MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  readdscl Structured version   Visualization version   GIF version

Theorem readdscl 28432
Description: The surreal reals are closed under addition. Part of theorem 13(ii) of [Conway] p. 24. (Contributed by Scott Fenton, 15-Apr-2025.)
Assertion
Ref Expression
readdscl ((𝐴 ∈ ℝs𝐵 ∈ ℝs) → (𝐴 +s 𝐵) ∈ ℝs)

Proof of Theorem readdscl
Dummy variables 𝑛 𝑚 𝑝 𝑡 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 addscl 28015 . . . . 5 ((𝐴 No 𝐵 No ) → (𝐴 +s 𝐵) ∈ No )
21adantr 480 . . . 4 (((𝐴 No 𝐵 No ) ∧ ((∃𝑛 ∈ ℕs (( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ 𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))})) ∧ (∃𝑚 ∈ ℕs (( -us𝑚) <s 𝐵𝐵 <s 𝑚) ∧ 𝐵 = ({𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))} |s {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))})))) → (𝐴 +s 𝐵) ∈ No )
3 nnaddscl 28350 . . . . . . . . . 10 ((𝑛 ∈ ℕs𝑚 ∈ ℕs) → (𝑛 +s 𝑚) ∈ ℕs)
43adantr 480 . . . . . . . . 9 (((𝑛 ∈ ℕs𝑚 ∈ ℕs) ∧ ((( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ (( -us𝑚) <s 𝐵𝐵 <s 𝑚))) → (𝑛 +s 𝑚) ∈ ℕs)
54adantl 481 . . . . . . . 8 (((𝐴 No 𝐵 No ) ∧ ((𝑛 ∈ ℕs𝑚 ∈ ℕs) ∧ ((( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ (( -us𝑚) <s 𝐵𝐵 <s 𝑚)))) → (𝑛 +s 𝑚) ∈ ℕs)
6 simprll 778 . . . . . . . . . . 11 (((𝐴 No 𝐵 No ) ∧ ((𝑛 ∈ ℕs𝑚 ∈ ℕs) ∧ ((( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ (( -us𝑚) <s 𝐵𝐵 <s 𝑚)))) → 𝑛 ∈ ℕs)
76nnsnod 28332 . . . . . . . . . 10 (((𝐴 No 𝐵 No ) ∧ ((𝑛 ∈ ℕs𝑚 ∈ ℕs) ∧ ((( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ (( -us𝑚) <s 𝐵𝐵 <s 𝑚)))) → 𝑛 No )
8 simprlr 779 . . . . . . . . . . 11 (((𝐴 No 𝐵 No ) ∧ ((𝑛 ∈ ℕs𝑚 ∈ ℕs) ∧ ((( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ (( -us𝑚) <s 𝐵𝐵 <s 𝑚)))) → 𝑚 ∈ ℕs)
98nnsnod 28332 . . . . . . . . . 10 (((𝐴 No 𝐵 No ) ∧ ((𝑛 ∈ ℕs𝑚 ∈ ℕs) ∧ ((( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ (( -us𝑚) <s 𝐵𝐵 <s 𝑚)))) → 𝑚 No )
10 negsdi 28083 . . . . . . . . . 10 ((𝑛 No 𝑚 No ) → ( -us ‘(𝑛 +s 𝑚)) = (( -us𝑛) +s ( -us𝑚)))
117, 9, 10syl2anc 584 . . . . . . . . 9 (((𝐴 No 𝐵 No ) ∧ ((𝑛 ∈ ℕs𝑚 ∈ ℕs) ∧ ((( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ (( -us𝑚) <s 𝐵𝐵 <s 𝑚)))) → ( -us ‘(𝑛 +s 𝑚)) = (( -us𝑛) +s ( -us𝑚)))
127negscld 28070 . . . . . . . . . 10 (((𝐴 No 𝐵 No ) ∧ ((𝑛 ∈ ℕs𝑚 ∈ ℕs) ∧ ((( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ (( -us𝑚) <s 𝐵𝐵 <s 𝑚)))) → ( -us𝑛) ∈ No )
139negscld 28070 . . . . . . . . . 10 (((𝐴 No 𝐵 No ) ∧ ((𝑛 ∈ ℕs𝑚 ∈ ℕs) ∧ ((( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ (( -us𝑚) <s 𝐵𝐵 <s 𝑚)))) → ( -us𝑚) ∈ No )
14 simpll 766 . . . . . . . . . 10 (((𝐴 No 𝐵 No ) ∧ ((𝑛 ∈ ℕs𝑚 ∈ ℕs) ∧ ((( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ (( -us𝑚) <s 𝐵𝐵 <s 𝑚)))) → 𝐴 No )
15 simplr 768 . . . . . . . . . 10 (((𝐴 No 𝐵 No ) ∧ ((𝑛 ∈ ℕs𝑚 ∈ ℕs) ∧ ((( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ (( -us𝑚) <s 𝐵𝐵 <s 𝑚)))) → 𝐵 No )
16 simprll 778 . . . . . . . . . . 11 (((𝑛 ∈ ℕs𝑚 ∈ ℕs) ∧ ((( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ (( -us𝑚) <s 𝐵𝐵 <s 𝑚))) → ( -us𝑛) <s 𝐴)
1716adantl 481 . . . . . . . . . 10 (((𝐴 No 𝐵 No ) ∧ ((𝑛 ∈ ℕs𝑚 ∈ ℕs) ∧ ((( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ (( -us𝑚) <s 𝐵𝐵 <s 𝑚)))) → ( -us𝑛) <s 𝐴)
18 simprrl 780 . . . . . . . . . . 11 (((𝑛 ∈ ℕs𝑚 ∈ ℕs) ∧ ((( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ (( -us𝑚) <s 𝐵𝐵 <s 𝑚))) → ( -us𝑚) <s 𝐵)
1918adantl 481 . . . . . . . . . 10 (((𝐴 No 𝐵 No ) ∧ ((𝑛 ∈ ℕs𝑚 ∈ ℕs) ∧ ((( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ (( -us𝑚) <s 𝐵𝐵 <s 𝑚)))) → ( -us𝑚) <s 𝐵)
2012, 13, 14, 15, 17, 19slt2addd 28047 . . . . . . . . 9 (((𝐴 No 𝐵 No ) ∧ ((𝑛 ∈ ℕs𝑚 ∈ ℕs) ∧ ((( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ (( -us𝑚) <s 𝐵𝐵 <s 𝑚)))) → (( -us𝑛) +s ( -us𝑚)) <s (𝐴 +s 𝐵))
2111, 20eqbrtrd 5164 . . . . . . . 8 (((𝐴 No 𝐵 No ) ∧ ((𝑛 ∈ ℕs𝑚 ∈ ℕs) ∧ ((( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ (( -us𝑚) <s 𝐵𝐵 <s 𝑚)))) → ( -us ‘(𝑛 +s 𝑚)) <s (𝐴 +s 𝐵))
22 simprlr 779 . . . . . . . . . 10 (((𝑛 ∈ ℕs𝑚 ∈ ℕs) ∧ ((( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ (( -us𝑚) <s 𝐵𝐵 <s 𝑚))) → 𝐴 <s 𝑛)
2322adantl 481 . . . . . . . . 9 (((𝐴 No 𝐵 No ) ∧ ((𝑛 ∈ ℕs𝑚 ∈ ℕs) ∧ ((( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ (( -us𝑚) <s 𝐵𝐵 <s 𝑚)))) → 𝐴 <s 𝑛)
24 simprrr 781 . . . . . . . . . 10 (((𝑛 ∈ ℕs𝑚 ∈ ℕs) ∧ ((( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ (( -us𝑚) <s 𝐵𝐵 <s 𝑚))) → 𝐵 <s 𝑚)
2524adantl 481 . . . . . . . . 9 (((𝐴 No 𝐵 No ) ∧ ((𝑛 ∈ ℕs𝑚 ∈ ℕs) ∧ ((( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ (( -us𝑚) <s 𝐵𝐵 <s 𝑚)))) → 𝐵 <s 𝑚)
2614, 15, 7, 9, 23, 25slt2addd 28047 . . . . . . . 8 (((𝐴 No 𝐵 No ) ∧ ((𝑛 ∈ ℕs𝑚 ∈ ℕs) ∧ ((( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ (( -us𝑚) <s 𝐵𝐵 <s 𝑚)))) → (𝐴 +s 𝐵) <s (𝑛 +s 𝑚))
27 fveq2 6905 . . . . . . . . . . 11 (𝑝 = (𝑛 +s 𝑚) → ( -us𝑝) = ( -us ‘(𝑛 +s 𝑚)))
2827breq1d 5152 . . . . . . . . . 10 (𝑝 = (𝑛 +s 𝑚) → (( -us𝑝) <s (𝐴 +s 𝐵) ↔ ( -us ‘(𝑛 +s 𝑚)) <s (𝐴 +s 𝐵)))
29 breq2 5146 . . . . . . . . . 10 (𝑝 = (𝑛 +s 𝑚) → ((𝐴 +s 𝐵) <s 𝑝 ↔ (𝐴 +s 𝐵) <s (𝑛 +s 𝑚)))
3028, 29anbi12d 632 . . . . . . . . 9 (𝑝 = (𝑛 +s 𝑚) → ((( -us𝑝) <s (𝐴 +s 𝐵) ∧ (𝐴 +s 𝐵) <s 𝑝) ↔ (( -us ‘(𝑛 +s 𝑚)) <s (𝐴 +s 𝐵) ∧ (𝐴 +s 𝐵) <s (𝑛 +s 𝑚))))
3130rspcev 3621 . . . . . . . 8 (((𝑛 +s 𝑚) ∈ ℕs ∧ (( -us ‘(𝑛 +s 𝑚)) <s (𝐴 +s 𝐵) ∧ (𝐴 +s 𝐵) <s (𝑛 +s 𝑚))) → ∃𝑝 ∈ ℕs (( -us𝑝) <s (𝐴 +s 𝐵) ∧ (𝐴 +s 𝐵) <s 𝑝))
325, 21, 26, 31syl12anc 836 . . . . . . 7 (((𝐴 No 𝐵 No ) ∧ ((𝑛 ∈ ℕs𝑚 ∈ ℕs) ∧ ((( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ (( -us𝑚) <s 𝐵𝐵 <s 𝑚)))) → ∃𝑝 ∈ ℕs (( -us𝑝) <s (𝐴 +s 𝐵) ∧ (𝐴 +s 𝐵) <s 𝑝))
3332expr 456 . . . . . 6 (((𝐴 No 𝐵 No ) ∧ (𝑛 ∈ ℕs𝑚 ∈ ℕs)) → (((( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ (( -us𝑚) <s 𝐵𝐵 <s 𝑚)) → ∃𝑝 ∈ ℕs (( -us𝑝) <s (𝐴 +s 𝐵) ∧ (𝐴 +s 𝐵) <s 𝑝)))
3433rexlimdvva 3212 . . . . 5 ((𝐴 No 𝐵 No ) → (∃𝑛 ∈ ℕs𝑚 ∈ ℕs ((( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ (( -us𝑚) <s 𝐵𝐵 <s 𝑚)) → ∃𝑝 ∈ ℕs (( -us𝑝) <s (𝐴 +s 𝐵) ∧ (𝐴 +s 𝐵) <s 𝑝)))
35 simpl 482 . . . . . . 7 ((∃𝑛 ∈ ℕs (( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ 𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))})) → ∃𝑛 ∈ ℕs (( -us𝑛) <s 𝐴𝐴 <s 𝑛))
36 simpl 482 . . . . . . 7 ((∃𝑚 ∈ ℕs (( -us𝑚) <s 𝐵𝐵 <s 𝑚) ∧ 𝐵 = ({𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))} |s {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))})) → ∃𝑚 ∈ ℕs (( -us𝑚) <s 𝐵𝐵 <s 𝑚))
3735, 36anim12i 613 . . . . . 6 (((∃𝑛 ∈ ℕs (( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ 𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))})) ∧ (∃𝑚 ∈ ℕs (( -us𝑚) <s 𝐵𝐵 <s 𝑚) ∧ 𝐵 = ({𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))} |s {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}))) → (∃𝑛 ∈ ℕs (( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ ∃𝑚 ∈ ℕs (( -us𝑚) <s 𝐵𝐵 <s 𝑚)))
38 reeanv 3228 . . . . . 6 (∃𝑛 ∈ ℕs𝑚 ∈ ℕs ((( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ (( -us𝑚) <s 𝐵𝐵 <s 𝑚)) ↔ (∃𝑛 ∈ ℕs (( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ ∃𝑚 ∈ ℕs (( -us𝑚) <s 𝐵𝐵 <s 𝑚)))
3937, 38sylibr 234 . . . . 5 (((∃𝑛 ∈ ℕs (( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ 𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))})) ∧ (∃𝑚 ∈ ℕs (( -us𝑚) <s 𝐵𝐵 <s 𝑚) ∧ 𝐵 = ({𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))} |s {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}))) → ∃𝑛 ∈ ℕs𝑚 ∈ ℕs ((( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ (( -us𝑚) <s 𝐵𝐵 <s 𝑚)))
4034, 39impel 505 . . . 4 (((𝐴 No 𝐵 No ) ∧ ((∃𝑛 ∈ ℕs (( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ 𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))})) ∧ (∃𝑚 ∈ ℕs (( -us𝑚) <s 𝐵𝐵 <s 𝑚) ∧ 𝐵 = ({𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))} |s {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))})))) → ∃𝑝 ∈ ℕs (( -us𝑝) <s (𝐴 +s 𝐵) ∧ (𝐴 +s 𝐵) <s 𝑝))
41 simpr 484 . . . . . 6 ((∃𝑛 ∈ ℕs (( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ 𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))})) → 𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}))
