MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  n0ons Structured version   Visualization version   GIF version

Theorem n0ons 28280
Description: A surreal natural is a surreal ordinal. (Contributed by Scott Fenton, 2-Apr-2025.)
Assertion
Ref Expression
n0ons (𝐴 ∈ ℕ0s𝐴 ∈ Ons)

Proof of Theorem n0ons
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 n0sno 28268 . . . . 5 (𝐴 ∈ ℕ0s𝐴 No )
2 1sno 27791 . . . . 5 1s No
3 subscl 28018 . . . . 5 ((𝐴 No ∧ 1s No ) → (𝐴 -s 1s ) ∈ No )
41, 2, 3sylancl 586 . . . 4 (𝐴 ∈ ℕ0s → (𝐴 -s 1s ) ∈ No )
5 ovex 7438 . . . . 5 (𝐴 -s 1s ) ∈ V
65snelpw 5420 . . . 4 ((𝐴 -s 1s ) ∈ No ↔ {(𝐴 -s 1s )} ∈ 𝒫 No )
74, 6sylib 218 . . 3 (𝐴 ∈ ℕ0s → {(𝐴 -s 1s )} ∈ 𝒫 No )
8 n0scut 28278 . . 3 (𝐴 ∈ ℕ0s𝐴 = ({(𝐴 -s 1s )} |s ∅))
9 oveq1 7412 . . . . 5 (𝑥 = {(𝐴 -s 1s )} → (𝑥 |s ∅) = ({(𝐴 -s 1s )} |s ∅))
109eqeq2d 2746 . . . 4 (𝑥 = {(𝐴 -s 1s )} → (𝐴 = (𝑥 |s ∅) ↔ 𝐴 = ({(𝐴 -s 1s )} |s ∅)))
1110rspcev 3601 . . 3 (({(𝐴 -s 1s )} ∈ 𝒫 No 𝐴 = ({(𝐴 -s 1s )} |s ∅)) → ∃𝑥 ∈ 𝒫 No 𝐴 = (𝑥 |s ∅))
127, 8, 11syl2anc 584 . 2 (𝐴 ∈ ℕ0s → ∃𝑥 ∈ 𝒫 No 𝐴 = (𝑥 |s ∅))
13 elons2 28211 . 2 (𝐴 ∈ Ons ↔ ∃𝑥 ∈ 𝒫 No 𝐴 = (𝑥 |s ∅))
1412, 13sylibr 234 1 (𝐴 ∈ ℕ0s𝐴 ∈ Ons)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2108  wrex 3060  c0 4308  𝒫 cpw 4575  {csn 4601  (class class class)co 7405   No csur 27603   |s cscut 27746   1s c1s 27787   -s csubs 27978  Onscons 28204  0scnn0s 28258
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-ot 4610  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-nadd 8678  df-no 27606  df-slt 27607  df-bday 27608  df-sle 27709  df-sslt 27745  df-scut 27747  df-0s 27788  df-1s 27789  df-made 27807  df-old 27808  df-left 27810  df-right 27811  df-norec 27897  df-norec2 27908  df-adds 27919  df-negs 27979  df-subs 27980  df-ons 28205  df-n0s 28260
This theorem is referenced by:  onltn0s  28300  n0cutlt  28301  bdayn0p1  28310  bdayn0sf1o  28311
  Copyright terms: Public domain W3C validator