → (𝐴 -s 1s ) ∈ No ) | |
| 4 | 1, 2, 3 | sylancl 586 | . . . 4 ⊢ (𝐴 ∈ ℕ0s → (𝐴 -s 1s ) ∈ No ) |
| 5 | ovex 7402 | . . . . 5 ⊢ (𝐴 -s 1s ) ∈ V | |
| 6 | 5 | snelpw 5400 | . . . 4 ⊢ ((𝐴 -s 1s ) ∈ No ↔ {(𝐴 -s 1s )} ∈ 𝒫 No ) |
| 7 | 4, 6 | sylib 218 | . . 3 ⊢ (𝐴 ∈ ℕ0s → {(𝐴 -s 1s )} ∈ 𝒫 No ) |
| 8 | n0scut 28202 | . . 3 ⊢ (𝐴 ∈ ℕ0s → 𝐴 = ({(𝐴 -s 1s )} |s ∅)) | |
| 9 | oveq1 7376 | . . . . 5 ⊢ (𝑥 = {(𝐴 -s 1s )} → (𝑥 |s ∅) = ({(𝐴 -s 1s )} |s ∅)) | |
| 10 | 9 | eqeq2d 2740 | . . . 4 ⊢ (𝑥 = {(𝐴 -s 1s )} → (𝐴 = (𝑥 |s ∅) ↔ 𝐴 = ({(𝐴 -s 1s )} |s ∅))) |
| 11 | 10 | rspcev 3585 | . . 3 ⊢ (({(𝐴 -s 1s )} ∈ 𝒫 No ∧ 𝐴 = ({(𝐴 -s 1s )} |s ∅)) → ∃𝑥 ∈ 𝒫 No 𝐴 = (𝑥 |s ∅)) |
| 12 | 7, 8, 11 | syl2anc 584 | . 2 ⊢ (𝐴 ∈ ℕ0s → ∃𝑥 ∈ 𝒫 No 𝐴 = (𝑥 |s ∅)) |
| 13 | elons2 28135 | . 2 ⊢ (𝐴 ∈ Ons ↔ ∃𝑥 ∈ 𝒫 No 𝐴 = (𝑥 |s ∅)) | |
| 14 | 12, 13 | sylibr 234 | 1 ⊢ (𝐴 ∈ ℕ0s → 𝐴 ∈ Ons) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ∃wrex 3053 ∅c0 4292 𝒫 cpw 4559 {csn 4585 (class class class)co 7369 No csur 27527 |s cscut 27670 1s c1s 27711 -s csubs 27902 Onscons 28128 ℕ0scnn0s 28182 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-ot 4594 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-nadd 8607 df-no 27530 df-slt 27531 df-bday 27532 df-sle 27633 df-sslt 27669 df-scut 27671 df-0s 27712 df-1s 27713 df-made 27731 df-old 27732 df-left 27734 df-right 27735 df-norec 27821 df-norec2 27832 df-adds 27843 df-negs 27903 df-subs 27904 df-ons 28129 df-n0s 28184 |
| This theorem is referenced by: onltn0s 28224 n0cutlt 28225 bdayn0p1 28234 bdayn0sf1o 28235 |
| Copyright terms: Public domain | W3C validator |