MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nssne2 Structured version   Visualization version   GIF version

Theorem nssne2 4038
Description: Two classes are different if they are not subclasses of the same class. (Contributed by NM, 23-Apr-2015.)
Assertion
Ref Expression
nssne2 ((𝐴𝐶 ∧ ¬ 𝐵𝐶) → 𝐴𝐵)

Proof of Theorem nssne2
StepHypRef Expression
1 sseq1 4000 . . . 4 (𝐴 = 𝐵 → (𝐴𝐶𝐵𝐶))
21biimpcd 248 . . 3 (𝐴𝐶 → (𝐴 = 𝐵𝐵𝐶))
32necon3bd 2946 . 2 (𝐴𝐶 → (¬ 𝐵𝐶𝐴𝐵))
43imp 406 1 ((𝐴𝐶 ∧ ¬ 𝐵𝐶) → 𝐴𝐵)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1533  wne 2932  wss 3941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1536  df-ex 1774  df-sb 2060  df-clab 2702  df-cleq 2716  df-clel 2802  df-ne 2933  df-v 3468  df-in 3948  df-ss 3958
This theorem is referenced by:  atcvatlem  32133  mdsymlem3  32153  disjdifprg  32301  mapdh6aN  41110  mapdh8e  41159  hdmap1l6a  41184
  Copyright terms: Public domain W3C validator