Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmap1l6a Structured version   Visualization version   GIF version

Theorem hdmap1l6a 41749
Description: Lemma for hdmap1l6 41761. Part (6) in [Baer] p. 47, case 1. (Contributed by NM, 23-Apr-2015.)
Hypotheses
Ref Expression
hdmap1l6.h 𝐻 = (LHyp‘𝐾)
hdmap1l6.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmap1l6.v 𝑉 = (Base‘𝑈)
hdmap1l6.p + = (+g𝑈)
hdmap1l6.s = (-g𝑈)
hdmap1l6c.o 0 = (0g𝑈)
hdmap1l6.n 𝑁 = (LSpan‘𝑈)
hdmap1l6.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hdmap1l6.d 𝐷 = (Base‘𝐶)
hdmap1l6.a = (+g𝐶)
hdmap1l6.r 𝑅 = (-g𝐶)
hdmap1l6.q 𝑄 = (0g𝐶)
hdmap1l6.l 𝐿 = (LSpan‘𝐶)
hdmap1l6.m 𝑀 = ((mapd‘𝐾)‘𝑊)
hdmap1l6.i 𝐼 = ((HDMap1‘𝐾)‘𝑊)
hdmap1l6.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmap1l6.f (𝜑𝐹𝐷)
hdmap1l6cl.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
hdmap1l6.mn (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹}))
hdmap1l6e.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
hdmap1l6e.z (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
hdmap1l6e.xn (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
hdmap1l6.yz (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
hdmap1l6.fg (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺)
hdmap1l6.fe (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑍⟩) = 𝐸)
Assertion
Ref Expression
hdmap1l6a (𝜑 → (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩) = ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)))

Proof of Theorem hdmap1l6a
StepHypRef Expression
1 hdmap1l6.h . . . 4 𝐻 = (LHyp‘𝐾)
2 hdmap1l6.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 hdmap1l6.v . . . 4 𝑉 = (Base‘𝑈)
4 hdmap1l6.p . . . 4 + = (+g𝑈)
5 hdmap1l6.s . . . 4 = (-g𝑈)
6 hdmap1l6c.o . . . 4 0 = (0g𝑈)
7 hdmap1l6.n . . . 4 𝑁 = (LSpan‘𝑈)
8 hdmap1l6.c . . . 4 𝐶 = ((LCDual‘𝐾)‘𝑊)
9 hdmap1l6.d . . . 4 𝐷 = (Base‘𝐶)
10 hdmap1l6.a . . . 4 = (+g𝐶)
11 hdmap1l6.r . . . 4 𝑅 = (-g𝐶)
12 hdmap1l6.q . . . 4 𝑄 = (0g𝐶)
13 hdmap1l6.l . . . 4 𝐿 = (LSpan‘𝐶)
14 hdmap1l6.m . . . 4 𝑀 = ((mapd‘𝐾)‘𝑊)
15 hdmap1l6.i . . . 4 𝐼 = ((HDMap1‘𝐾)‘𝑊)
16 hdmap1l6.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
17 hdmap1l6.f . . . 4 (𝜑𝐹𝐷)
18 hdmap1l6cl.x . . . 4 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
19 hdmap1l6.mn . . . 4 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹}))
20 hdmap1l6e.y . . . 4 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
21 hdmap1l6e.z . . . 4 (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
22 hdmap1l6e.xn . . . 4 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
23 hdmap1l6.yz . . . 4 (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
24 hdmap1l6.fg . . . 4 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺)
25 hdmap1l6.fe . . . 4 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑍⟩) = 𝐸)
261, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25hdmap1l6lem2 41748 . . 3 (𝜑 → (𝑀‘(𝑁‘{(𝑌 + 𝑍)})) = (𝐿‘{(𝐺 𝐸)}))
2724, 25oveq12d 7417 . . . . 5 (𝜑 → ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)) = (𝐺 𝐸))
2827sneqd 4611 . . . 4 (𝜑 → {((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩))} = {(𝐺 𝐸)})
2928fveq2d 6876 . . 3 (𝜑 → (𝐿‘{((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩))}) = (𝐿‘{(𝐺 𝐸)}))
3026, 29eqtr4d 2772 . 2 (𝜑 → (𝑀‘(𝑁‘{(𝑌 + 𝑍)})) = (𝐿‘{((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩))}))
311, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25hdmap1l6lem1 41747 . . 3 (𝜑 → (𝑀‘(𝑁‘{(𝑋 (𝑌 + 𝑍))})) = (𝐿‘{(𝐹𝑅(𝐺 𝐸))}))
3227oveq2d 7415 . . . . 5 (𝜑 → (𝐹𝑅((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩))) = (𝐹𝑅(𝐺 𝐸)))
3332sneqd 4611 . . . 4 (𝜑 → {(𝐹𝑅((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)))} = {(𝐹𝑅(𝐺 𝐸))})
3433fveq2d 6876 . . 3 (𝜑 → (𝐿‘{(𝐹𝑅((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)))}) = (𝐿‘{(𝐹𝑅(𝐺 𝐸))}))
3531, 34eqtr4d 2772 . 2 (𝜑 → (𝑀‘(𝑁‘{(𝑋 (𝑌 + 𝑍))})) = (𝐿‘{(𝐹𝑅((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)))}))
361, 2, 16dvhlmod 41050 . . . . 5 (𝜑𝑈 ∈ LMod)
3720eldifad 3936 . . . . 5 (𝜑𝑌𝑉)
3821eldifad 3936 . . . . 5 (𝜑𝑍𝑉)
393, 4lmodvacl 20817 . . . . 5 ((𝑈 ∈ LMod ∧ 𝑌𝑉𝑍𝑉) → (𝑌 + 𝑍) ∈ 𝑉)
4036, 37, 38, 39syl3anc 1372 . . . 4 (𝜑 → (𝑌 + 𝑍) ∈ 𝑉)
413, 4, 6, 7, 36, 37, 38, 23lmodindp1 20956 . . . 4 (𝜑 → (𝑌 + 𝑍) ≠ 0 )
42 eldifsn 4759 . . . 4 ((𝑌 + 𝑍) ∈ (𝑉 ∖ { 0 }) ↔ ((𝑌 + 𝑍) ∈ 𝑉 ∧ (𝑌 + 𝑍) ≠ 0 ))
4340, 41, 42sylanbrc 583 . . 3 (𝜑 → (𝑌 + 𝑍) ∈ (𝑉 ∖ { 0 }))
441, 8, 16lcdlmod 41532 . . . 4 (𝜑𝐶 ∈ LMod)
451, 2, 16dvhlvec 41049 . . . . . . 7 (𝜑𝑈 ∈ LVec)
4618eldifad 3936 . . . . . . 7 (𝜑𝑋𝑉)
473, 6, 7, 45, 37, 21, 46, 23, 22lspindp2 21081 . . . . . 6 (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) ∧ ¬ 𝑍 ∈ (𝑁‘{𝑋, 𝑌})))
4847simpld 494 . . . . 5 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
491, 2, 3, 6, 7, 8, 9, 13, 14, 15, 16, 17, 19, 48, 18, 37hdmap1cl 41744 . . . 4 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) ∈ 𝐷)
503, 6, 7, 45, 20, 38, 46, 23, 22lspindp1 21079 . . . . . 6 (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}) ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})))
5150simpld 494 . . . . 5 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}))
521, 2, 3, 6, 7, 8, 9, 13, 14, 15, 16, 17, 19, 51, 18, 38hdmap1cl 41744 . . . 4 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑍⟩) ∈ 𝐷)
539, 10lmodvacl 20817 . . . 4 ((𝐶 ∈ LMod ∧ (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) ∈ 𝐷 ∧ (𝐼‘⟨𝑋, 𝐹, 𝑍⟩) ∈ 𝐷) → ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)) ∈ 𝐷)
5444, 49, 52, 53syl3anc 1372 . . 3 (𝜑 → ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)) ∈ 𝐷)
55 eqid 2734 . . . . . 6 (LSubSp‘𝑈) = (LSubSp‘𝑈)
563, 55, 7, 36, 37, 38lspprcl 20920 . . . . . 6 (𝜑 → (𝑁‘{𝑌, 𝑍}) ∈ (LSubSp‘𝑈))
573, 4, 7, 36, 37, 38lspprvacl 20941 . . . . . 6 (𝜑 → (𝑌 + 𝑍) ∈ (𝑁‘{𝑌, 𝑍}))
5855, 7, 36, 56, 57ellspsn5 20938 . . . . 5 (𝜑 → (𝑁‘{(𝑌 + 𝑍)}) ⊆ (𝑁‘{𝑌, 𝑍}))
593, 55, 7, 36, 56, 46ellspsn5b 20937 . . . . . 6 (𝜑 → (𝑋 ∈ (𝑁‘{𝑌, 𝑍}) ↔ (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌, 𝑍})))
6022, 59mtbid 324 . . . . 5 (𝜑 → ¬ (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌, 𝑍}))
61 nssne2 4020 . . . . 5 (((𝑁‘{(𝑌 + 𝑍)}) ⊆ (𝑁‘{𝑌, 𝑍}) ∧ ¬ (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌, 𝑍})) → (𝑁‘{(𝑌 + 𝑍)}) ≠ (𝑁‘{𝑋}))
6258, 60, 61syl2anc 584 . . . 4 (𝜑 → (𝑁‘{(𝑌 + 𝑍)}) ≠ (𝑁‘{𝑋}))
6362necomd 2986 . . 3 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{(𝑌 + 𝑍)}))
641, 2, 3, 5, 6, 7, 8, 9, 11, 13, 14, 15, 16, 18, 17, 43, 54, 63, 19hdmap1eq 41741 . 2 (𝜑 → ((𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩) = ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)) ↔ ((𝑀‘(𝑁‘{(𝑌 + 𝑍)})) = (𝐿‘{((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩))}) ∧ (𝑀‘(𝑁‘{(𝑋 (𝑌 + 𝑍))})) = (𝐿‘{(𝐹𝑅((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)))}))))
6530, 35, 64mpbir2and 713 1 (𝜑 → (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩) = ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1539  wcel 2107  wne 2931  cdif 3921  wss 3924  {csn 4599  {cpr 4601  cotp 4607  cfv 6527  (class class class)co 7399  Basecbs 17213  +gcplusg 17256  0gc0g 17438  -gcsg 18903  LModclmod 20802  LSubSpclss 20873  LSpanclspn 20913  HLchlt 39289  LHypclh 39924  DVecHcdvh 41018  LCDualclcd 41526  mapdcmpd 41564  HDMap1chdma1 41731
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5246  ax-sep 5263  ax-nul 5273  ax-pow 5332  ax-pr 5399  ax-un 7723  ax-cnex 11177  ax-resscn 11178  ax-1cn 11179  ax-icn 11180  ax-addcl 11181  ax-addrcl 11182  ax-mulcl 11183  ax-mulrcl 11184  ax-mulcom 11185  ax-addass 11186  ax-mulass 11187  ax-distr 11188  ax-i2m1 11189  ax-1ne0 11190  ax-1rid 11191  ax-rnegex 11192  ax-rrecex 11193  ax-cnre 11194  ax-pre-lttri 11195  ax-pre-lttrn 11196  ax-pre-ltadd 11197  ax-pre-mulgt0 11198  ax-riotaBAD 38892
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-tp 4604  df-op 4606  df-ot 4608  df-uni 4881  df-int 4920  df-iun 4966  df-iin 4967  df-br 5117  df-opab 5179  df-mpt 5199  df-tr 5227  df-id 5545  df-eprel 5550  df-po 5558  df-so 5559  df-fr 5603  df-we 5605  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-pred 6287  df-ord 6352  df-on 6353  df-lim 6354  df-suc 6355  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-fo 6533  df-f1o 6534  df-fv 6535  df-riota 7356  df-ov 7402  df-oprab 7403  df-mpo 7404  df-of 7665  df-om 7856  df-1st 7982  df-2nd 7983  df-tpos 8219  df-undef 8266  df-frecs 8274  df-wrecs 8305  df-recs 8379  df-rdg 8418  df-1o 8474  df-2o 8475  df-er 8713  df-map 8836  df-en 8954  df-dom 8955  df-sdom 8956  df-fin 8957  df-pnf 11263  df-mnf 11264  df-xr 11265  df-ltxr 11266  df-le 11267  df-sub 11460  df-neg 11461  df-nn 12233  df-2 12295  df-3 12296  df-4 12297  df-5 12298  df-6 12299  df-n0 12494  df-z 12581  df-uz 12845  df-fz 13514  df-struct 17151  df-sets 17168  df-slot 17186  df-ndx 17198  df-base 17214  df-ress 17237  df-plusg 17269  df-mulr 17270  df-sca 17272  df-vsca 17273  df-0g 17440  df-mre 17583  df-mrc 17584  df-acs 17586  df-proset 18291  df-poset 18310  df-plt 18325  df-lub 18341  df-glb 18342  df-join 18343  df-meet 18344  df-p0 18420  df-p1 18421  df-lat 18427  df-clat 18494  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-submnd 18747  df-grp 18904  df-minusg 18905  df-sbg 18906  df-subg 19091  df-cntz 19285  df-oppg 19314  df-lsm 19602  df-cmn 19748  df-abl 19749  df-mgp 20086  df-rng 20098  df-ur 20127  df-ring 20180  df-oppr 20282  df-dvdsr 20302  df-unit 20303  df-invr 20333  df-dvr 20346  df-nzr 20458  df-rlreg 20639  df-domn 20640  df-drng 20676  df-lmod 20804  df-lss 20874  df-lsp 20914  df-lvec 21046  df-lsatoms 38915  df-lshyp 38916  df-lcv 38958  df-lfl 38997  df-lkr 39025  df-ldual 39063  df-oposet 39115  df-ol 39117  df-oml 39118  df-covers 39205  df-ats 39206  df-atl 39237  df-cvlat 39261  df-hlat 39290  df-llines 39438  df-lplanes 39439  df-lvols 39440  df-lines 39441  df-psubsp 39443  df-pmap 39444  df-padd 39736  df-lhyp 39928  df-laut 39929  df-ldil 40044  df-ltrn 40045  df-trl 40099  df-tgrp 40683  df-tendo 40695  df-edring 40697  df-dveca 40943  df-disoa 40969  df-dvech 41019  df-dib 41079  df-dic 41113  df-dih 41169  df-doch 41288  df-djh 41335  df-lcdual 41527  df-mapd 41565  df-hdmap1 41733
This theorem is referenced by:  hdmap1l6d  41753  hdmap1l6e  41754  hdmap1l6f  41755  hdmap1l6j  41759
  Copyright terms: Public domain W3C validator