![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > nssne2 | Structured version Visualization version GIF version |
Description: Two classes are different if they are not subclasses of the same class. (Contributed by NM, 23-Apr-2015.) |
Ref | Expression |
---|---|
nssne2 | ⊢ ((𝐴 ⊆ 𝐶 ∧ ¬ 𝐵 ⊆ 𝐶) → 𝐴 ≠ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq1 4000 | . . . 4 ⊢ (𝐴 = 𝐵 → (𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶)) | |
2 | 1 | biimpcd 248 | . . 3 ⊢ (𝐴 ⊆ 𝐶 → (𝐴 = 𝐵 → 𝐵 ⊆ 𝐶)) |
3 | 2 | necon3bd 2946 | . 2 ⊢ (𝐴 ⊆ 𝐶 → (¬ 𝐵 ⊆ 𝐶 → 𝐴 ≠ 𝐵)) |
4 | 3 | imp 406 | 1 ⊢ ((𝐴 ⊆ 𝐶 ∧ ¬ 𝐵 ⊆ 𝐶) → 𝐴 ≠ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1533 ≠ wne 2932 ⊆ wss 3941 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1536 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-ne 2933 df-v 3468 df-in 3948 df-ss 3958 |
This theorem is referenced by: atcvatlem 32133 mdsymlem3 32153 disjdifprg 32301 mapdh6aN 41110 mapdh8e 41159 hdmap1l6a 41184 |
Copyright terms: Public domain | W3C validator |