42 simpr 484 . . . . . 6 ((∃𝑚 ∈ ℕs (( -us𝑚) <s 𝐵𝐵 <s 𝑚) ∧ 𝐵 = ({𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))} |s {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))})) → 𝐵 = ({𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))} |s {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}))
4341, 42anim12i 613 . . . . 5 (((∃𝑛 ∈ ℕs (( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ 𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))})) ∧ (∃𝑚 ∈ ℕs (( -us𝑚) <s 𝐵𝐵 <s 𝑚) ∧ 𝐵 = ({𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))} |s {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}))) → (𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}) ∧ 𝐵 = ({𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))} |s {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))})))
44 simpll 766 . . . . . . . 8 (((𝐴 No 𝐵 No ) ∧ (𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}) ∧ 𝐵 = ({𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))} |s {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}))) → 𝐴 No )
45 recut 28429 . . . . . . . 8 (𝐴 No → {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} <<s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))})
4644, 45syl 17 . . . . . . 7 (((𝐴 No 𝐵 No ) ∧ (𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}) ∧ 𝐵 = ({𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))} |s {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}))) → {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} <<s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))})
47 simplr 768 . . . . . . . 8 (((𝐴 No 𝐵 No ) ∧ (𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}) ∧ 𝐵 = ({𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))} |s {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}))) → 𝐵 No )
48 recut 28429 . . . . . . . 8 (𝐵 No → {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))} <<s {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))})
4947, 48syl 17 . . . . . . 7 (((𝐴 No 𝐵 No ) ∧ (𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}) ∧ 𝐵 = ({𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))} |s {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}))) → {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))} <<s {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))})
50 simprl 770 . . . . . . 7 (((𝐴 No 𝐵 No ) ∧ (𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}) ∧ 𝐵 = ({𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))} |s {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}))) → 𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}))
51 simprr 772 . . . . . . 7 (((𝐴 No 𝐵 No ) ∧ (𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}) ∧ 𝐵 = ({𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))} |s {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}))) → 𝐵 = ({𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))} |s {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}))
5246, 49, 50, 51addsunif 28036 . . . . . 6 (((𝐴 No 𝐵 No ) ∧ (𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}) ∧ 𝐵 = ({𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))} |s {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}))) → (𝐴 +s 𝐵) = (({𝑧 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))}𝑧 = (𝑡 +s 𝐵)} ∪ {𝑧 ∣ ∃𝑡 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = (𝐴 +s 𝑡)}) |s ({𝑧 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}𝑧 = (𝑡 +s 𝐵)} ∪ {𝑧 ∣ ∃𝑡 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = (𝐴 +s 𝑡)})))
53 ovex 7465 . . . . . . . . . . . . . . 15 (𝐴 -s ( 1s /su 𝑛)) ∈ V
54 oveq1 7439 . . . . . . . . . . . . . . . 16 (𝑡 = (𝐴 -s ( 1s /su 𝑛)) → (𝑡 +s 𝐵) = ((𝐴 -s ( 1s /su 𝑛)) +s 𝐵))
5554eqeq2d 2747 . . . . . . . . . . . . . . 15 (𝑡 = (𝐴 -s ( 1s /su 𝑛)) → (𝑧 = (𝑡 +s 𝐵) ↔ 𝑧 = ((𝐴 -s ( 1s /su 𝑛)) +s 𝐵)))
5653, 55ceqsexv 3531 . . . . . . . . . . . . . 14 (∃𝑡(𝑡 = (𝐴 -s ( 1s /su 𝑛)) ∧ 𝑧 = (𝑡 +s 𝐵)) ↔ 𝑧 = ((𝐴 -s ( 1s /su 𝑛)) +s 𝐵))
57 simpll 766 . . . . . . . . . . . . . . . 16 (((𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs) → 𝐴 No )
58 simplr 768 . . . . . . . . . . . . . . . 16 (((𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs) → 𝐵 No )
59 1sno 27873 . . . . . . . . . . . . . . . . . . 19 1s No
6059a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕs → 1s No )
61 nnsno 28330 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕs𝑛 No )
62 nnne0s 28341 . . . . . . . . . . . . . . . . . 18 (𝑛 ∈ ℕs𝑛 ≠ 0s )
6360, 61, 62divscld 28249 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ ℕs → ( 1s /su 𝑛) ∈ No )
6463adantl 481 . . . . . . . . . . . . . . . 16 (((𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs) → ( 1s /su 𝑛) ∈ No )
6557, 58, 64addsubsd 28113 . . . . . . . . . . . . . . 15 (((𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs) → ((𝐴 +s 𝐵) -s ( 1s /su 𝑛)) = ((𝐴 -s ( 1s /su 𝑛)) +s 𝐵))
6665eqeq2d 2747 . . . . . . . . . . . . . 14 (((𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs) → (𝑧 = ((𝐴 +s 𝐵) -s ( 1s /su 𝑛)) ↔ 𝑧 = ((𝐴 -s ( 1s /su 𝑛)) +s 𝐵)))
6756, 66bitr4id 290 . . . . . . . . . . . . 13 (((𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs) → (∃𝑡(𝑡 = (𝐴 -s ( 1s /su 𝑛)) ∧ 𝑧 = (𝑡 +s 𝐵)) ↔ 𝑧 = ((𝐴 +s 𝐵) -s ( 1s /su 𝑛))))
6867rexbidva 3176 . . . . . . . . . . . 12 ((𝐴 No 𝐵 No ) → (∃𝑛 ∈ ℕs𝑡(𝑡 = (𝐴 -s ( 1s /su 𝑛)) ∧ 𝑧 = (𝑡 +s 𝐵)) ↔ ∃𝑛 ∈ ℕs 𝑧 = ((𝐴 +s 𝐵) -s ( 1s /su 𝑛))))
69 r19.41v 3188 . . . . . . . . . . . . . 14 (∃𝑛 ∈ ℕs (𝑡 = (𝐴 -s ( 1s /su 𝑛)) ∧ 𝑧 = (𝑡 +s 𝐵)) ↔ (∃𝑛 ∈ ℕs 𝑡 = (𝐴 -s ( 1s /su 𝑛)) ∧ 𝑧 = (𝑡 +s 𝐵)))
7069exbii 1847 . . . . . . . . . . . . 13 (∃𝑡𝑛 ∈ ℕs (𝑡 = (𝐴 -s ( 1s /su 𝑛)) ∧ 𝑧 = (𝑡 +s 𝐵)) ↔ ∃𝑡(∃𝑛 ∈ ℕs 𝑡 = (𝐴 -s ( 1s /su 𝑛)) ∧ 𝑧 = (𝑡 +s 𝐵)))
71 rexcom4 3287 . . . . . . . . . . . . 13 (∃𝑛 ∈ ℕs𝑡(𝑡 = (𝐴 -s ( 1s /su 𝑛)) ∧ 𝑧 = (𝑡 +s 𝐵)) ↔ ∃𝑡𝑛 ∈ ℕs (𝑡 = (𝐴 -s ( 1s /su 𝑛)) ∧ 𝑧 = (𝑡 +s 𝐵)))
72 eqeq1 2740 . . . . . . . . . . . . . . 15 (𝑥 = 𝑡 → (𝑥 = (𝐴 -s ( 1s /su 𝑛)) ↔ 𝑡 = (𝐴 -s ( 1s /su 𝑛))))
7372rexbidv 3178 . . . . . . . . . . . . . 14 (𝑥 = 𝑡 → (∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛)) ↔ ∃𝑛 ∈ ℕs 𝑡 = (𝐴 -s ( 1s /su 𝑛))))
7473rexab 3699 . . . . . . . . . . . . 13 (∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))}𝑧 = (𝑡 +s 𝐵) ↔ ∃𝑡(∃𝑛 ∈ ℕs 𝑡 = (𝐴 -s ( 1s /su 𝑛)) ∧ 𝑧 = (𝑡 +s 𝐵)))
7570, 71, 743bitr4ri 304 . . . . . . . . . . . 12 (∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))}𝑧 = (𝑡 +s 𝐵) ↔ ∃𝑛 ∈ ℕs𝑡(𝑡 = (𝐴 -s ( 1s /su 𝑛)) ∧ 𝑧 = (𝑡 +s 𝐵)))
76 oveq2 7440 . . . . . . . . . . . . . . 15 (𝑝 = 𝑛 → ( 1s /su 𝑝) = ( 1s /su 𝑛))
7776oveq2d 7448 . . . . . . . . . . . . . 14 (𝑝 = 𝑛 → ((𝐴 +s 𝐵) -s ( 1s /su 𝑝)) = ((𝐴 +s 𝐵) -s ( 1s /su 𝑛)))
7877eqeq2d 2747 . . . . . . . . . . . . 13 (𝑝 = 𝑛 → (𝑧 = ((𝐴 +s 𝐵) -s ( 1s /su 𝑝)) ↔ 𝑧 = ((𝐴 +s 𝐵) -s ( 1s /su 𝑛))))
7978cbvrexvw 3237 . . . . . . . . . . . 12 (∃𝑝 ∈ ℕs 𝑧 = ((𝐴 +s 𝐵) -s ( 1s /su 𝑝)) ↔ ∃𝑛 ∈ ℕs 𝑧 = ((𝐴 +s 𝐵) -s ( 1s /su 𝑛)))
8068, 75, 793bitr4g 314 . . . . . . . . . . 11 ((𝐴 No 𝐵 No ) → (∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))}𝑧 = (𝑡 +s 𝐵) ↔ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 +s 𝐵) -s ( 1s /su 𝑝))))
8180abbidv 2807 . . . . . . . . . 10 ((𝐴 No 𝐵 No ) → {𝑧 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))}𝑧 = (𝑡 +s 𝐵)} = {𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 +s 𝐵) -s ( 1s /su 𝑝))})
82 ovex 7465 . . . . . . . . . . . . . . 15 (𝐵 -s ( 1s /su 𝑚)) ∈ V
83 oveq2 7440 . . . . . . . . . . . . . . . 16 (𝑡 = (𝐵 -s ( 1s /su 𝑚)) → (𝐴 +s 𝑡) = (𝐴 +s (𝐵 -s ( 1s /su 𝑚))))
8483eqeq2d 2747 . . . . . . . . . . . . . . 15 (𝑡 = (𝐵 -s ( 1s /su 𝑚)) → (𝑧 = (𝐴 +s 𝑡) ↔ 𝑧 = (𝐴 +s (𝐵 -s ( 1s /su 𝑚)))))
8582, 84ceqsexv 3531 . . . . . . . . . . . . . 14 (∃𝑡(𝑡 = (𝐵 -s ( 1s /su 𝑚)) ∧ 𝑧 = (𝐴 +s 𝑡)) ↔ 𝑧 = (𝐴 +s (𝐵 -s ( 1s /su 𝑚))))
86 simpll 766 . . . . . . . . . . . . . . . 16 (((𝐴 No 𝐵 No ) ∧ 𝑚 ∈ ℕs) → 𝐴 No )
87 simplr 768 . . . . . . . . . . . . . . . 16 (((𝐴 No 𝐵 No ) ∧ 𝑚 ∈ ℕs) → 𝐵 No )
8859a1i 11 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ ℕs → 1s No )
89 nnsno 28330 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ ℕs𝑚 No )
90 nnne0s 28341 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ ℕs𝑚 ≠ 0s )
9188, 89, 90divscld 28249 . . . . . . . . . . . . . . . . 17 (𝑚 ∈ ℕs → ( 1s /su 𝑚) ∈ No )
9291adantl 481 . . . . . . . . . . . . . . . 16 (((𝐴 No 𝐵 No ) ∧ 𝑚 ∈ ℕs) → ( 1s /su 𝑚) ∈ No )
9386, 87, 92addsubsassd 28112 . . . . . . . . . . . . . . 15 (((𝐴 No 𝐵 No ) ∧ 𝑚 ∈ ℕs) → ((𝐴 +s 𝐵) -s ( 1s /su 𝑚)) = (𝐴 +s (𝐵 -s ( 1s /su 𝑚))))
9493eqeq2d 2747 . . . . . . . . . . . . . 14 (((𝐴 No 𝐵 No ) ∧ 𝑚 ∈ ℕs) → (𝑧 = ((𝐴 +s 𝐵) -s ( 1s /su 𝑚)) ↔ 𝑧 = (𝐴 +s (𝐵 -s ( 1s /su 𝑚)))))
9585, 94bitr4id 290 . . . . . . . . . . . . 13 (((𝐴 No 𝐵 No ) ∧ 𝑚 ∈ ℕs) → (∃𝑡(𝑡 = (𝐵 -s ( 1s /su 𝑚)) ∧ 𝑧 = (𝐴 +s 𝑡)) ↔ 𝑧 = ((𝐴 +s 𝐵) -s ( 1s /su 𝑚))))
9695rexbidva 3176 . . . . . . . . . . . 12 ((𝐴 No 𝐵 No ) → (∃𝑚 ∈ ℕs𝑡(𝑡 = (𝐵 -s ( 1s /su 𝑚)) ∧ 𝑧 = (𝐴 +s 𝑡)) ↔ ∃𝑚 ∈ ℕs 𝑧 = ((𝐴 +s 𝐵) -s ( 1s /su 𝑚))))
97 r19.41v 3188 . . . . . . . . . . . . . 14 (∃𝑚 ∈ ℕs (𝑡 = (𝐵 -s ( 1s /su 𝑚)) ∧ 𝑧 = (𝐴 +s 𝑡)) ↔ (∃𝑚 ∈ ℕs 𝑡 = (𝐵 -s ( 1s /su 𝑚)) ∧ 𝑧 = (𝐴 +s 𝑡)))
9897exbii 1847 . . . . . . . . . . . . 13 (∃𝑡𝑚 ∈ ℕs (𝑡 = (𝐵 -s ( 1s /su 𝑚)) ∧ 𝑧 = (𝐴 +s 𝑡)) ↔ ∃𝑡(∃𝑚 ∈ ℕs 𝑡 = (𝐵 -s ( 1s /su 𝑚)) ∧ 𝑧 = (𝐴 +s 𝑡)))
99 rexcom4 3287 . . . . . . . . . . . . 13 (∃𝑚 ∈ ℕs𝑡(𝑡 = (𝐵 -s ( 1s /su 𝑚)) ∧ 𝑧 = (𝐴 +s 𝑡)) ↔ ∃𝑡𝑚 ∈ ℕs (𝑡 = (𝐵 -s ( 1s /su 𝑚)) ∧ 𝑧 = (𝐴 +s 𝑡)))
100 eqeq1 2740 . . . . . . . . . . . . . . 15 (𝑦 = 𝑡 → (𝑦 = (𝐵 -s ( 1s /su 𝑚)) ↔ 𝑡 = (𝐵 -s ( 1s /su 𝑚))))
101100rexbidv 3178 . . . . . . . . . . . . . 14 (𝑦 = 𝑡 → (∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚)) ↔ ∃𝑚 ∈ ℕs 𝑡 = (𝐵 -s ( 1s /su 𝑚))))
102101rexab 3699 . . . . . . . . . . . . 13 (∃𝑡 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = (𝐴 +s 𝑡) ↔ ∃𝑡(∃𝑚 ∈ ℕs 𝑡 = (𝐵 -s ( 1s /su 𝑚)) ∧ 𝑧 = (𝐴 +s 𝑡)))
10398, 99, 1023bitr4ri 304 . . . . . . . . . . . 12 (∃𝑡 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = (𝐴 +s 𝑡) ↔ ∃𝑚 ∈ ℕs𝑡(𝑡 = (𝐵 -s ( 1s /su 𝑚)) ∧ 𝑧 = (𝐴 +s 𝑡)))
104 oveq2 7440 . . . . . . . . . . . . . . 15 (𝑝 = 𝑚 → ( 1s /su 𝑝) = ( 1s /su 𝑚))
105104oveq2d 7448 . . . . . . . . . . . . . 14 (𝑝 = 𝑚 → ((𝐴 +s 𝐵) -s ( 1s /su 𝑝)) = ((𝐴 +s 𝐵) -s ( 1s /su 𝑚)))
106105eqeq2d 2747 . . . . . . . . . . . . 13 (𝑝 = 𝑚 → (𝑧 = ((𝐴 +s 𝐵) -s ( 1s /su 𝑝)) ↔ 𝑧 = ((𝐴 +s 𝐵) -s ( 1s /su 𝑚))))
107106cbvrexvw 3237 . . . . . . . . . . . 12 (∃𝑝 ∈ ℕs 𝑧 = ((𝐴 +s 𝐵) -s ( 1s /su 𝑝)) ↔ ∃𝑚 ∈ ℕs 𝑧 = ((𝐴 +s 𝐵) -s ( 1s /su 𝑚)))
10896, 103, 1073bitr4g 314 . . . . . . . . . . 11 ((𝐴 No 𝐵 No ) → (∃𝑡 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = (𝐴 +s 𝑡) ↔ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 +s 𝐵) -s ( 1s /su 𝑝))))
109108abbidv 2807 . . . . . . . . . 10 ((𝐴 No 𝐵 No ) → {𝑧 ∣ ∃𝑡 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = (𝐴 +s 𝑡)} = {𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 +s 𝐵) -s ( 1s /su 𝑝))})
11081, 109uneq12d 4168 . . . . . . . . 9 ((𝐴 No 𝐵 No ) → ({𝑧 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))}𝑧 = (𝑡 +s 𝐵)} ∪ {𝑧 ∣ ∃𝑡 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = (𝐴 +s 𝑡)}) = ({𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 +s 𝐵) -s ( 1s /su 𝑝))} ∪ {𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 +s 𝐵) -s ( 1s /su 𝑝))}))
111 unidm 4156 . . . . . . . . 9 ({𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 +s 𝐵) -s ( 1s /su 𝑝))} ∪ {𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 +s 𝐵) -s ( 1s /su 𝑝))}) = {𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 +s 𝐵) -s ( 1s /su 𝑝))}
112110, 111eqtrdi 2792 . . . . . . . 8 ((𝐴 No 𝐵 No ) → ({𝑧 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))}𝑧 = (𝑡 +s 𝐵)} ∪ {𝑧 ∣ ∃𝑡 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = (𝐴 +s 𝑡)}) = {𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 +s 𝐵) -s ( 1s /su 𝑝))})
113 ovex 7465 . . . . . . . . . . . . . . 15 (𝐴 +s ( 1s /su 𝑛)) ∈ V
114 oveq1 7439 . . . . . . . . . . . . . . . 16 (𝑡 = (𝐴 +s ( 1s /su 𝑛)) → (𝑡 +s 𝐵) = ((𝐴 +s ( 1s /su 𝑛)) +s 𝐵))
115114eqeq2d 2747 . . . . . . . . . . . . . . 15 (𝑡 = (𝐴 +s ( 1s /su 𝑛)) → (𝑧 = (𝑡 +s 𝐵) ↔ 𝑧 = ((𝐴 +s ( 1s /su 𝑛)) +s 𝐵)))
116113, 115ceqsexv 3531 . . . . . . . . . . . . . 14 (∃𝑡(𝑡 = (𝐴 +s ( 1s /su 𝑛)) ∧ 𝑧 = (𝑡 +s 𝐵)) ↔ 𝑧 = ((𝐴 +s ( 1s /su 𝑛)) +s 𝐵))
11757, 64, 58adds32d 28041 . . . . . . . . . . . . . . 15 (((𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs) → ((𝐴 +s ( 1s /su 𝑛)) +s 𝐵) = ((𝐴 +s 𝐵) +s ( 1s /su 𝑛)))
118117eqeq2d 2747 . . . . . . . . . . . . . 14 (((𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs) → (𝑧 = ((𝐴 +s ( 1s /su 𝑛)) +s 𝐵) ↔ 𝑧 = ((𝐴 +s 𝐵) +s ( 1s /su 𝑛))))
119116, 118bitrid 283 . . . . . . . . . . . . 13 (((𝐴 No 𝐵 No ) ∧ 𝑛 ∈ ℕs) → (∃𝑡(𝑡 = (𝐴 +s ( 1s /su 𝑛)) ∧ 𝑧 = (𝑡 +s 𝐵)) ↔ 𝑧 = ((𝐴 +s 𝐵) +s ( 1s /su 𝑛))))
120119rexbidva 3176 . . . . . . . . . . . 12 ((𝐴 No 𝐵 No ) → (∃𝑛 ∈ ℕs𝑡(𝑡 = (𝐴 +s ( 1s /su 𝑛)) ∧ 𝑧 = (𝑡 +s 𝐵)) ↔ ∃𝑛 ∈ ℕs 𝑧 = ((𝐴 +s 𝐵) +s ( 1s /su 𝑛))))
121 r19.41v 3188 . . . . . . . . . . . . . 14 (∃𝑛 ∈ ℕs (𝑡 = (𝐴 +s ( 1s /su 𝑛)) ∧ 𝑧 = (𝑡 +s 𝐵)) ↔ (∃𝑛 ∈ ℕs 𝑡 = (𝐴 +s ( 1s /su 𝑛)) ∧ 𝑧 = (𝑡 +s 𝐵)))
122121exbii 1847 . . . . . . . . . . . . 13 (∃𝑡𝑛 ∈ ℕs (𝑡 = (𝐴 +s ( 1s /su 𝑛)) ∧ 𝑧 = (𝑡 +s 𝐵)) ↔ ∃𝑡(∃𝑛 ∈ ℕs 𝑡 = (𝐴 +s ( 1s /su 𝑛)) ∧ 𝑧 = (𝑡 +s 𝐵)))
123 rexcom4 3287 . . . . . . . . . . . . 13 (∃𝑛 ∈ ℕs𝑡(𝑡 = (𝐴 +s ( 1s /su 𝑛)) ∧ 𝑧 = (𝑡 +s 𝐵)) ↔ ∃𝑡𝑛 ∈ ℕs (𝑡 = (𝐴 +s ( 1s /su 𝑛)) ∧ 𝑧 = (𝑡 +s 𝐵)))
124 eqeq1 2740 . . . . . . . . . . . . . . 15 (𝑥 = 𝑡 → (𝑥 = (𝐴 +s ( 1s /su 𝑛)) ↔ 𝑡 = (𝐴 +s ( 1s /su 𝑛))))
125124rexbidv 3178 . . . . . . . . . . . . . 14 (𝑥 = 𝑡 → (∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛)) ↔ ∃𝑛 ∈ ℕs 𝑡 = (𝐴 +s ( 1s /su 𝑛))))
126125rexab 3699 . . . . . . . . . . . . 13 (∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}𝑧 = (𝑡 +s 𝐵) ↔ ∃𝑡(∃𝑛 ∈ ℕs 𝑡 = (𝐴 +s ( 1s /su 𝑛)) ∧ 𝑧 = (𝑡 +s 𝐵)))
127122, 123, 1263bitr4ri 304 . . . . . . . . . . . 12 (∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}𝑧 = (𝑡 +s 𝐵) ↔ ∃𝑛 ∈ ℕs𝑡(𝑡 = (𝐴 +s ( 1s /su 𝑛)) ∧ 𝑧 = (𝑡 +s 𝐵)))
12876oveq2d 7448 . . . . . . . . . . . . . 14 (𝑝 = 𝑛 → ((𝐴 +s 𝐵) +s ( 1s /su 𝑝)) = ((𝐴 +s 𝐵) +s ( 1s /su 𝑛)))
129128eqeq2d 2747 . . . . . . . . . . . . 13 (𝑝 = 𝑛 → (𝑧 = ((𝐴 +s 𝐵) +s ( 1s /su 𝑝)) ↔ 𝑧 = ((𝐴 +s 𝐵) +s ( 1s /su 𝑛))))
130129cbvrexvw 3237 . . . . . . . . . . . 12 (∃𝑝 ∈ ℕs 𝑧 = ((𝐴 +s 𝐵) +s ( 1s /su 𝑝)) ↔ ∃𝑛 ∈ ℕs 𝑧 = ((𝐴 +s 𝐵) +s ( 1s /su 𝑛)))
131120, 127, 1303bitr4g 314 . . . . . . . . . . 11 ((𝐴 No 𝐵 No ) → (∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}𝑧 = (𝑡 +s 𝐵) ↔ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 +s 𝐵) +s ( 1s /su 𝑝))))
132131abbidv 2807 . . . . . . . . . 10 ((𝐴 No 𝐵 No ) → {𝑧 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}𝑧 = (𝑡 +s 𝐵)} = {𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 +s 𝐵) +s ( 1s /su 𝑝))})
133 ovex 7465 . . . . . . . . . . . . . . 15 (𝐵 +s ( 1s /su 𝑚)) ∈ V
134 oveq2 7440 . . . . . . . . . . . . . . . 16 (𝑡 = (𝐵 +s ( 1s /su 𝑚)) → (𝐴 +s 𝑡) = (𝐴 +s (𝐵 +s ( 1s /su 𝑚))))
135134eqeq2d 2747 . . . . . . . . . . . . . . 15 (𝑡 = (𝐵 +s ( 1s /su 𝑚)) → (𝑧 = (𝐴 +s 𝑡) ↔ 𝑧 = (𝐴 +s (𝐵 +s ( 1s /su 𝑚)))))
136133, 135ceqsexv 3531 . . . . . . . . . . . . . 14 (∃𝑡(𝑡 = (𝐵 +s ( 1s /su 𝑚)) ∧ 𝑧 = (𝐴 +s 𝑡)) ↔ 𝑧 = (𝐴 +s (𝐵 +s ( 1s /su 𝑚))))
13786, 87, 92addsassd 28040 . . . . . . . . . . . . . . 15 (((𝐴 No 𝐵 No ) ∧ 𝑚 ∈ ℕs) → ((𝐴 +s 𝐵) +s ( 1s /su 𝑚)) = (𝐴 +s (𝐵 +s ( 1s /su 𝑚))))
138137eqeq2d 2747 . . . . . . . . . . . . . 14 (((𝐴 No 𝐵 No ) ∧ 𝑚 ∈ ℕs) → (𝑧 = ((𝐴 +s 𝐵) +s ( 1s /su 𝑚)) ↔ 𝑧 = (𝐴 +s (𝐵 +s ( 1s /su 𝑚)))))
139136, 138bitr4id 290 . . . . . . . . . . . . 13 (((𝐴 No 𝐵 No ) ∧ 𝑚 ∈ ℕs) → (∃𝑡(𝑡 = (𝐵 +s ( 1s /su 𝑚)) ∧ 𝑧 = (𝐴 +s 𝑡)) ↔ 𝑧 = ((𝐴 +s 𝐵) +s ( 1s /su 𝑚))))
140139rexbidva 3176 . . . . . . . . . . . 12 ((𝐴 No 𝐵 No ) → (∃𝑚 ∈ ℕs𝑡(𝑡 = (𝐵 +s ( 1s /su 𝑚)) ∧ 𝑧 = (𝐴 +s 𝑡)) ↔ ∃𝑚 ∈ ℕs 𝑧 = ((𝐴 +s 𝐵) +s ( 1s /su 𝑚))))
141 r19.41v 3188 . . . . . . . . . . . . . 14 (∃𝑚 ∈ ℕs (𝑡 = (𝐵 +s ( 1s /su 𝑚)) ∧ 𝑧 = (𝐴 +s 𝑡)) ↔ (∃𝑚 ∈ ℕs 𝑡 = (𝐵 +s ( 1s /su 𝑚)) ∧ 𝑧 = (𝐴 +s 𝑡)))
142141exbii 1847 . . . . . . . . . . . . 13 (∃𝑡𝑚 ∈ ℕs (𝑡 = (𝐵 +s ( 1s /su 𝑚)) ∧ 𝑧 = (𝐴 +s 𝑡)) ↔ ∃𝑡(∃𝑚 ∈ ℕs 𝑡 = (𝐵 +s ( 1s /su 𝑚)) ∧ 𝑧 = (𝐴 +s 𝑡)))
