![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > n0ons | Structured version Visualization version GIF version |
Description: A surreal natural is a surreal ordinal. (Contributed by Scott Fenton, 2-Apr-2025.) |
Ref | Expression |
---|---|
n0ons | ⊢ (𝐴 ∈ ℕ0s → 𝐴 ∈ Ons) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0ssno 27951 | . . . . . 6 ⊢ ℕ0s ⊆ No | |
2 | 1 | sseli 3978 | . . . . 5 ⊢ (𝐴 ∈ ℕ0s → 𝐴 ∈ No ) |
3 | 1sno 27580 | . . . . 5 ⊢ 1s ∈ No | |
4 | subscl 27788 | . . . . 5 ⊢ ((𝐴 ∈ No ∧ 1s ∈ No ) → (𝐴 -s 1s ) ∈ No ) | |
5 | 2, 3, 4 | sylancl 585 | . . . 4 ⊢ (𝐴 ∈ ℕ0s → (𝐴 -s 1s ) ∈ No ) |
6 | ovex 7445 | . . . . 5 ⊢ (𝐴 -s 1s ) ∈ V | |
7 | 6 | snelpw 5445 | . . . 4 ⊢ ((𝐴 -s 1s ) ∈ No ↔ {(𝐴 -s 1s )} ∈ 𝒫 No ) |
8 | 5, 7 | sylib 217 | . . 3 ⊢ (𝐴 ∈ ℕ0s → {(𝐴 -s 1s )} ∈ 𝒫 No ) |
9 | n0scut 27958 | . . 3 ⊢ (𝐴 ∈ ℕ0s → 𝐴 = ({(𝐴 -s 1s )} |s ∅)) | |
10 | oveq1 7419 | . . . . 5 ⊢ (𝑥 = {(𝐴 -s 1s )} → (𝑥 |s ∅) = ({(𝐴 -s 1s )} |s ∅)) | |
11 | 10 | eqeq2d 2742 | . . . 4 ⊢ (𝑥 = {(𝐴 -s 1s )} → (𝐴 = (𝑥 |s ∅) ↔ 𝐴 = ({(𝐴 -s 1s )} |s ∅))) |
12 | 11 | rspcev 3612 | . . 3 ⊢ (({(𝐴 -s 1s )} ∈ 𝒫 No ∧ 𝐴 = ({(𝐴 -s 1s )} |s ∅)) → ∃𝑥 ∈ 𝒫 No 𝐴 = (𝑥 |s ∅)) |
13 | 8, 9, 12 | syl2anc 583 | . 2 ⊢ (𝐴 ∈ ℕ0s → ∃𝑥 ∈ 𝒫 No 𝐴 = (𝑥 |s ∅)) |
14 | elons2 27939 | . 2 ⊢ (𝐴 ∈ Ons ↔ ∃𝑥 ∈ 𝒫 No 𝐴 = (𝑥 |s ∅)) | |
15 | 13, 14 | sylibr 233 | 1 ⊢ (𝐴 ∈ ℕ0s → 𝐴 ∈ Ons) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ∃wrex 3069 ∅c0 4322 𝒫 cpw 4602 {csn 4628 (class class class)co 7412 No csur 27394 |s cscut 27535 1s c1s 27576 -s csubs 27749 Onscons 27932 ℕ0scnn0s 27944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-ot 4637 df-uni 4909 df-int 4951 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7860 df-1st 7979 df-2nd 7980 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-2o 8473 df-nadd 8671 df-no 27397 df-slt 27398 df-bday 27399 df-sle 27499 df-sslt 27534 df-scut 27536 df-0s 27577 df-1s 27578 df-made 27594 df-old 27595 df-left 27597 df-right 27598 df-norec 27675 df-norec2 27686 df-adds 27697 df-negs 27750 df-subs 27751 df-ons 27933 df-n0s 27946 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |