MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nssne2 Structured version   Visualization version   GIF version

Theorem nssne2 3978
Description: Two classes are different if they are not subclasses of the same class. (Contributed by NM, 23-Apr-2015.)
Assertion
Ref Expression
nssne2 ((𝐴𝐶 ∧ ¬ 𝐵𝐶) → 𝐴𝐵)

Proof of Theorem nssne2
StepHypRef Expression
1 sseq1 3942 . . . 4 (𝐴 = 𝐵 → (𝐴𝐶𝐵𝐶))
21biimpcd 248 . . 3 (𝐴𝐶 → (𝐴 = 𝐵𝐵𝐶))
32necon3bd 2956 . 2 (𝐴𝐶 → (¬ 𝐵𝐶𝐴𝐵))
43imp 406 1 ((𝐴𝐶 ∧ ¬ 𝐵𝐶) → 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wne 2942  wss 3883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-v 3424  df-in 3890  df-ss 3900
This theorem is referenced by:  atcvatlem  30648  mdsymlem3  30668  disjdifprg  30815  mapdh6aN  39676  mapdh8e  39725  hdmap1l6a  39750
  Copyright terms: Public domain W3C validator