143 rexcom4 3287 . . . . . . . . . . . . 13 (∃𝑚 ∈ ℕs𝑡(𝑡 = (𝐵 +s ( 1s /su 𝑚)) ∧ 𝑧 = (𝐴 +s 𝑡)) ↔ ∃𝑡𝑚 ∈ ℕs (𝑡 = (𝐵 +s ( 1s /su 𝑚)) ∧ 𝑧 = (𝐴 +s 𝑡)))
144 eqeq1 2740 . . . . . . . . . . . . . . 15 (𝑦 = 𝑡 → (𝑦 = (𝐵 +s ( 1s /su 𝑚)) ↔ 𝑡 = (𝐵 +s ( 1s /su 𝑚))))
145144rexbidv 3178 . . . . . . . . . . . . . 14 (𝑦 = 𝑡 → (∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚)) ↔ ∃𝑚 ∈ ℕs 𝑡 = (𝐵 +s ( 1s /su 𝑚))))
146145rexab 3699 . . . . . . . . . . . . 13 (∃𝑡 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = (𝐴 +s 𝑡) ↔ ∃𝑡(∃𝑚 ∈ ℕs 𝑡 = (𝐵 +s ( 1s /su 𝑚)) ∧ 𝑧 = (𝐴 +s 𝑡)))
147142, 143, 1463bitr4ri 304 . . . . . . . . . . . 12 (∃𝑡 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = (𝐴 +s 𝑡) ↔ ∃𝑚 ∈ ℕs𝑡(𝑡 = (𝐵 +s ( 1s /su 𝑚)) ∧ 𝑧 = (𝐴 +s 𝑡)))
148104oveq2d 7448 . . . . . . . . . . . . . 14 (𝑝 = 𝑚 → ((𝐴 +s 𝐵) +s ( 1s /su 𝑝)) = ((𝐴 +s 𝐵) +s ( 1s /su 𝑚)))
149148eqeq2d 2747 . . . . . . . . . . . . 13 (𝑝 = 𝑚 → (𝑧 = ((𝐴 +s 𝐵) +s ( 1s /su 𝑝)) ↔ 𝑧 = ((𝐴 +s 𝐵) +s ( 1s /su 𝑚))))
150149cbvrexvw 3237 . . . . . . . . . . . 12 (∃𝑝 ∈ ℕs 𝑧 = ((𝐴 +s 𝐵) +s ( 1s /su 𝑝)) ↔ ∃𝑚 ∈ ℕs 𝑧 = ((𝐴 +s 𝐵) +s ( 1s /su 𝑚)))
151140, 147, 1503bitr4g 314 . . . . . . . . . . 11 ((𝐴 No 𝐵 No ) → (∃𝑡 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = (𝐴 +s 𝑡) ↔ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 +s 𝐵) +s ( 1s /su 𝑝))))
152151abbidv 2807 . . . . . . . . . 10 ((𝐴 No 𝐵 No ) → {𝑧 ∣ ∃𝑡 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = (𝐴 +s 𝑡)} = {𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 +s 𝐵) +s ( 1s /su 𝑝))})
153132, 152uneq12d 4168 . . . . . . . . 9 ((𝐴 No 𝐵 No ) → ({𝑧 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}𝑧 = (𝑡 +s 𝐵)} ∪ {𝑧 ∣ ∃𝑡 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = (𝐴 +s 𝑡)}) = ({𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 +s 𝐵) +s ( 1s /su 𝑝))} ∪ {𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 +s 𝐵) +s ( 1s /su 𝑝))}))
154 unidm 4156 . . . . . . . . 9 ({𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 +s 𝐵) +s ( 1s /su 𝑝))} ∪ {𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 +s 𝐵) +s ( 1s /su 𝑝))}) = {𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 +s 𝐵) +s ( 1s /su 𝑝))}
155153, 154eqtrdi 2792 . . . . . . . 8 ((𝐴 No 𝐵 No ) → ({𝑧 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}𝑧 = (𝑡 +s 𝐵)} ∪ {𝑧 ∣ ∃𝑡 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = (𝐴 +s 𝑡)}) = {𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 +s 𝐵) +s ( 1s /su 𝑝))})
156112, 155oveq12d 7450 . . . . . . 7 ((𝐴 No 𝐵 No ) → (({𝑧 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))}𝑧 = (𝑡 +s 𝐵)} ∪ {𝑧 ∣ ∃𝑡 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = (𝐴 +s 𝑡)}) |s ({𝑧 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}𝑧 = (𝑡 +s 𝐵)} ∪ {𝑧 ∣ ∃𝑡 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = (𝐴 +s 𝑡)})) = ({𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 +s 𝐵) -s ( 1s /su 𝑝))} |s {𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 +s 𝐵) +s ( 1s /su 𝑝))}))
157156adantr 480 . . . . . 6 (((𝐴 No 𝐵 No ) ∧ (𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}) ∧ 𝐵 = ({𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))} |s {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}))) → (({𝑧 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))}𝑧 = (𝑡 +s 𝐵)} ∪ {𝑧 ∣ ∃𝑡 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))}𝑧 = (𝐴 +s 𝑡)}) |s ({𝑧 ∣ ∃𝑡 ∈ {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}𝑧 = (𝑡 +s 𝐵)} ∪ {𝑧 ∣ ∃𝑡 ∈ {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}𝑧 = (𝐴 +s 𝑡)})) = ({𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 +s 𝐵) -s ( 1s /su 𝑝))} |s {𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 +s 𝐵) +s ( 1s /su 𝑝))}))
15852, 157eqtrd 2776 . . . . 5 (((𝐴 No 𝐵 No ) ∧ (𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}) ∧ 𝐵 = ({𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))} |s {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}))) → (𝐴 +s 𝐵) = ({𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 +s 𝐵) -s ( 1s /su 𝑝))} |s {𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 +s 𝐵) +s ( 1s /su 𝑝))}))
