| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | addscl 28015 | . . . . 5
⊢ ((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No ) → (𝐴 +s 𝐵) ∈  No
) | 
| 2 | 1 | adantr 480 | . . . 4
⊢ (((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No ) ∧ ((∃𝑛 ∈ ℕs (( -us
‘𝑛) <s 𝐴 ∧ 𝐴 <s 𝑛) ∧ 𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s
/su 𝑛))} |s
{𝑥 ∣ ∃𝑛 ∈ ℕs
𝑥 = (𝐴 +s ( 1s
/su 𝑛))}))
∧ (∃𝑚 ∈
ℕs (( -us ‘𝑚) <s 𝐵 ∧ 𝐵 <s 𝑚) ∧ 𝐵 = ({𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s
/su 𝑚))} |s
{𝑦 ∣ ∃𝑚 ∈ ℕs
𝑦 = (𝐵 +s ( 1s
/su 𝑚))}))))
→ (𝐴 +s
𝐵) ∈  No ) | 
| 3 |  | nnaddscl 28350 | . . . . . . . . . 10
⊢ ((𝑛 ∈ ℕs
∧ 𝑚 ∈
ℕs) → (𝑛 +s 𝑚) ∈
ℕs) | 
| 4 | 3 | adantr 480 | . . . . . . . . 9
⊢ (((𝑛 ∈ ℕs
∧ 𝑚 ∈
ℕs) ∧ ((( -us ‘𝑛) <s 𝐴 ∧ 𝐴 <s 𝑛) ∧ (( -us ‘𝑚) <s 𝐵 ∧ 𝐵 <s 𝑚))) → (𝑛 +s 𝑚) ∈
ℕs) | 
| 5 | 4 | adantl 481 | . . . . . . . 8
⊢ (((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No ) ∧ ((𝑛 ∈ ℕs ∧ 𝑚 ∈ ℕs)
∧ ((( -us ‘𝑛) <s 𝐴 ∧ 𝐴 <s 𝑛) ∧ (( -us ‘𝑚) <s 𝐵 ∧ 𝐵 <s 𝑚)))) → (𝑛 +s 𝑚) ∈
ℕs) | 
| 6 |  | simprll 778 | . . . . . . . . . . 11
⊢ (((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No ) ∧ ((𝑛 ∈ ℕs ∧ 𝑚 ∈ ℕs)
∧ ((( -us ‘𝑛) <s 𝐴 ∧ 𝐴 <s 𝑛) ∧ (( -us ‘𝑚) <s 𝐵 ∧ 𝐵 <s 𝑚)))) → 𝑛 ∈ ℕs) | 
| 7 | 6 | nnsnod 28332 | . . . . . . . . . 10
⊢ (((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No ) ∧ ((𝑛 ∈ ℕs ∧ 𝑚 ∈ ℕs)
∧ ((( -us ‘𝑛) <s 𝐴 ∧ 𝐴 <s 𝑛) ∧ (( -us ‘𝑚) <s 𝐵 ∧ 𝐵 <s 𝑚)))) → 𝑛 ∈  No
) | 
| 8 |  | simprlr 779 | . . . . . . . . . . 11
⊢ (((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No ) ∧ ((𝑛 ∈ ℕs ∧ 𝑚 ∈ ℕs)
∧ ((( -us ‘𝑛) <s 𝐴 ∧ 𝐴 <s 𝑛) ∧ (( -us ‘𝑚) <s 𝐵 ∧ 𝐵 <s 𝑚)))) → 𝑚 ∈ ℕs) | 
| 9 | 8 | nnsnod 28332 | . . . . . . . . . 10
⊢ (((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No ) ∧ ((𝑛 ∈ ℕs ∧ 𝑚 ∈ ℕs)
∧ ((( -us ‘𝑛) <s 𝐴 ∧ 𝐴 <s 𝑛) ∧ (( -us ‘𝑚) <s 𝐵 ∧ 𝐵 <s 𝑚)))) → 𝑚 ∈  No
) | 
| 10 |  | negsdi 28083 | . . . . . . . . . 10
⊢ ((𝑛 ∈ 
No  ∧ 𝑚 ∈
 No ) → ( -us ‘(𝑛 +s 𝑚)) = (( -us
‘𝑛) +s (
-us ‘𝑚))) | 
| 11 | 7, 9, 10 | syl2anc 584 | . . . . . . . . 9
⊢ (((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No ) ∧ ((𝑛 ∈ ℕs ∧ 𝑚 ∈ ℕs)
∧ ((( -us ‘𝑛) <s 𝐴 ∧ 𝐴 <s 𝑛) ∧ (( -us ‘𝑚) <s 𝐵 ∧ 𝐵 <s 𝑚)))) → ( -us ‘(𝑛 +s 𝑚)) = (( -us
‘𝑛) +s (
-us ‘𝑚))) | 
| 12 | 7 | negscld 28070 | . . . . . . . . . 10
⊢ (((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No ) ∧ ((𝑛 ∈ ℕs ∧ 𝑚 ∈ ℕs)
∧ ((( -us ‘𝑛) <s 𝐴 ∧ 𝐴 <s 𝑛) ∧ (( -us ‘𝑚) <s 𝐵 ∧ 𝐵 <s 𝑚)))) → ( -us ‘𝑛) ∈ 
No ) | 
| 13 | 9 | negscld 28070 | . . . . . . . . . 10
⊢ (((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No ) ∧ ((𝑛 ∈ ℕs ∧ 𝑚 ∈ ℕs)
∧ ((( -us ‘𝑛) <s 𝐴 ∧ 𝐴 <s 𝑛) ∧ (( -us ‘𝑚) <s 𝐵 ∧ 𝐵 <s 𝑚)))) → ( -us ‘𝑚) ∈ 
No ) | 
| 14 |  | simpll 766 | . . . . . . . . . 10
⊢ (((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No ) ∧ ((𝑛 ∈ ℕs ∧ 𝑚 ∈ ℕs)
∧ ((( -us ‘𝑛) <s 𝐴 ∧ 𝐴 <s 𝑛) ∧ (( -us ‘𝑚) <s 𝐵 ∧ 𝐵 <s 𝑚)))) → 𝐴 ∈  No
) | 
| 15 |  | simplr 768 | . . . . . . . . . 10
⊢ (((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No ) ∧ ((𝑛 ∈ ℕs ∧ 𝑚 ∈ ℕs)
∧ ((( -us ‘𝑛) <s 𝐴 ∧ 𝐴 <s 𝑛) ∧ (( -us ‘𝑚) <s 𝐵 ∧ 𝐵 <s 𝑚)))) → 𝐵 ∈  No
) | 
| 16 |  | simprll 778 | . . . . . . . . . . 11
⊢ (((𝑛 ∈ ℕs
∧ 𝑚 ∈
ℕs) ∧ ((( -us ‘𝑛) <s 𝐴 ∧ 𝐴 <s 𝑛) ∧ (( -us ‘𝑚) <s 𝐵 ∧ 𝐵 <s 𝑚))) → ( -us ‘𝑛) <s 𝐴) | 
| 17 | 16 | adantl 481 | . . . . . . . . . 10
⊢ (((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No ) ∧ ((𝑛 ∈ ℕs ∧ 𝑚 ∈ ℕs)
∧ ((( -us ‘𝑛) <s 𝐴 ∧ 𝐴 <s 𝑛) ∧ (( -us ‘𝑚) <s 𝐵 ∧ 𝐵 <s 𝑚)))) → ( -us ‘𝑛) <s 𝐴) | 
| 18 |  | simprrl 780 | . . . . . . . . . . 11
⊢ (((𝑛 ∈ ℕs
∧ 𝑚 ∈
ℕs) ∧ ((( -us ‘𝑛) <s 𝐴 ∧ 𝐴 <s 𝑛) ∧ (( -us ‘𝑚) <s 𝐵 ∧ 𝐵 <s 𝑚))) → ( -us ‘𝑚) <s 𝐵) | 
| 19 | 18 | adantl 481 | . . . . . . . . . 10
⊢ (((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No ) ∧ ((𝑛 ∈ ℕs ∧ 𝑚 ∈ ℕs)
∧ ((( -us ‘𝑛) <s 𝐴 ∧ 𝐴 <s 𝑛) ∧ (( -us ‘𝑚) <s 𝐵 ∧ 𝐵 <s 𝑚)))) → ( -us ‘𝑚) <s 𝐵) | 
| 20 | 12, 13, 14, 15, 17, 19 | slt2addd 28047 | . . . . . . . . 9
⊢ (((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No ) ∧ ((𝑛 ∈ ℕs ∧ 𝑚 ∈ ℕs)
∧ ((( -us ‘𝑛) <s 𝐴 ∧ 𝐴 <s 𝑛) ∧ (( -us ‘𝑚) <s 𝐵 ∧ 𝐵 <s 𝑚)))) → (( -us ‘𝑛) +s ( -us
‘𝑚)) <s (𝐴 +s 𝐵)) | 
| 21 | 11, 20 | eqbrtrd 5164 | . . . . . . . 8
⊢ (((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No ) ∧ ((𝑛 ∈ ℕs ∧ 𝑚 ∈ ℕs)
∧ ((( -us ‘𝑛) <s 𝐴 ∧ 𝐴 <s 𝑛) ∧ (( -us ‘𝑚) <s 𝐵 ∧ 𝐵 <s 𝑚)))) → ( -us ‘(𝑛 +s 𝑚)) <s (𝐴 +s 𝐵)) | 
| 22 |  | simprlr 779 | . . . . . . . . . 10
⊢ (((𝑛 ∈ ℕs
∧ 𝑚 ∈
ℕs) ∧ ((( -us ‘𝑛) <s 𝐴 ∧ 𝐴 <s 𝑛) ∧ (( -us ‘𝑚) <s 𝐵 ∧ 𝐵 <s 𝑚))) → 𝐴 <s 𝑛) | 
| 23 | 22 | adantl 481 | . . . . . . . . 9
⊢ (((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No ) ∧ ((𝑛 ∈ ℕs ∧ 𝑚 ∈ ℕs)
∧ ((( -us ‘𝑛) <s 𝐴 ∧ 𝐴 <s 𝑛) ∧ (( -us ‘𝑚) <s 𝐵 ∧ 𝐵 <s 𝑚)))) → 𝐴 <s 𝑛) | 
| 24 |  | simprrr 781 | . . . . . . . . . 10
⊢ (((𝑛 ∈ ℕs
∧ 𝑚 ∈
ℕs) ∧ ((( -us ‘𝑛) <s 𝐴 ∧ 𝐴 <s 𝑛) ∧ (( -us ‘𝑚) <s 𝐵 ∧ 𝐵 <s 𝑚))) → 𝐵 <s 𝑚) | 
| 25 | 24 | adantl 481 | . . . . . . . . 9
⊢ (((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No ) ∧ ((𝑛 ∈ ℕs ∧ 𝑚 ∈ ℕs)
∧ ((( -us ‘𝑛) <s 𝐴 ∧ 𝐴 <s 𝑛) ∧ (( -us ‘𝑚) <s 𝐵 ∧ 𝐵 <s 𝑚)))) → 𝐵 <s 𝑚) | 
| 26 | 14, 15, 7, 9, 23, 25 | slt2addd 28047 | . . . . . . . 8
⊢ (((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No ) ∧ ((𝑛 ∈ ℕs ∧ 𝑚 ∈ ℕs)
∧ ((( -us ‘𝑛) <s 𝐴 ∧ 𝐴 <s 𝑛) ∧ (( -us ‘𝑚) <s 𝐵 ∧ 𝐵 <s 𝑚)))) → (𝐴 +s 𝐵) <s (𝑛 +s 𝑚)) | 
| 27 |  | fveq2 6905 | . . . . . . . . . . 11
⊢ (𝑝 = (𝑛 +s 𝑚) → ( -us ‘𝑝) = ( -us
‘(𝑛 +s
𝑚))) | 
| 28 | 27 | breq1d 5152 | . . . . . . . . . 10
⊢ (𝑝 = (𝑛 +s 𝑚) → (( -us ‘𝑝) <s (𝐴 +s 𝐵) ↔ ( -us ‘(𝑛 +s 𝑚)) <s (𝐴 +s 𝐵))) | 
| 29 |  | breq2 5146 | . . . . . . . . . 10
⊢ (𝑝 = (𝑛 +s 𝑚) → ((𝐴 +s 𝐵) <s 𝑝 ↔ (𝐴 +s 𝐵) <s (𝑛 +s 𝑚))) | 
| 30 | 28, 29 | anbi12d 632 | . . . . . . . . 9
⊢ (𝑝 = (𝑛 +s 𝑚) → ((( -us ‘𝑝) <s (𝐴 +s 𝐵) ∧ (𝐴 +s 𝐵) <s 𝑝) ↔ (( -us ‘(𝑛 +s 𝑚)) <s (𝐴 +s 𝐵) ∧ (𝐴 +s 𝐵) <s (𝑛 +s 𝑚)))) | 
| 31 | 30 | rspcev 3621 | . . . . . . . 8
⊢ (((𝑛 +s 𝑚) ∈ ℕs
∧ (( -us ‘(𝑛 +s 𝑚)) <s (𝐴 +s 𝐵) ∧ (𝐴 +s 𝐵) <s (𝑛 +s 𝑚))) → ∃𝑝 ∈ ℕs (( -us
‘𝑝) <s (𝐴 +s 𝐵) ∧ (𝐴 +s 𝐵) <s 𝑝)) | 
| 32 | 5, 21, 26, 31 | syl12anc 836 | . . . . . . 7
⊢ (((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No ) ∧ ((𝑛 ∈ ℕs ∧ 𝑚 ∈ ℕs)
∧ ((( -us ‘𝑛) <s 𝐴 ∧ 𝐴 <s 𝑛) ∧ (( -us ‘𝑚) <s 𝐵 ∧ 𝐵 <s 𝑚)))) → ∃𝑝 ∈ ℕs (( -us
‘𝑝) <s (𝐴 +s 𝐵) ∧ (𝐴 +s 𝐵) <s 𝑝)) | 
| 33 | 32 | expr 456 | . . . . . 6
⊢ (((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No ) ∧ (𝑛 ∈ ℕs ∧ 𝑚 ∈ ℕs))
→ (((( -us ‘𝑛) <s 𝐴 ∧ 𝐴 <s 𝑛) ∧ (( -us ‘𝑚) <s 𝐵 ∧ 𝐵 <s 𝑚)) → ∃𝑝 ∈ ℕs (( -us
‘𝑝) <s (𝐴 +s 𝐵) ∧ (𝐴 +s 𝐵) <s 𝑝))) | 
| 34 | 33 | rexlimdvva 3212 | . . . . 5
⊢ ((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No ) → (∃𝑛 ∈ ℕs ∃𝑚 ∈ ℕs (((
-us ‘𝑛)
<s 𝐴 ∧ 𝐴 <s 𝑛) ∧ (( -us ‘𝑚) <s 𝐵 ∧ 𝐵 <s 𝑚)) → ∃𝑝 ∈ ℕs (( -us
‘𝑝) <s (𝐴 +s 𝐵) ∧ (𝐴 +s 𝐵) <s 𝑝))) | 
| 35 |  | simpl 482 | . . . . . . 7
⊢
((∃𝑛 ∈
ℕs (( -us ‘𝑛) <s 𝐴 ∧ 𝐴 <s 𝑛) ∧ 𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s
/su 𝑛))} |s
{𝑥 ∣ ∃𝑛 ∈ ℕs
𝑥 = (𝐴 +s ( 1s
/su 𝑛))}))
→ ∃𝑛 ∈
ℕs (( -us ‘𝑛) <s 𝐴 ∧ 𝐴 <s 𝑛)) | 
| 36 |  | simpl 482 | . . . . . . 7
⊢
((∃𝑚 ∈
ℕs (( -us ‘𝑚) <s 𝐵 ∧ 𝐵 <s 𝑚) ∧ 𝐵 = ({𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s
/su 𝑚))} |s
{𝑦 ∣ ∃𝑚 ∈ ℕs
𝑦 = (𝐵 +s ( 1s
/su 𝑚))}))
→ ∃𝑚 ∈
ℕs (( -us ‘𝑚) <s 𝐵 ∧ 𝐵 <s 𝑚)) | 
| 37 | 35, 36 | anim12i 613 | . . . . . 6
⊢
(((∃𝑛 ∈
ℕs (( -us ‘𝑛) <s 𝐴 ∧ 𝐴 <s 𝑛) ∧ 𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s
/su 𝑛))} |s
{𝑥 ∣ ∃𝑛 ∈ ℕs
𝑥 = (𝐴 +s ( 1s
/su 𝑛))}))
∧ (∃𝑚 ∈
ℕs (( -us ‘𝑚) <s 𝐵 ∧ 𝐵 <s 𝑚) ∧ 𝐵 = ({𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s
/su 𝑚))} |s
{𝑦 ∣ ∃𝑚 ∈ ℕs
𝑦 = (𝐵 +s ( 1s
/su 𝑚))})))
→ (∃𝑛 ∈
ℕs (( -us ‘𝑛) <s 𝐴 ∧ 𝐴 <s 𝑛) ∧ ∃𝑚 ∈ ℕs (( -us
‘𝑚) <s 𝐵 ∧ 𝐵 <s 𝑚))) | 
| 38 |  | reeanv 3228 | . . . . . 6
⊢
(∃𝑛 ∈
ℕs ∃𝑚 ∈ ℕs (((
-us ‘𝑛)
<s 𝐴 ∧ 𝐴 <s 𝑛) ∧ (( -us ‘𝑚) <s 𝐵 ∧ 𝐵 <s 𝑚)) ↔ (∃𝑛 ∈ ℕs (( -us
‘𝑛) <s 𝐴 ∧ 𝐴 <s 𝑛) ∧ ∃𝑚 ∈ ℕs (( -us
‘𝑚) <s 𝐵 ∧ 𝐵 <s 𝑚))) | 
| 39 | 37, 38 | sylibr 234 | . . . . 5
⊢
(((∃𝑛 ∈
ℕs (( -us ‘𝑛) <s 𝐴 ∧ 𝐴 <s 𝑛) ∧ 𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s
/su 𝑛))} |s
{𝑥 ∣ ∃𝑛 ∈ ℕs
𝑥 = (𝐴 +s ( 1s
/su 𝑛))}))
∧ (∃𝑚 ∈
ℕs (( -us ‘𝑚) <s 𝐵 ∧ 𝐵 <s 𝑚) ∧ 𝐵 = ({𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s
/su 𝑚))} |s
{𝑦 ∣ ∃𝑚 ∈ ℕs
𝑦 = (𝐵 +s ( 1s
/su 𝑚))})))
→ ∃𝑛 ∈
ℕs ∃𝑚 ∈ ℕs (((
-us ‘𝑛)
<s 𝐴 ∧ 𝐴 <s 𝑛) ∧ (( -us ‘𝑚) <s 𝐵 ∧ 𝐵 <s 𝑚))) | 
| 40 | 34, 39 | impel 505 | . . . 4
⊢ (((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No ) ∧ ((∃𝑛 ∈ ℕs (( -us
‘𝑛) <s 𝐴 ∧ 𝐴 <s 𝑛) ∧ 𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s
/su 𝑛))} |s
{𝑥 ∣ ∃𝑛 ∈ ℕs
𝑥 = (𝐴 +s ( 1s
/su 𝑛))}))
∧ (∃𝑚 ∈
ℕs (( -us ‘𝑚) <s 𝐵 ∧ 𝐵 <s 𝑚) ∧ 𝐵 = ({𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s
/su 𝑚))} |s
{𝑦 ∣ ∃𝑚 ∈ ℕs
𝑦 = (𝐵 +s ( 1s
/su 𝑚))}))))
→ ∃𝑝 ∈
ℕs (( -us ‘𝑝) <s (𝐴 +s 𝐵) ∧ (𝐴 +s 𝐵) <s 𝑝)) | 
| 41 |  | simpr 484 | . . . . . 6
⊢
((∃𝑛 ∈
ℕs (( -us ‘𝑛) <s 𝐴 ∧ 𝐴 <s 𝑛) ∧ 𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s
/su 𝑛))} |s
{𝑥 ∣ ∃𝑛 ∈ ℕs
𝑥 = (𝐴 +s ( 1s
/su 𝑛))}))
→ 𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs
𝑥 = (𝐴 -s ( 1s
/su 𝑛))} |s
{𝑥 ∣ ∃𝑛 ∈ ℕs
𝑥 = (𝐴 +s ( 1s
/su 𝑛))})) | 
| 42 |  | simpr 484 | . . . . . 6
⊢
((∃𝑚 ∈
ℕs (( -us ‘𝑚) <s 𝐵 ∧ 𝐵 <s 𝑚) ∧ 𝐵 = ({𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s
/su 𝑚))} |s
{𝑦 ∣ ∃𝑚 ∈ ℕs
𝑦 = (𝐵 +s ( 1s
/su 𝑚))}))
→ 𝐵 = ({𝑦 ∣ ∃𝑚 ∈ ℕs
𝑦 = (𝐵 -s ( 1s
/su 𝑚))} |s
{𝑦 ∣ ∃𝑚 ∈ ℕs
𝑦 = (𝐵 +s ( 1s
/su 𝑚))})) | 
| 43 | 41, 42 | anim12i 613 | . . . . 5
⊢
(((∃𝑛 ∈
ℕs (( -us ‘𝑛) <s 𝐴 ∧ 𝐴 <s 𝑛) ∧ 𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s
/su 𝑛))} |s
{𝑥 ∣ ∃𝑛 ∈ ℕs
𝑥 = (𝐴 +s ( 1s
/su 𝑛))}))
∧ (∃𝑚 ∈
ℕs (( -us ‘𝑚) <s 𝐵 ∧ 𝐵 <s 𝑚) ∧ 𝐵 = ({𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s
/su 𝑚))} |s
{𝑦 ∣ ∃𝑚 ∈ ℕs
𝑦 = (𝐵 +s ( 1s
/su 𝑚))})))
→ (𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs
𝑥 = (𝐴 -s ( 1s
/su 𝑛))} |s
{𝑥 ∣ ∃𝑛 ∈ ℕs
𝑥 = (𝐴 +s ( 1s
/su 𝑛))})
∧ 𝐵 = ({𝑦 ∣ ∃𝑚 ∈ ℕs
𝑦 = (𝐵 -s ( 1s
/su 𝑚))} |s
{𝑦 ∣ ∃𝑚 ∈ ℕs
𝑦 = (𝐵 +s ( 1s
/su 𝑚))}))) | 
| 44 |  | simpll 766 | . . . . . . . 8
⊢ (((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No ) ∧ (𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s
/su 𝑛))} |s
{𝑥 ∣ ∃𝑛 ∈ ℕs
𝑥 = (𝐴 +s ( 1s
/su 𝑛))})
∧ 𝐵 = ({𝑦 ∣ ∃𝑚 ∈ ℕs
𝑦 = (𝐵 -s ( 1s
/su 𝑚))} |s
{𝑦 ∣ ∃𝑚 ∈ ℕs
𝑦 = (𝐵 +s ( 1s
/su 𝑚))})))
→ 𝐴 ∈  No ) | 
| 45 |  | recut 28429 | . . . . . . . 8
⊢ (𝐴 ∈ 
No  → {𝑥
∣ ∃𝑛 ∈
ℕs 𝑥 =
(𝐴 -s (
1s /su 𝑛))} <<s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s
/su 𝑛))}) | 
| 46 | 44, 45 | syl 17 | . . . . . . 7
⊢ (((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No ) ∧ (𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s
/su 𝑛))} |s
{𝑥 ∣ ∃𝑛 ∈ ℕs
𝑥 = (𝐴 +s ( 1s
/su 𝑛))})
∧ 𝐵 = ({𝑦 ∣ ∃𝑚 ∈ ℕs
𝑦 = (𝐵 -s ( 1s
/su 𝑚))} |s
{𝑦 ∣ ∃𝑚 ∈ ℕs
𝑦 = (𝐵 +s ( 1s
/su 𝑚))})))
→ {𝑥 ∣
∃𝑛 ∈
ℕs 𝑥 =
(𝐴 -s (
1s /su 𝑛))} <<s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s
/su 𝑛))}) | 
| 47 |  | simplr 768 | . . . . . . . 8
⊢ (((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No ) ∧ (𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s
/su 𝑛))} |s
{𝑥 ∣ ∃𝑛 ∈ ℕs
𝑥 = (𝐴 +s ( 1s
/su 𝑛))})
∧ 𝐵 = ({𝑦 ∣ ∃𝑚 ∈ ℕs
𝑦 = (𝐵 -s ( 1s
/su 𝑚))} |s
{𝑦 ∣ ∃𝑚 ∈ ℕs
𝑦 = (𝐵 +s ( 1s
/su 𝑚))})))
→ 𝐵 ∈  No ) | 
| 48 |  | recut 28429 | . . . . . . . 8
⊢ (𝐵 ∈ 
No  → {𝑦
∣ ∃𝑚 ∈
ℕs 𝑦 =
(𝐵 -s (
1s /su 𝑚))} <<s {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s
/su 𝑚))}) | 
| 49 | 47, 48 | syl 17 | . . . . . . 7
⊢ (((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No ) ∧ (𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s
/su 𝑛))} |s
{𝑥 ∣ ∃𝑛 ∈ ℕs
𝑥 = (𝐴 +s ( 1s
/su 𝑛))})
∧ 𝐵 = ({𝑦 ∣ ∃𝑚 ∈ ℕs
𝑦 = (𝐵 -s ( 1s
/su 𝑚))} |s
{𝑦 ∣ ∃𝑚 ∈ ℕs
𝑦 = (𝐵 +s ( 1s
/su 𝑚))})))
→ {𝑦 ∣
∃𝑚 ∈
ℕs 𝑦 =
(𝐵 -s (
1s /su 𝑚))} <<s {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s
/su 𝑚))}) | 
| 50 |  | simprl 770 | . . . . . . 7
⊢ (((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No ) ∧ (𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s
/su 𝑛))} |s
{𝑥 ∣ ∃𝑛 ∈ ℕs
𝑥 = (𝐴 +s ( 1s
/su 𝑛))})
∧ 𝐵 = ({𝑦 ∣ ∃𝑚 ∈ ℕs
𝑦 = (𝐵 -s ( 1s
/su 𝑚))} |s
{𝑦 ∣ ∃𝑚 ∈ ℕs
𝑦 = (𝐵 +s ( 1s
/su 𝑚))})))
→ 𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs
𝑥 = (𝐴 -s ( 1s
/su 𝑛))} |s
{𝑥 ∣ ∃𝑛 ∈ ℕs
𝑥 = (𝐴 +s ( 1s
/su 𝑛))})) | 
| 51 |  | simprr 772 | . . . . . . 7
⊢ (((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No ) ∧ (𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s
/su 𝑛))} |s
{𝑥 ∣ ∃𝑛 ∈ ℕs
𝑥 = (𝐴 +s ( 1s
/su 𝑛))})
∧ 𝐵 = ({𝑦 ∣ ∃𝑚 ∈ ℕs
𝑦 = (𝐵 -s ( 1s
/su 𝑚))} |s
{𝑦 ∣ ∃𝑚 ∈ ℕs
𝑦 = (𝐵 +s ( 1s
/su 𝑚))})))
→ 𝐵 = ({𝑦 ∣ ∃𝑚 ∈ ℕs
𝑦 = (𝐵 -s ( 1s
/su 𝑚))} |s
{𝑦 ∣ ∃𝑚 ∈ ℕs
𝑦 = (𝐵 +s ( 1s
/su 𝑚))})) | 
| 52 | 46, 49, 50, 51 | addsunif 28036 | . . . . . 6
⊢ (((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No ) ∧ (𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s
/su 𝑛))} |s
{𝑥 ∣ ∃𝑛 ∈ ℕs
𝑥 = (𝐴 +s ( 1s
/su 𝑛))})
∧ 𝐵 = ({𝑦 ∣ ∃𝑚 ∈ ℕs
𝑦 = (𝐵 -s ( 1s
/su 𝑚))} |s
{𝑦 ∣ ∃𝑚 ∈ ℕs
𝑦 = (𝐵 +s ( 1s
/su 𝑚))})))
→ (𝐴 +s
𝐵) = (({𝑧 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s
/su 𝑛))}𝑧 = (𝑡 +s 𝐵)} ∪ {𝑧 ∣ ∃𝑡 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s
/su 𝑚))}𝑧 = (𝐴 +s 𝑡)}) |s ({𝑧 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s
/su 𝑛))}𝑧 = (𝑡 +s 𝐵)} ∪ {𝑧 ∣ ∃𝑡 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s
/su 𝑚))}𝑧 = (𝐴 +s 𝑡)}))) | 
| 53 |  | ovex 7465 | . . . . . . . . . . . . . . 15
⊢ (𝐴 -s ( 1s
/su 𝑛))
∈ V | 
| 54 |  | oveq1 7439 | . . . . . . . . . . . . . . . 16
⊢ (𝑡 = (𝐴 -s ( 1s
/su 𝑛))
→ (𝑡 +s
𝐵) = ((𝐴 -s ( 1s
/su 𝑛))
+s 𝐵)) | 
| 55 | 54 | eqeq2d 2747 | . . . . . . . . . . . . . . 15
⊢ (𝑡 = (𝐴 -s ( 1s
/su 𝑛))
→ (𝑧 = (𝑡 +s 𝐵) ↔ 𝑧 = ((𝐴 -s ( 1s
/su 𝑛))
+s 𝐵))) | 
| 56 | 53, 55 | ceqsexv 3531 | . . . . . . . . . . . . . 14
⊢
(∃𝑡(𝑡 = (𝐴 -s ( 1s
/su 𝑛))
∧ 𝑧 = (𝑡 +s 𝐵)) ↔ 𝑧 = ((𝐴 -s ( 1s
/su 𝑛))
+s 𝐵)) | 
| 57 |  | simpll 766 | . . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No ) ∧ 𝑛 ∈ ℕs) → 𝐴 ∈ 
No ) | 
| 58 |  | simplr 768 | . . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No ) ∧ 𝑛 ∈ ℕs) → 𝐵 ∈ 
No ) | 
| 59 |  | 1sno 27873 | . . . . . . . . . . . . . . . . . . 19
⊢ 
1s ∈  No | 
| 60 | 59 | a1i 11 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈ ℕs
→ 1s ∈  No ) | 
| 61 |  | nnsno 28330 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈ ℕs
→ 𝑛 ∈  No ) | 
| 62 |  | nnne0s 28341 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑛 ∈ ℕs
→ 𝑛 ≠ 0s
) | 
| 63 | 60, 61, 62 | divscld 28249 | . . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈ ℕs
→ ( 1s /su 𝑛) ∈  No
) | 
| 64 | 63 | adantl 481 | . . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No ) ∧ 𝑛 ∈ ℕs) → (
1s /su 𝑛) ∈  No
) | 
| 65 | 57, 58, 64 | addsubsd 28113 | . . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No ) ∧ 𝑛 ∈ ℕs) → ((𝐴 +s 𝐵) -s ( 1s
/su 𝑛)) =
((𝐴 -s (
1s /su 𝑛)) +s 𝐵)) | 
| 66 | 65 | eqeq2d 2747 | . . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No ) ∧ 𝑛 ∈ ℕs) → (𝑧 = ((𝐴 +s 𝐵) -s ( 1s
/su 𝑛))
↔ 𝑧 = ((𝐴 -s ( 1s
/su 𝑛))
+s 𝐵))) | 
| 67 | 56, 66 | bitr4id 290 | . . . . . . . . . . . . 13
⊢ (((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No ) ∧ 𝑛 ∈ ℕs) →
(∃𝑡(𝑡 = (𝐴 -s ( 1s
/su 𝑛))
∧ 𝑧 = (𝑡 +s 𝐵)) ↔ 𝑧 = ((𝐴 +s 𝐵) -s ( 1s
/su 𝑛)))) | 
| 68 | 67 | rexbidva 3176 | . . . . . . . . . . . 12
⊢ ((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No ) → (∃𝑛 ∈ ℕs ∃𝑡(𝑡 = (𝐴 -s ( 1s
/su 𝑛))
∧ 𝑧 = (𝑡 +s 𝐵)) ↔ ∃𝑛 ∈ ℕs 𝑧 = ((𝐴 +s 𝐵) -s ( 1s
/su 𝑛)))) | 
| 69 |  | r19.41v 3188 | . . . . . . . . . . . . . 14
⊢
(∃𝑛 ∈
ℕs (𝑡 =
(𝐴 -s (
1s /su 𝑛)) ∧ 𝑧 = (𝑡 +s 𝐵)) ↔ (∃𝑛 ∈ ℕs 𝑡 = (𝐴 -s ( 1s
/su 𝑛))
∧ 𝑧 = (𝑡 +s 𝐵))) | 
| 70 | 69 | exbii 1847 | . . . . . . . . . . . . 13
⊢
(∃𝑡∃𝑛 ∈ ℕs (𝑡 = (𝐴 -s ( 1s
/su 𝑛))
∧ 𝑧 = (𝑡 +s 𝐵)) ↔ ∃𝑡(∃𝑛 ∈ ℕs 𝑡 = (𝐴 -s ( 1s
/su 𝑛))
∧ 𝑧 = (𝑡 +s 𝐵))) | 
| 71 |  | rexcom4 3287 | . . . . . . . . . . . . 13
⊢
(∃𝑛 ∈
ℕs ∃𝑡(𝑡 = (𝐴 -s ( 1s
/su 𝑛))
∧ 𝑧 = (𝑡 +s 𝐵)) ↔ ∃𝑡∃𝑛 ∈ ℕs (𝑡 = (𝐴 -s ( 1s
/su 𝑛))
∧ 𝑧 = (𝑡 +s 𝐵))) | 
| 72 |  | eqeq1 2740 | . . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑡 → (𝑥 = (𝐴 -s ( 1s
/su 𝑛))
↔ 𝑡 = (𝐴 -s ( 1s
/su 𝑛)))) | 
| 73 | 72 | rexbidv 3178 | . . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑡 → (∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s
/su 𝑛))
↔ ∃𝑛 ∈
ℕs 𝑡 =
(𝐴 -s (
1s /su 𝑛)))) | 
| 74 | 73 | rexab 3699 | . . . . . . . . . . . . 13
⊢
(∃𝑡 ∈
{𝑥 ∣ ∃𝑛 ∈ ℕs
𝑥 = (𝐴 -s ( 1s
/su 𝑛))}𝑧 = (𝑡 +s 𝐵) ↔ ∃𝑡(∃𝑛 ∈ ℕs 𝑡 = (𝐴 -s ( 1s
/su 𝑛))
∧ 𝑧 = (𝑡 +s 𝐵))) | 
| 75 | 70, 71, 74 | 3bitr4ri 304 | . . . . . . . . . . . 12
⊢
(∃𝑡 ∈
{𝑥 ∣ ∃𝑛 ∈ ℕs
𝑥 = (𝐴 -s ( 1s
/su 𝑛))}𝑧 = (𝑡 +s 𝐵) ↔ ∃𝑛 ∈ ℕs ∃𝑡(𝑡 = (𝐴 -s ( 1s
/su 𝑛))
∧ 𝑧 = (𝑡 +s 𝐵))) | 
| 76 |  | oveq2 7440 | . . . . . . . . . . . . . . 15
⊢ (𝑝 = 𝑛 → ( 1s /su
𝑝) = ( 1s
/su 𝑛)) | 
| 77 | 76 | oveq2d 7448 | . . . . . . . . . . . . . 14
⊢ (𝑝 = 𝑛 → ((𝐴 +s 𝐵) -s ( 1s
/su 𝑝)) =
((𝐴 +s 𝐵) -s ( 1s
/su 𝑛))) | 
| 78 | 77 | eqeq2d 2747 | . . . . . . . . . . . . 13
⊢ (𝑝 = 𝑛 → (𝑧 = ((𝐴 +s 𝐵) -s ( 1s
/su 𝑝))
↔ 𝑧 = ((𝐴 +s 𝐵) -s ( 1s
/su 𝑛)))) | 
| 79 | 78 | cbvrexvw 3237 | . . . . . . . . . . . 12
⊢
(∃𝑝 ∈
ℕs 𝑧 =
((𝐴 +s 𝐵) -s ( 1s
/su 𝑝))
↔ ∃𝑛 ∈
ℕs 𝑧 =
((𝐴 +s 𝐵) -s ( 1s
/su 𝑛))) | 
| 80 | 68, 75, 79 | 3bitr4g 314 | . . . . . . . . . . 11
⊢ ((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No ) → (∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s
/su 𝑛))}𝑧 = (𝑡 +s 𝐵) ↔ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 +s 𝐵) -s ( 1s
/su 𝑝)))) | 
| 81 | 80 | abbidv 2807 | . . . . . . . . . 10
⊢ ((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No ) → {𝑧 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s
/su 𝑛))}𝑧 = (𝑡 +s 𝐵)} = {𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 +s 𝐵) -s ( 1s
/su 𝑝))}) | 
| 82 |  | ovex 7465 | . . . . . . . . . . . . . . 15
⊢ (𝐵 -s ( 1s
/su 𝑚))
∈ V | 
| 83 |  | oveq2 7440 | . . . . . . . . . . . . . . . 16
⊢ (𝑡 = (𝐵 -s ( 1s
/su 𝑚))
→ (𝐴 +s
𝑡) = (𝐴 +s (𝐵 -s ( 1s
/su 𝑚)))) | 
| 84 | 83 | eqeq2d 2747 | . . . . . . . . . . . . . . 15
⊢ (𝑡 = (𝐵 -s ( 1s
/su 𝑚))
→ (𝑧 = (𝐴 +s 𝑡) ↔ 𝑧 = (𝐴 +s (𝐵 -s ( 1s
/su 𝑚))))) | 
| 85 | 82, 84 | ceqsexv 3531 | . . . . . . . . . . . . . 14
⊢
(∃𝑡(𝑡 = (𝐵 -s ( 1s
/su 𝑚))
∧ 𝑧 = (𝐴 +s 𝑡)) ↔ 𝑧 = (𝐴 +s (𝐵 -s ( 1s
/su 𝑚)))) | 
| 86 |  | simpll 766 | . . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No ) ∧ 𝑚 ∈ ℕs) → 𝐴 ∈ 
No ) | 
| 87 |  | simplr 768 | . . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No ) ∧ 𝑚 ∈ ℕs) → 𝐵 ∈ 
No ) | 
| 88 | 59 | a1i 11 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑚 ∈ ℕs
→ 1s ∈  No ) | 
| 89 |  | nnsno 28330 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑚 ∈ ℕs
→ 𝑚 ∈  No ) | 
| 90 |  | nnne0s 28341 | . . . . . . . . . . . . . . . . . 18
⊢ (𝑚 ∈ ℕs
→ 𝑚 ≠ 0s
) | 
| 91 | 88, 89, 90 | divscld 28249 | . . . . . . . . . . . . . . . . 17
⊢ (𝑚 ∈ ℕs
→ ( 1s /su 𝑚) ∈  No
) | 
| 92 | 91 | adantl 481 | . . . . . . . . . . . . . . . 16
⊢ (((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No ) ∧ 𝑚 ∈ ℕs) → (
1s /su 𝑚) ∈  No
) | 
| 93 | 86, 87, 92 | addsubsassd 28112 | . . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No ) ∧ 𝑚 ∈ ℕs) → ((𝐴 +s 𝐵) -s ( 1s
/su 𝑚)) =
(𝐴 +s (𝐵 -s ( 1s
/su 𝑚)))) | 
| 94 | 93 | eqeq2d 2747 | . . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No ) ∧ 𝑚 ∈ ℕs) → (𝑧 = ((𝐴 +s 𝐵) -s ( 1s
/su 𝑚))
↔ 𝑧 = (𝐴 +s (𝐵 -s ( 1s
/su 𝑚))))) | 
| 95 | 85, 94 | bitr4id 290 | . . . . . . . . . . . . 13
⊢ (((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No ) ∧ 𝑚 ∈ ℕs) →
(∃𝑡(𝑡 = (𝐵 -s ( 1s
/su 𝑚))
∧ 𝑧 = (𝐴 +s 𝑡)) ↔ 𝑧 = ((𝐴 +s 𝐵) -s ( 1s
/su 𝑚)))) | 
| 96 | 95 | rexbidva 3176 | . . . . . . . . . . . 12
⊢ ((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No ) → (∃𝑚 ∈ ℕs ∃𝑡(𝑡 = (𝐵 -s ( 1s
/su 𝑚))
∧ 𝑧 = (𝐴 +s 𝑡)) ↔ ∃𝑚 ∈ ℕs
𝑧 = ((𝐴 +s 𝐵) -s ( 1s
/su 𝑚)))) | 
| 97 |  | r19.41v 3188 | . . . . . . . . . . . . . 14
⊢
(∃𝑚 ∈
ℕs (𝑡 =
(𝐵 -s (
1s /su 𝑚)) ∧ 𝑧 = (𝐴 +s 𝑡)) ↔ (∃𝑚 ∈ ℕs 𝑡 = (𝐵 -s ( 1s
/su 𝑚))
∧ 𝑧 = (𝐴 +s 𝑡))) | 
| 98 | 97 | exbii 1847 | . . . . . . . . . . . . 13
⊢
(∃𝑡∃𝑚 ∈ ℕs (𝑡 = (𝐵 -s ( 1s
/su 𝑚))
∧ 𝑧 = (𝐴 +s 𝑡)) ↔ ∃𝑡(∃𝑚 ∈ ℕs 𝑡 = (𝐵 -s ( 1s
/su 𝑚))
∧ 𝑧 = (𝐴 +s 𝑡))) | 
| 99 |  | rexcom4 3287 | . . . . . . . . . . . . 13
⊢
(∃𝑚 ∈
ℕs ∃𝑡(𝑡 = (𝐵 -s ( 1s
/su 𝑚))
∧ 𝑧 = (𝐴 +s 𝑡)) ↔ ∃𝑡∃𝑚 ∈ ℕs (𝑡 = (𝐵 -s ( 1s
/su 𝑚))
∧ 𝑧 = (𝐴 +s 𝑡))) | 
| 100 |  | eqeq1 2740 | . . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑡 → (𝑦 = (𝐵 -s ( 1s
/su 𝑚))
↔ 𝑡 = (𝐵 -s ( 1s
/su 𝑚)))) | 
| 101 | 100 | rexbidv 3178 | . . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑡 → (∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s
/su 𝑚))
↔ ∃𝑚 ∈
ℕs 𝑡 =
(𝐵 -s (
1s /su 𝑚)))) | 
| 102 | 101 | rexab 3699 | . . . . . . . . . . . . 13
⊢
(∃𝑡 ∈
{𝑦 ∣ ∃𝑚 ∈ ℕs
𝑦 = (𝐵 -s ( 1s
/su 𝑚))}𝑧 = (𝐴 +s 𝑡) ↔ ∃𝑡(∃𝑚 ∈ ℕs 𝑡 = (𝐵 -s ( 1s
/su 𝑚))
∧ 𝑧 = (𝐴 +s 𝑡))) | 
| 103 | 98, 99, 102 | 3bitr4ri 304 | . . . . . . . . . . . 12
⊢
(∃𝑡 ∈
{𝑦 ∣ ∃𝑚 ∈ ℕs
𝑦 = (𝐵 -s ( 1s
/su 𝑚))}𝑧 = (𝐴 +s 𝑡) ↔ ∃𝑚 ∈ ℕs ∃𝑡(𝑡 = (𝐵 -s ( 1s
/su 𝑚))
∧ 𝑧 = (𝐴 +s 𝑡))) | 
| 104 |  | oveq2 7440 | . . . . . . . . . . . . . . 15
⊢ (𝑝 = 𝑚 → ( 1s /su
𝑝) = ( 1s
/su 𝑚)) | 
| 105 | 104 | oveq2d 7448 | . . . . . . . . . . . . . 14
⊢ (𝑝 = 𝑚 → ((𝐴 +s 𝐵) -s ( 1s
/su 𝑝)) =
((𝐴 +s 𝐵) -s ( 1s
/su 𝑚))) | 
| 106 | 105 | eqeq2d 2747 | . . . . . . . . . . . . 13
⊢ (𝑝 = 𝑚 → (𝑧 = ((𝐴 +s 𝐵) -s ( 1s
/su 𝑝))
↔ 𝑧 = ((𝐴 +s 𝐵) -s ( 1s
/su 𝑚)))) | 
| 107 | 106 | cbvrexvw 3237 | . . . . . . . . . . . 12
⊢
(∃𝑝 ∈
ℕs 𝑧 =
((𝐴 +s 𝐵) -s ( 1s
/su 𝑝))
↔ ∃𝑚 ∈
ℕs 𝑧 =
((𝐴 +s 𝐵) -s ( 1s
/su 𝑚))) | 
| 108 | 96, 103, 107 | 3bitr4g 314 | . . . . . . . . . . 11
⊢ ((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No ) → (∃𝑡 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s
/su 𝑚))}𝑧 = (𝐴 +s 𝑡) ↔ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 +s 𝐵) -s ( 1s
/su 𝑝)))) | 
| 109 | 108 | abbidv 2807 | . . . . . . . . . 10
⊢ ((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No ) → {𝑧 ∣ ∃𝑡 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s
/su 𝑚))}𝑧 = (𝐴 +s 𝑡)} = {𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 +s 𝐵) -s ( 1s
/su 𝑝))}) | 
| 110 | 81, 109 | uneq12d 4168 | . . . . . . . . 9
⊢ ((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No ) → ({𝑧 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s
/su 𝑛))}𝑧 = (𝑡 +s 𝐵)} ∪ {𝑧 ∣ ∃𝑡 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s
/su 𝑚))}𝑧 = (𝐴 +s 𝑡)}) = ({𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 +s 𝐵) -s ( 1s
/su 𝑝))}
∪ {𝑧 ∣
∃𝑝 ∈
ℕs 𝑧 =
((𝐴 +s 𝐵) -s ( 1s
/su 𝑝))})) | 
| 111 |  | unidm 4156 | . . . . . . . . 9
⊢ ({𝑧 ∣ ∃𝑝 ∈ ℕs
𝑧 = ((𝐴 +s 𝐵) -s ( 1s
/su 𝑝))}
∪ {𝑧 ∣
∃𝑝 ∈
ℕs 𝑧 =
((𝐴 +s 𝐵) -s ( 1s
/su 𝑝))}) =
{𝑧 ∣ ∃𝑝 ∈ ℕs
𝑧 = ((𝐴 +s 𝐵) -s ( 1s
/su 𝑝))} | 
| 112 | 110, 111 | eqtrdi 2792 | . . . . . . . 8
⊢ ((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No ) → ({𝑧 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s
/su 𝑛))}𝑧 = (𝑡 +s 𝐵)} ∪ {𝑧 ∣ ∃𝑡 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s
/su 𝑚))}𝑧 = (𝐴 +s 𝑡)}) = {𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 +s 𝐵) -s ( 1s
/su 𝑝))}) | 
| 113 |  | ovex 7465 | . . . . . . . . . . . . . . 15
⊢ (𝐴 +s ( 1s
/su 𝑛))
∈ V | 
| 114 |  | oveq1 7439 | . . . . . . . . . . . . . . . 16
⊢ (𝑡 = (𝐴 +s ( 1s
/su 𝑛))
→ (𝑡 +s
𝐵) = ((𝐴 +s ( 1s
/su 𝑛))
+s 𝐵)) | 
| 115 | 114 | eqeq2d 2747 | . . . . . . . . . . . . . . 15
⊢ (𝑡 = (𝐴 +s ( 1s
/su 𝑛))
→ (𝑧 = (𝑡 +s 𝐵) ↔ 𝑧 = ((𝐴 +s ( 1s
/su 𝑛))
+s 𝐵))) | 
| 116 | 113, 115 | ceqsexv 3531 | . . . . . . . . . . . . . 14
⊢
(∃𝑡(𝑡 = (𝐴 +s ( 1s
/su 𝑛))
∧ 𝑧 = (𝑡 +s 𝐵)) ↔ 𝑧 = ((𝐴 +s ( 1s
/su 𝑛))
+s 𝐵)) | 
| 117 | 57, 64, 58 | adds32d 28041 | . . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No ) ∧ 𝑛 ∈ ℕs) → ((𝐴 +s ( 1s
/su 𝑛))
+s 𝐵) = ((𝐴 +s 𝐵) +s ( 1s
/su 𝑛))) | 
| 118 | 117 | eqeq2d 2747 | . . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No ) ∧ 𝑛 ∈ ℕs) → (𝑧 = ((𝐴 +s ( 1s
/su 𝑛))
+s 𝐵) ↔
𝑧 = ((𝐴 +s 𝐵) +s ( 1s
/su 𝑛)))) | 
| 119 | 116, 118 | bitrid 283 | . . . . . . . . . . . . 13
⊢ (((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No ) ∧ 𝑛 ∈ ℕs) →
(∃𝑡(𝑡 = (𝐴 +s ( 1s
/su 𝑛))
∧ 𝑧 = (𝑡 +s 𝐵)) ↔ 𝑧 = ((𝐴 +s 𝐵) +s ( 1s
/su 𝑛)))) | 
| 120 | 119 | rexbidva 3176 | . . . . . . . . . . . 12
⊢ ((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No ) → (∃𝑛 ∈ ℕs ∃𝑡(𝑡 = (𝐴 +s ( 1s
/su 𝑛))
∧ 𝑧 = (𝑡 +s 𝐵)) ↔ ∃𝑛 ∈ ℕs 𝑧 = ((𝐴 +s 𝐵) +s ( 1s
/su 𝑛)))) | 
| 121 |  | r19.41v 3188 | . . . . . . . . . . . . . 14
⊢
(∃𝑛 ∈
ℕs (𝑡 =
(𝐴 +s (
1s /su 𝑛)) ∧ 𝑧 = (𝑡 +s 𝐵)) ↔ (∃𝑛 ∈ ℕs 𝑡 = (𝐴 +s ( 1s
/su 𝑛))
∧ 𝑧 = (𝑡 +s 𝐵))) | 
| 122 | 121 | exbii 1847 | . . . . . . . . . . . . 13
⊢
(∃𝑡∃𝑛 ∈ ℕs (𝑡 = (𝐴 +s ( 1s
/su 𝑛))
∧ 𝑧 = (𝑡 +s 𝐵)) ↔ ∃𝑡(∃𝑛 ∈ ℕs 𝑡 = (𝐴 +s ( 1s
/su 𝑛))
∧ 𝑧 = (𝑡 +s 𝐵))) | 
| 123 |  | rexcom4 3287 | . . . . . . . . . . . . 13
⊢
(∃𝑛 ∈
ℕs ∃𝑡(𝑡 = (𝐴 +s ( 1s
/su 𝑛))
∧ 𝑧 = (𝑡 +s 𝐵)) ↔ ∃𝑡∃𝑛 ∈ ℕs (𝑡 = (𝐴 +s ( 1s
/su 𝑛))
∧ 𝑧 = (𝑡 +s 𝐵))) | 
| 124 |  | eqeq1 2740 | . . . . . . . . . . . . . . 15
⊢ (𝑥 = 𝑡 → (𝑥 = (𝐴 +s ( 1s
/su 𝑛))
↔ 𝑡 = (𝐴 +s ( 1s
/su 𝑛)))) | 
| 125 | 124 | rexbidv 3178 | . . . . . . . . . . . . . 14
⊢ (𝑥 = 𝑡 → (∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s
/su 𝑛))
↔ ∃𝑛 ∈
ℕs 𝑡 =
(𝐴 +s (
1s /su 𝑛)))) | 
| 126 | 125 | rexab 3699 | . . . . . . . . . . . . 13
⊢
(∃𝑡 ∈
{𝑥 ∣ ∃𝑛 ∈ ℕs
𝑥 = (𝐴 +s ( 1s
/su 𝑛))}𝑧 = (𝑡 +s 𝐵) ↔ ∃𝑡(∃𝑛 ∈ ℕs 𝑡 = (𝐴 +s ( 1s
/su 𝑛))
∧ 𝑧 = (𝑡 +s 𝐵))) | 
| 127 | 122, 123,
126 | 3bitr4ri 304 | . . . . . . . . . . . 12
⊢
(∃𝑡 ∈
{𝑥 ∣ ∃𝑛 ∈ ℕs
𝑥 = (𝐴 +s ( 1s
/su 𝑛))}𝑧 = (𝑡 +s 𝐵) ↔ ∃𝑛 ∈ ℕs ∃𝑡(𝑡 = (𝐴 +s ( 1s
/su 𝑛))
∧ 𝑧 = (𝑡 +s 𝐵))) | 
| 128 | 76 | oveq2d 7448 | . . . . . . . . . . . . . 14
⊢ (𝑝 = 𝑛 → ((𝐴 +s 𝐵) +s ( 1s
/su 𝑝)) =
((𝐴 +s 𝐵) +s ( 1s
/su 𝑛))) | 
| 129 | 128 | eqeq2d 2747 | . . . . . . . . . . . . 13
⊢ (𝑝 = 𝑛 → (𝑧 = ((𝐴 +s 𝐵) +s ( 1s
/su 𝑝))
↔ 𝑧 = ((𝐴 +s 𝐵) +s ( 1s
/su 𝑛)))) | 
| 130 | 129 | cbvrexvw 3237 | . . . . . . . . . . . 12
⊢
(∃𝑝 ∈
ℕs 𝑧 =
((𝐴 +s 𝐵) +s ( 1s
/su 𝑝))
↔ ∃𝑛 ∈
ℕs 𝑧 =
((𝐴 +s 𝐵) +s ( 1s
/su 𝑛))) | 
| 131 | 120, 127,
130 | 3bitr4g 314 | . . . . . . . . . . 11
⊢ ((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No ) → (∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s
/su 𝑛))}𝑧 = (𝑡 +s 𝐵) ↔ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 +s 𝐵) +s ( 1s
/su 𝑝)))) | 
| 132 | 131 | abbidv 2807 | . . . . . . . . . 10
⊢ ((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No ) → {𝑧 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s
/su 𝑛))}𝑧 = (𝑡 +s 𝐵)} = {𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 +s 𝐵) +s ( 1s
/su 𝑝))}) | 
| 133 |  | ovex 7465 | . . . . . . . . . . . . . . 15
⊢ (𝐵 +s ( 1s
/su 𝑚))
∈ V | 
| 134 |  | oveq2 7440 | . . . . . . . . . . . . . . . 16
⊢ (𝑡 = (𝐵 +s ( 1s
/su 𝑚))
→ (𝐴 +s
𝑡) = (𝐴 +s (𝐵 +s ( 1s
/su 𝑚)))) | 
| 135 | 134 | eqeq2d 2747 | . . . . . . . . . . . . . . 15
⊢ (𝑡 = (𝐵 +s ( 1s
/su 𝑚))
→ (𝑧 = (𝐴 +s 𝑡) ↔ 𝑧 = (𝐴 +s (𝐵 +s ( 1s
/su 𝑚))))) | 
| 136 | 133, 135 | ceqsexv 3531 | . . . . . . . . . . . . . 14
⊢
(∃𝑡(𝑡 = (𝐵 +s ( 1s
/su 𝑚))
∧ 𝑧 = (𝐴 +s 𝑡)) ↔ 𝑧 = (𝐴 +s (𝐵 +s ( 1s
/su 𝑚)))) | 
| 137 | 86, 87, 92 | addsassd 28040 | . . . . . . . . . . . . . . 15
⊢ (((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No ) ∧ 𝑚 ∈ ℕs) → ((𝐴 +s 𝐵) +s ( 1s
/su 𝑚)) =
(𝐴 +s (𝐵 +s ( 1s
/su 𝑚)))) | 
| 138 | 137 | eqeq2d 2747 | . . . . . . . . . . . . . 14
⊢ (((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No ) ∧ 𝑚 ∈ ℕs) → (𝑧 = ((𝐴 +s 𝐵) +s ( 1s
/su 𝑚))
↔ 𝑧 = (𝐴 +s (𝐵 +s ( 1s
/su 𝑚))))) | 
| 139 | 136, 138 | bitr4id 290 | . . . . . . . . . . . . 13
⊢ (((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No ) ∧ 𝑚 ∈ ℕs) →
(∃𝑡(𝑡 = (𝐵 +s ( 1s
/su 𝑚))
∧ 𝑧 = (𝐴 +s 𝑡)) ↔ 𝑧 = ((𝐴 +s 𝐵) +s ( 1s
/su 𝑚)))) | 
| 140 | 139 | rexbidva 3176 | . . . . . . . . . . . 12
⊢ ((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No ) → (∃𝑚 ∈ ℕs ∃𝑡(𝑡 = (𝐵 +s ( 1s
/su 𝑚))
∧ 𝑧 = (𝐴 +s 𝑡)) ↔ ∃𝑚 ∈ ℕs
𝑧 = ((𝐴 +s 𝐵) +s ( 1s
/su 𝑚)))) | 
| 141 |  | r19.41v 3188 | . . . . . . . . . . . . . 14
⊢
(∃𝑚 ∈
ℕs (𝑡 =
(𝐵 +s (
1s /su 𝑚)) ∧ 𝑧 = (𝐴 +s 𝑡)) ↔ (∃𝑚 ∈ ℕs 𝑡 = (𝐵 +s ( 1s
/su 𝑚))
∧ 𝑧 = (𝐴 +s 𝑡))) | 
| 142 | 141 | exbii 1847 | . . . . . . . . . . . . 13
⊢
(∃𝑡∃𝑚 ∈ ℕs (𝑡 = (𝐵 +s ( 1s
/su 𝑚))
∧ 𝑧 = (𝐴 +s 𝑡)) ↔ ∃𝑡(∃𝑚 ∈ ℕs 𝑡 = (𝐵 +s ( 1s
/su 𝑚))
∧ 𝑧 = (𝐴 +s 𝑡))) | 
| 143 |  | rexcom4 3287 | . . . . . . . . . . . . 13
⊢
(∃𝑚 ∈
ℕs ∃𝑡(𝑡 = (𝐵 +s ( 1s
/su 𝑚))
∧ 𝑧 = (𝐴 +s 𝑡)) ↔ ∃𝑡∃𝑚 ∈ ℕs (𝑡 = (𝐵 +s ( 1s
/su 𝑚))
∧ 𝑧 = (𝐴 +s 𝑡))) | 
| 144 |  | eqeq1 2740 | . . . . . . . . . . . . . . 15
⊢ (𝑦 = 𝑡 → (𝑦 = (𝐵 +s ( 1s
/su 𝑚))
↔ 𝑡 = (𝐵 +s ( 1s
/su 𝑚)))) | 
| 145 | 144 | rexbidv 3178 | . . . . . . . . . . . . . 14
⊢ (𝑦 = 𝑡 → (∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s
/su 𝑚))
↔ ∃𝑚 ∈
ℕs 𝑡 =
(𝐵 +s (
1s /su 𝑚)))) | 
| 146 | 145 | rexab 3699 | . . . . . . . . . . . . 13
⊢
(∃𝑡 ∈
{𝑦 ∣ ∃𝑚 ∈ ℕs
𝑦 = (𝐵 +s ( 1s
/su 𝑚))}𝑧 = (𝐴 +s 𝑡) ↔ ∃𝑡(∃𝑚 ∈ ℕs 𝑡 = (𝐵 +s ( 1s
/su 𝑚))
∧ 𝑧 = (𝐴 +s 𝑡))) | 
| 147 | 142, 143,
146 | 3bitr4ri 304 | . . . . . . . . . . . 12
⊢
(∃𝑡 ∈
{𝑦 ∣ ∃𝑚 ∈ ℕs
𝑦 = (𝐵 +s ( 1s
/su 𝑚))}𝑧 = (𝐴 +s 𝑡) ↔ ∃𝑚 ∈ ℕs ∃𝑡(𝑡 = (𝐵 +s ( 1s
/su 𝑚))
∧ 𝑧 = (𝐴 +s 𝑡))) | 
| 148 | 104 | oveq2d 7448 | . . . . . . . . . . . . . 14
⊢ (𝑝 = 𝑚 → ((𝐴 +s 𝐵) +s ( 1s
/su 𝑝)) =
((𝐴 +s 𝐵) +s ( 1s
/su 𝑚))) | 
| 149 | 148 | eqeq2d 2747 | . . . . . . . . . . . . 13
⊢ (𝑝 = 𝑚 → (𝑧 = ((𝐴 +s 𝐵) +s ( 1s
/su 𝑝))
↔ 𝑧 = ((𝐴 +s 𝐵) +s ( 1s
/su 𝑚)))) | 
| 150 | 149 | cbvrexvw 3237 | . . . . . . . . . . . 12
⊢
(∃𝑝 ∈
ℕs 𝑧 =
((𝐴 +s 𝐵) +s ( 1s
/su 𝑝))
↔ ∃𝑚 ∈
ℕs 𝑧 =
((𝐴 +s 𝐵) +s ( 1s
/su 𝑚))) | 
| 151 | 140, 147,
150 | 3bitr4g 314 | . . . . . . . . . . 11
⊢ ((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No ) → (∃𝑡 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s
/su 𝑚))}𝑧 = (𝐴 +s 𝑡) ↔ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 +s 𝐵) +s ( 1s
/su 𝑝)))) | 
| 152 | 151 | abbidv 2807 | . . . . . . . . . 10
⊢ ((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No ) → {𝑧 ∣ ∃𝑡 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s
/su 𝑚))}𝑧 = (𝐴 +s 𝑡)} = {𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 +s 𝐵) +s ( 1s
/su 𝑝))}) | 
| 153 | 132, 152 | uneq12d 4168 | . . . . . . . . 9
⊢ ((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No ) → ({𝑧 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s
/su 𝑛))}𝑧 = (𝑡 +s 𝐵)} ∪ {𝑧 ∣ ∃𝑡 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s
/su 𝑚))}𝑧 = (𝐴 +s 𝑡)}) = ({𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 +s 𝐵) +s ( 1s
/su 𝑝))}
∪ {𝑧 ∣
∃𝑝 ∈
ℕs 𝑧 =
((𝐴 +s 𝐵) +s ( 1s
/su 𝑝))})) | 
| 154 |  | unidm 4156 | . . . . . . . . 9
⊢ ({𝑧 ∣ ∃𝑝 ∈ ℕs
𝑧 = ((𝐴 +s 𝐵) +s ( 1s
/su 𝑝))}
∪ {𝑧 ∣
∃𝑝 ∈
ℕs 𝑧 =
((𝐴 +s 𝐵) +s ( 1s
/su 𝑝))}) =
{𝑧 ∣ ∃𝑝 ∈ ℕs
𝑧 = ((𝐴 +s 𝐵) +s ( 1s
/su 𝑝))} | 
| 155 | 153, 154 | eqtrdi 2792 | . . . . . . . 8
⊢ ((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No ) → ({𝑧 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s
/su 𝑛))}𝑧 = (𝑡 +s 𝐵)} ∪ {𝑧 ∣ ∃𝑡 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s
/su 𝑚))}𝑧 = (𝐴 +s 𝑡)}) = {𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 +s 𝐵) +s ( 1s
/su 𝑝))}) | 
| 156 | 112, 155 | oveq12d 7450 | . . . . . . 7
⊢ ((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No ) → (({𝑧 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s
/su 𝑛))}𝑧 = (𝑡 +s 𝐵)} ∪ {𝑧 ∣ ∃𝑡 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s
/su 𝑚))}𝑧 = (𝐴 +s 𝑡)}) |s ({𝑧 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s
/su 𝑛))}𝑧 = (𝑡 +s 𝐵)} ∪ {𝑧 ∣ ∃𝑡 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s
/su 𝑚))}𝑧 = (𝐴 +s 𝑡)})) = ({𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 +s 𝐵) -s ( 1s
/su 𝑝))} |s
{𝑧 ∣ ∃𝑝 ∈ ℕs
𝑧 = ((𝐴 +s 𝐵) +s ( 1s
/su 𝑝))})) | 
| 157 | 156 | adantr 480 | . . . . . 6
⊢ (((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No ) ∧ (𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s
/su 𝑛))} |s
{𝑥 ∣ ∃𝑛 ∈ ℕs
𝑥 = (𝐴 +s ( 1s
/su 𝑛))})
∧ 𝐵 = ({𝑦 ∣ ∃𝑚 ∈ ℕs
𝑦 = (𝐵 -s ( 1s
/su 𝑚))} |s
{𝑦 ∣ ∃𝑚 ∈ ℕs
𝑦 = (𝐵 +s ( 1s
/su 𝑚))})))
→ (({𝑧 ∣
∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs
𝑥 = (𝐴 -s ( 1s
/su 𝑛))}𝑧 = (𝑡 +s 𝐵)} ∪ {𝑧 ∣ ∃𝑡 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s
/su 𝑚))}𝑧 = (𝐴 +s 𝑡)}) |s ({𝑧 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s
/su 𝑛))}𝑧 = (𝑡 +s 𝐵)} ∪ {𝑧 ∣ ∃𝑡 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s
/su 𝑚))}𝑧 = (𝐴 +s 𝑡)})) = ({𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 +s 𝐵) -s ( 1s
/su 𝑝))} |s
{𝑧 ∣ ∃𝑝 ∈ ℕs
𝑧 = ((𝐴 +s 𝐵) +s ( 1s
/su 𝑝))})) | 
| 158 | 52, 157 | eqtrd 2776 | . . . . 5
⊢ (((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No ) ∧ (𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s
/su 𝑛))} |s
{𝑥 ∣ ∃𝑛 ∈ ℕs
𝑥 = (𝐴 +s ( 1s
/su 𝑛))})
∧ 𝐵 = ({𝑦 ∣ ∃𝑚 ∈ ℕs
𝑦 = (𝐵 -s ( 1s
/su 𝑚))} |s
{𝑦 ∣ ∃𝑚 ∈ ℕs
𝑦 = (𝐵 +s ( 1s
/su 𝑚))})))
→ (𝐴 +s
𝐵) = ({𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 +s 𝐵) -s ( 1s
/su 𝑝))} |s
{𝑧 ∣ ∃𝑝 ∈ ℕs
𝑧 = ((𝐴 +s 𝐵) +s ( 1s
/su 𝑝))})) | 
| 159 | 43, 158 | sylan2 593 | . . . 4
⊢ (((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No ) ∧ ((∃𝑛 ∈ ℕs (( -us
‘𝑛) <s 𝐴 ∧ 𝐴 <s 𝑛) ∧ 𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s
/su 𝑛))} |s
{𝑥 ∣ ∃𝑛 ∈ ℕs
𝑥 = (𝐴 +s ( 1s
/su 𝑛))}))
∧ (∃𝑚 ∈
ℕs (( -us ‘𝑚) <s 𝐵 ∧ 𝐵 <s 𝑚) ∧ 𝐵 = ({𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s
/su 𝑚))} |s
{𝑦 ∣ ∃𝑚 ∈ ℕs
𝑦 = (𝐵 +s ( 1s
/su 𝑚))}))))
→ (𝐴 +s
𝐵) = ({𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 +s 𝐵) -s ( 1s
/su 𝑝))} |s
{𝑧 ∣ ∃𝑝 ∈ ℕs
𝑧 = ((𝐴 +s 𝐵) +s ( 1s
/su 𝑝))})) | 
| 160 | 2, 40, 159 | jca32 515 | . . 3
⊢ (((𝐴 ∈ 
No  ∧ 𝐵 ∈
 No ) ∧ ((∃𝑛 ∈ ℕs (( -us
‘𝑛) <s 𝐴 ∧ 𝐴 <s 𝑛) ∧ 𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s
/su 𝑛))} |s
{𝑥 ∣ ∃𝑛 ∈ ℕs
𝑥 = (𝐴 +s ( 1s
/su 𝑛))}))
∧ (∃𝑚 ∈
ℕs (( -us ‘𝑚) <s 𝐵 ∧ 𝐵 <s 𝑚) ∧ 𝐵 = ({𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s
/su 𝑚))} |s
{𝑦 ∣ ∃𝑚 ∈ ℕs
𝑦 = (𝐵 +s ( 1s
/su 𝑚))}))))
→ ((𝐴 +s
𝐵) ∈  No  ∧ (∃𝑝 ∈ ℕs (( -us
‘𝑝) <s (𝐴 +s 𝐵) ∧ (𝐴 +s 𝐵) <s 𝑝) ∧ (𝐴 +s 𝐵) = ({𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 +s 𝐵) -s ( 1s
/su 𝑝))} |s
{𝑧 ∣ ∃𝑝 ∈ ℕs
𝑧 = ((𝐴 +s 𝐵) +s ( 1s
/su 𝑝))})))) | 
| 161 | 160 | an4s 660 | . 2
⊢ (((𝐴 ∈ 
No  ∧ (∃𝑛
∈ ℕs (( -us ‘𝑛) <s 𝐴 ∧ 𝐴 <s 𝑛) ∧ 𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s
/su 𝑛))} |s
{𝑥 ∣ ∃𝑛 ∈ ℕs
𝑥 = (𝐴 +s ( 1s
/su 𝑛))})))
∧ (𝐵 ∈  No  ∧ (∃𝑚 ∈ ℕs (( -us
‘𝑚) <s 𝐵 ∧ 𝐵 <s 𝑚) ∧ 𝐵 = ({𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s
/su 𝑚))} |s
{𝑦 ∣ ∃𝑚 ∈ ℕs
𝑦 = (𝐵 +s ( 1s
/su 𝑚))}))))
→ ((𝐴 +s
𝐵) ∈  No  ∧ (∃𝑝 ∈ ℕs (( -us
‘𝑝) <s (𝐴 +s 𝐵) ∧ (𝐴 +s 𝐵) <s 𝑝) ∧ (𝐴 +s 𝐵) = ({𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 +s 𝐵) -s ( 1s
/su 𝑝))} |s
{𝑧 ∣ ∃𝑝 ∈ ℕs
𝑧 = ((𝐴 +s 𝐵) +s ( 1s
/su 𝑝))})))) | 
| 162 |  | elreno 28428 | . . 3
⊢ (𝐴 ∈ ℝs
↔ (𝐴 ∈  No  ∧ (∃𝑛 ∈ ℕs (( -us
‘𝑛) <s 𝐴 ∧ 𝐴 <s 𝑛) ∧ 𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s
/su 𝑛))} |s
{𝑥 ∣ ∃𝑛 ∈ ℕs
𝑥 = (𝐴 +s ( 1s
/su 𝑛))})))) | 
| 163 |  | elreno 28428 | . . 3
⊢ (𝐵 ∈ ℝs
↔ (𝐵 ∈  No  ∧ (∃𝑚 ∈ ℕs (( -us
‘𝑚) <s 𝐵 ∧ 𝐵 <s 𝑚) ∧ 𝐵 = ({𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s
/su 𝑚))} |s
{𝑦 ∣ ∃𝑚 ∈ ℕs
𝑦 = (𝐵 +s ( 1s
/su 𝑚))})))) | 
| 164 | 162, 163 | anbi12i 628 | . 2
⊢ ((𝐴 ∈ ℝs
∧ 𝐵 ∈
ℝs) ↔ ((𝐴 ∈  No 
∧ (∃𝑛 ∈
ℕs (( -us ‘𝑛) <s 𝐴 ∧ 𝐴 <s 𝑛) ∧ 𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s
/su 𝑛))} |s
{𝑥 ∣ ∃𝑛 ∈ ℕs
𝑥 = (𝐴 +s ( 1s
/su 𝑛))})))
∧ (𝐵 ∈  No  ∧ (∃𝑚 ∈ ℕs (( -us
‘𝑚) <s 𝐵 ∧ 𝐵 <s 𝑚) ∧ 𝐵 = ({𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s
/su 𝑚))} |s
{𝑦 ∣ ∃𝑚 ∈ ℕs
𝑦 = (𝐵 +s ( 1s
/su 𝑚))}))))) | 
| 165 |  | elreno 28428 | . 2
⊢ ((𝐴 +s 𝐵) ∈ ℝs ↔ ((𝐴 +s 𝐵) ∈  No 
∧ (∃𝑝 ∈
ℕs (( -us ‘𝑝) <s (𝐴 +s 𝐵) ∧ (𝐴 +s 𝐵) <s 𝑝) ∧ (𝐴 +s 𝐵) = ({𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 +s 𝐵) -s ( 1s
/su 𝑝))} |s
{𝑧 ∣ ∃𝑝 ∈ ℕs
𝑧 = ((𝐴 +s 𝐵) +s ( 1s
/su 𝑝))})))) | 
| 166 | 161, 164,
165 | 3imtr4i 292 | 1
⊢ ((𝐴 ∈ ℝs
∧ 𝐵 ∈
ℝs) → (𝐴 +s 𝐵) ∈
ℝs) |