MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nssne2 Structured version   Visualization version   GIF version

Theorem nssne2 4072
Description: Two classes are different if they are not subclasses of the same class. (Contributed by NM, 23-Apr-2015.)
Assertion
Ref Expression
nssne2 ((𝐴𝐶 ∧ ¬ 𝐵𝐶) → 𝐴𝐵)

Proof of Theorem nssne2
StepHypRef Expression
1 sseq1 4034 . . . 4 (𝐴 = 𝐵 → (𝐴𝐶𝐵𝐶))
21biimpcd 249 . . 3 (𝐴𝐶 → (𝐴 = 𝐵𝐵𝐶))
32necon3bd 2960 . 2 (𝐴𝐶 → (¬ 𝐵𝐶𝐴𝐵))
43imp 406 1 ((𝐴𝐶 ∧ ¬ 𝐵𝐶) → 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wne 2946  wss 3976
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-cleq 2732  df-ne 2947  df-ss 3993
This theorem is referenced by:  atcvatlem  32417  mdsymlem3  32437  disjdifprg  32597  mapdh6aN  41692  mapdh8e  41741  hdmap1l6a  41766
  Copyright terms: Public domain W3C validator