15943, 158sylan2 593 . . . 4 (((𝐴 No 𝐵 No ) ∧ ((∃𝑛 ∈ ℕs (( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ 𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))})) ∧ (∃𝑚 ∈ ℕs (( -us𝑚) <s 𝐵𝐵 <s 𝑚) ∧ 𝐵 = ({𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))} |s {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))})))) → (𝐴 +s 𝐵) = ({𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 +s 𝐵) -s ( 1s /su 𝑝))} |s {𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 +s 𝐵) +s ( 1s /su 𝑝))}))
1602, 40, 159jca32 515 . . 3 (((𝐴 No 𝐵 No ) ∧ ((∃𝑛 ∈ ℕs (( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ 𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))})) ∧ (∃𝑚 ∈ ℕs (( -us𝑚) <s 𝐵𝐵 <s 𝑚) ∧ 𝐵 = ({𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))} |s {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))})))) → ((𝐴 +s 𝐵) ∈ No ∧ (∃𝑝 ∈ ℕs (( -us𝑝) <s (𝐴 +s 𝐵) ∧ (𝐴 +s 𝐵) <s 𝑝) ∧ (𝐴 +s 𝐵) = ({𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 +s 𝐵) -s ( 1s /su 𝑝))} |s {𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 +s 𝐵) +s ( 1s /su 𝑝))}))))
161160an4s 660 . 2 (((𝐴 No ∧ (∃𝑛 ∈ ℕs (( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ 𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}))) ∧ (𝐵 No ∧ (∃𝑚 ∈ ℕs (( -us𝑚) <s 𝐵𝐵 <s 𝑚) ∧ 𝐵 = ({𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))} |s {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))})))) → ((𝐴 +s 𝐵) ∈ No ∧ (∃𝑝 ∈ ℕs (( -us𝑝) <s (𝐴 +s 𝐵) ∧ (𝐴 +s 𝐵) <s 𝑝) ∧ (𝐴 +s 𝐵) = ({𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 +s 𝐵) -s ( 1s /su 𝑝))} |s {𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 +s 𝐵) +s ( 1s /su 𝑝))}))))
162 elreno 28428 . . 3 (𝐴 ∈ ℝs ↔ (𝐴 No ∧ (∃𝑛 ∈ ℕs (( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ 𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}))))
163 elreno 28428 . . 3 (𝐵 ∈ ℝs ↔ (𝐵 No ∧ (∃𝑚 ∈ ℕs (( -us𝑚) <s 𝐵𝐵 <s 𝑚) ∧ 𝐵 = ({𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))} |s {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))}))))
164162, 163anbi12i 628 . 2 ((𝐴 ∈ ℝs𝐵 ∈ ℝs) ↔ ((𝐴 No ∧ (∃𝑛 ∈ ℕs (( -us𝑛) <s 𝐴𝐴 <s 𝑛) ∧ 𝐴 = ({𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 -s ( 1s /su 𝑛))} |s {𝑥 ∣ ∃𝑛 ∈ ℕs 𝑥 = (𝐴 +s ( 1s /su 𝑛))}))) ∧ (𝐵 No ∧ (∃𝑚 ∈ ℕs (( -us𝑚) <s 𝐵𝐵 <s 𝑚) ∧ 𝐵 = ({𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 -s ( 1s /su 𝑚))} |s {𝑦 ∣ ∃𝑚 ∈ ℕs 𝑦 = (𝐵 +s ( 1s /su 𝑚))})))))
165 elreno 28428 . 2 ((𝐴 +s 𝐵) ∈ ℝs ↔ ((𝐴 +s 𝐵) ∈ No ∧ (∃𝑝 ∈ ℕs (( -us𝑝) <s (𝐴 +s 𝐵) ∧ (𝐴 +s 𝐵) <s 𝑝) ∧ (𝐴 +s 𝐵) = ({𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 +s 𝐵) -s ( 1s /su 𝑝))} |s {𝑧 ∣ ∃𝑝 ∈ ℕs 𝑧 = ((𝐴 +s 𝐵) +s ( 1s /su 𝑝))}))))
166161, 164, 1653imtr4i 292 1 ((𝐴 ∈ ℝs𝐵 ∈ ℝs) → (𝐴 +s 𝐵) ∈ ℝs)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wex 1778  wcel 2107  {cab 2713  wrex 3069  cun 3948   class class class wbr 5142  cfv 6560  (class class class)co 7432   No csur 27685   <s cslt 27686   <<s csslt 27826   |s cscut 27828   1s c1s 27869   +s cadds 27993   -us cnegs 28052   -s csubs 28053   /su cdivs 28214  scnns 28320  screno 28426
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-dc 10487
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-tp 4630  df-op 4632  df-ot 4634  df-uni 4907  df-int 4946  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-om 7889  df-1st 8015  df-2nd 8016  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-oadd 8511  df-nadd 8705  df-no 27688  df-slt 27689  df-bday 27690  df-sle 27791  df-sslt 27827  df-scut 27829  df-0s 27870  df-1s 27871  df-made 27887  df-old 27888  df-left 27890  df-right 27891  df-norec 27972  df-norec2 27983  df-adds 27994  df-negs 28054  df-subs 28055  df-muls 28134  df-divs 28215  df-n0s 28321  df-nns 28322  df-reno 28427
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator