![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > n0ons | Structured version Visualization version GIF version |
Description: A surreal natural is a surreal ordinal. (Contributed by Scott Fenton, 2-Apr-2025.) |
Ref | Expression |
---|---|
n0ons | ⊢ (𝐴 ∈ ℕ0s → 𝐴 ∈ Ons) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | n0ssno 27936 | . . . . . 6 ⊢ ℕ0s ⊆ No | |
2 | 1 | sseli 3977 | . . . . 5 ⊢ (𝐴 ∈ ℕ0s → 𝐴 ∈ No ) |
3 | 1sno 27565 | . . . . 5 ⊢ 1s ∈ No | |
4 | subscl 27773 | . . . . 5 ⊢ ((𝐴 ∈ No ∧ 1s ∈ No ) → (𝐴 -s 1s ) ∈ No ) | |
5 | 2, 3, 4 | sylancl 584 | . . . 4 ⊢ (𝐴 ∈ ℕ0s → (𝐴 -s 1s ) ∈ No ) |
6 | ovex 7444 | . . . . 5 ⊢ (𝐴 -s 1s ) ∈ V | |
7 | 6 | snelpw 5444 | . . . 4 ⊢ ((𝐴 -s 1s ) ∈ No ↔ {(𝐴 -s 1s )} ∈ 𝒫 No ) |
8 | 5, 7 | sylib 217 | . . 3 ⊢ (𝐴 ∈ ℕ0s → {(𝐴 -s 1s )} ∈ 𝒫 No ) |
9 | n0scut 27943 | . . 3 ⊢ (𝐴 ∈ ℕ0s → 𝐴 = ({(𝐴 -s 1s )} |s ∅)) | |
10 | oveq1 7418 | . . . . 5 ⊢ (𝑥 = {(𝐴 -s 1s )} → (𝑥 |s ∅) = ({(𝐴 -s 1s )} |s ∅)) | |
11 | 10 | eqeq2d 2741 | . . . 4 ⊢ (𝑥 = {(𝐴 -s 1s )} → (𝐴 = (𝑥 |s ∅) ↔ 𝐴 = ({(𝐴 -s 1s )} |s ∅))) |
12 | 11 | rspcev 3611 | . . 3 ⊢ (({(𝐴 -s 1s )} ∈ 𝒫 No ∧ 𝐴 = ({(𝐴 -s 1s )} |s ∅)) → ∃𝑥 ∈ 𝒫 No 𝐴 = (𝑥 |s ∅)) |
13 | 8, 9, 12 | syl2anc 582 | . 2 ⊢ (𝐴 ∈ ℕ0s → ∃𝑥 ∈ 𝒫 No 𝐴 = (𝑥 |s ∅)) |
14 | elons2 27924 | . 2 ⊢ (𝐴 ∈ Ons ↔ ∃𝑥 ∈ 𝒫 No 𝐴 = (𝑥 |s ∅)) | |
15 | 13, 14 | sylibr 233 | 1 ⊢ (𝐴 ∈ ℕ0s → 𝐴 ∈ Ons) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2104 ∃wrex 3068 ∅c0 4321 𝒫 cpw 4601 {csn 4627 (class class class)co 7411 No csur 27379 |s cscut 27520 1s c1s 27561 -s csubs 27734 Onscons 27917 ℕ0scnn0s 27929 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-ot 4636 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6299 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-1st 7977 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-1o 8468 df-2o 8469 df-nadd 8667 df-no 27382 df-slt 27383 df-bday 27384 df-sle 27484 df-sslt 27519 df-scut 27521 df-0s 27562 df-1s 27563 df-made 27579 df-old 27580 df-left 27582 df-right 27583 df-norec 27660 df-norec2 27671 df-adds 27682 df-negs 27735 df-subs 27736 df-ons 27918 df-n0s 27931 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |