| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmap1l6a | Structured version Visualization version GIF version | ||
| Description: Lemma for hdmap1l6 41815. Part (6) in [Baer] p. 47, case 1. (Contributed by NM, 23-Apr-2015.) |
| Ref | Expression |
|---|---|
| hdmap1l6.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| hdmap1l6.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| hdmap1l6.v | ⊢ 𝑉 = (Base‘𝑈) |
| hdmap1l6.p | ⊢ + = (+g‘𝑈) |
| hdmap1l6.s | ⊢ − = (-g‘𝑈) |
| hdmap1l6c.o | ⊢ 0 = (0g‘𝑈) |
| hdmap1l6.n | ⊢ 𝑁 = (LSpan‘𝑈) |
| hdmap1l6.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
| hdmap1l6.d | ⊢ 𝐷 = (Base‘𝐶) |
| hdmap1l6.a | ⊢ ✚ = (+g‘𝐶) |
| hdmap1l6.r | ⊢ 𝑅 = (-g‘𝐶) |
| hdmap1l6.q | ⊢ 𝑄 = (0g‘𝐶) |
| hdmap1l6.l | ⊢ 𝐿 = (LSpan‘𝐶) |
| hdmap1l6.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
| hdmap1l6.i | ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) |
| hdmap1l6.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| hdmap1l6.f | ⊢ (𝜑 → 𝐹 ∈ 𝐷) |
| hdmap1l6cl.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
| hdmap1l6.mn | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹})) |
| hdmap1l6e.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
| hdmap1l6e.z | ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) |
| hdmap1l6e.xn | ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) |
| hdmap1l6.yz | ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍})) |
| hdmap1l6.fg | ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = 𝐺) |
| hdmap1l6.fe | ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑍〉) = 𝐸) |
| Ref | Expression |
|---|---|
| hdmap1l6a | ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉) = ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hdmap1l6.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | hdmap1l6.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 3 | hdmap1l6.v | . . . 4 ⊢ 𝑉 = (Base‘𝑈) | |
| 4 | hdmap1l6.p | . . . 4 ⊢ + = (+g‘𝑈) | |
| 5 | hdmap1l6.s | . . . 4 ⊢ − = (-g‘𝑈) | |
| 6 | hdmap1l6c.o | . . . 4 ⊢ 0 = (0g‘𝑈) | |
| 7 | hdmap1l6.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑈) | |
| 8 | hdmap1l6.c | . . . 4 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
| 9 | hdmap1l6.d | . . . 4 ⊢ 𝐷 = (Base‘𝐶) | |
| 10 | hdmap1l6.a | . . . 4 ⊢ ✚ = (+g‘𝐶) | |
| 11 | hdmap1l6.r | . . . 4 ⊢ 𝑅 = (-g‘𝐶) | |
| 12 | hdmap1l6.q | . . . 4 ⊢ 𝑄 = (0g‘𝐶) | |
| 13 | hdmap1l6.l | . . . 4 ⊢ 𝐿 = (LSpan‘𝐶) | |
| 14 | hdmap1l6.m | . . . 4 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
| 15 | hdmap1l6.i | . . . 4 ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) | |
| 16 | hdmap1l6.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 17 | hdmap1l6.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝐷) | |
| 18 | hdmap1l6cl.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
| 19 | hdmap1l6.mn | . . . 4 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹})) | |
| 20 | hdmap1l6e.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
| 21 | hdmap1l6e.z | . . . 4 ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) | |
| 22 | hdmap1l6e.xn | . . . 4 ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) | |
| 23 | hdmap1l6.yz | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍})) | |
| 24 | hdmap1l6.fg | . . . 4 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = 𝐺) | |
| 25 | hdmap1l6.fe | . . . 4 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑍〉) = 𝐸) | |
| 26 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 | hdmap1l6lem2 41802 | . . 3 ⊢ (𝜑 → (𝑀‘(𝑁‘{(𝑌 + 𝑍)})) = (𝐿‘{(𝐺 ✚ 𝐸)})) |
| 27 | 24, 25 | oveq12d 7405 | . . . . 5 ⊢ (𝜑 → ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉)) = (𝐺 ✚ 𝐸)) |
| 28 | 27 | sneqd 4601 | . . . 4 ⊢ (𝜑 → {((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))} = {(𝐺 ✚ 𝐸)}) |
| 29 | 28 | fveq2d 6862 | . . 3 ⊢ (𝜑 → (𝐿‘{((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))}) = (𝐿‘{(𝐺 ✚ 𝐸)})) |
| 30 | 26, 29 | eqtr4d 2767 | . 2 ⊢ (𝜑 → (𝑀‘(𝑁‘{(𝑌 + 𝑍)})) = (𝐿‘{((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))})) |
| 31 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 | hdmap1l6lem1 41801 | . . 3 ⊢ (𝜑 → (𝑀‘(𝑁‘{(𝑋 − (𝑌 + 𝑍))})) = (𝐿‘{(𝐹𝑅(𝐺 ✚ 𝐸))})) |
| 32 | 27 | oveq2d 7403 | . . . . 5 ⊢ (𝜑 → (𝐹𝑅((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))) = (𝐹𝑅(𝐺 ✚ 𝐸))) |
| 33 | 32 | sneqd 4601 | . . . 4 ⊢ (𝜑 → {(𝐹𝑅((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉)))} = {(𝐹𝑅(𝐺 ✚ 𝐸))}) |
| 34 | 33 | fveq2d 6862 | . . 3 ⊢ (𝜑 → (𝐿‘{(𝐹𝑅((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉)))}) = (𝐿‘{(𝐹𝑅(𝐺 ✚ 𝐸))})) |
| 35 | 31, 34 | eqtr4d 2767 | . 2 ⊢ (𝜑 → (𝑀‘(𝑁‘{(𝑋 − (𝑌 + 𝑍))})) = (𝐿‘{(𝐹𝑅((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉)))})) |
| 36 | 1, 2, 16 | dvhlmod 41104 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ LMod) |
| 37 | 20 | eldifad 3926 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| 38 | 21 | eldifad 3926 | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ 𝑉) |
| 39 | 3, 4 | lmodvacl 20781 | . . . . 5 ⊢ ((𝑈 ∈ LMod ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉) → (𝑌 + 𝑍) ∈ 𝑉) |
| 40 | 36, 37, 38, 39 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → (𝑌 + 𝑍) ∈ 𝑉) |
| 41 | 3, 4, 6, 7, 36, 37, 38, 23 | lmodindp1 20920 | . . . 4 ⊢ (𝜑 → (𝑌 + 𝑍) ≠ 0 ) |
| 42 | eldifsn 4750 | . . . 4 ⊢ ((𝑌 + 𝑍) ∈ (𝑉 ∖ { 0 }) ↔ ((𝑌 + 𝑍) ∈ 𝑉 ∧ (𝑌 + 𝑍) ≠ 0 )) | |
| 43 | 40, 41, 42 | sylanbrc 583 | . . 3 ⊢ (𝜑 → (𝑌 + 𝑍) ∈ (𝑉 ∖ { 0 })) |
| 44 | 1, 8, 16 | lcdlmod 41586 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ LMod) |
| 45 | 1, 2, 16 | dvhlvec 41103 | . . . . . . 7 ⊢ (𝜑 → 𝑈 ∈ LVec) |
| 46 | 18 | eldifad 3926 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| 47 | 3, 6, 7, 45, 37, 21, 46, 23, 22 | lspindp2 21045 | . . . . . 6 ⊢ (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) ∧ ¬ 𝑍 ∈ (𝑁‘{𝑋, 𝑌}))) |
| 48 | 47 | simpld 494 | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
| 49 | 1, 2, 3, 6, 7, 8, 9, 13, 14, 15, 16, 17, 19, 48, 18, 37 | hdmap1cl 41798 | . . . 4 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) ∈ 𝐷) |
| 50 | 3, 6, 7, 45, 20, 38, 46, 23, 22 | lspindp1 21043 | . . . . . 6 ⊢ (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}) ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍}))) |
| 51 | 50 | simpld 494 | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍})) |
| 52 | 1, 2, 3, 6, 7, 8, 9, 13, 14, 15, 16, 17, 19, 51, 18, 38 | hdmap1cl 41798 | . . . 4 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑍〉) ∈ 𝐷) |
| 53 | 9, 10 | lmodvacl 20781 | . . . 4 ⊢ ((𝐶 ∈ LMod ∧ (𝐼‘〈𝑋, 𝐹, 𝑌〉) ∈ 𝐷 ∧ (𝐼‘〈𝑋, 𝐹, 𝑍〉) ∈ 𝐷) → ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉)) ∈ 𝐷) |
| 54 | 44, 49, 52, 53 | syl3anc 1373 | . . 3 ⊢ (𝜑 → ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉)) ∈ 𝐷) |
| 55 | eqid 2729 | . . . . . 6 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
| 56 | 3, 55, 7, 36, 37, 38 | lspprcl 20884 | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝑌, 𝑍}) ∈ (LSubSp‘𝑈)) |
| 57 | 3, 4, 7, 36, 37, 38 | lspprvacl 20905 | . . . . . 6 ⊢ (𝜑 → (𝑌 + 𝑍) ∈ (𝑁‘{𝑌, 𝑍})) |
| 58 | 55, 7, 36, 56, 57 | ellspsn5 20902 | . . . . 5 ⊢ (𝜑 → (𝑁‘{(𝑌 + 𝑍)}) ⊆ (𝑁‘{𝑌, 𝑍})) |
| 59 | 3, 55, 7, 36, 56, 46 | ellspsn5b 20901 | . . . . . 6 ⊢ (𝜑 → (𝑋 ∈ (𝑁‘{𝑌, 𝑍}) ↔ (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌, 𝑍}))) |
| 60 | 22, 59 | mtbid 324 | . . . . 5 ⊢ (𝜑 → ¬ (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌, 𝑍})) |
| 61 | nssne2 4010 | . . . . 5 ⊢ (((𝑁‘{(𝑌 + 𝑍)}) ⊆ (𝑁‘{𝑌, 𝑍}) ∧ ¬ (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌, 𝑍})) → (𝑁‘{(𝑌 + 𝑍)}) ≠ (𝑁‘{𝑋})) | |
| 62 | 58, 60, 61 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝑁‘{(𝑌 + 𝑍)}) ≠ (𝑁‘{𝑋})) |
| 63 | 62 | necomd 2980 | . . 3 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{(𝑌 + 𝑍)})) |
| 64 | 1, 2, 3, 5, 6, 7, 8, 9, 11, 13, 14, 15, 16, 18, 17, 43, 54, 63, 19 | hdmap1eq 41795 | . 2 ⊢ (𝜑 → ((𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉) = ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉)) ↔ ((𝑀‘(𝑁‘{(𝑌 + 𝑍)})) = (𝐿‘{((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))}) ∧ (𝑀‘(𝑁‘{(𝑋 − (𝑌 + 𝑍))})) = (𝐿‘{(𝐹𝑅((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉)))})))) |
| 65 | 30, 35, 64 | mpbir2and 713 | 1 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉) = ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∖ cdif 3911 ⊆ wss 3914 {csn 4589 {cpr 4591 〈cotp 4597 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 +gcplusg 17220 0gc0g 17402 -gcsg 18867 LModclmod 20766 LSubSpclss 20837 LSpanclspn 20877 HLchlt 39343 LHypclh 39978 DVecHcdvh 41072 LCDualclcd 41580 mapdcmpd 41618 HDMap1chdma1 41785 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 ax-riotaBAD 38946 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-ot 4598 df-uni 4872 df-int 4911 df-iun 4957 df-iin 4958 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-of 7653 df-om 7843 df-1st 7968 df-2nd 7969 df-tpos 8205 df-undef 8252 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-map 8801 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-n0 12443 df-z 12530 df-uz 12794 df-fz 13469 df-struct 17117 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-sca 17236 df-vsca 17237 df-0g 17404 df-mre 17547 df-mrc 17548 df-acs 17550 df-proset 18255 df-poset 18274 df-plt 18289 df-lub 18305 df-glb 18306 df-join 18307 df-meet 18308 df-p0 18384 df-p1 18385 df-lat 18391 df-clat 18458 df-mgm 18567 df-sgrp 18646 df-mnd 18662 df-submnd 18711 df-grp 18868 df-minusg 18869 df-sbg 18870 df-subg 19055 df-cntz 19249 df-oppg 19278 df-lsm 19566 df-cmn 19712 df-abl 19713 df-mgp 20050 df-rng 20062 df-ur 20091 df-ring 20144 df-oppr 20246 df-dvdsr 20266 df-unit 20267 df-invr 20297 df-dvr 20310 df-nzr 20422 df-rlreg 20603 df-domn 20604 df-drng 20640 df-lmod 20768 df-lss 20838 df-lsp 20878 df-lvec 21010 df-lsatoms 38969 df-lshyp 38970 df-lcv 39012 df-lfl 39051 df-lkr 39079 df-ldual 39117 df-oposet 39169 df-ol 39171 df-oml 39172 df-covers 39259 df-ats 39260 df-atl 39291 df-cvlat 39315 df-hlat 39344 df-llines 39492 df-lplanes 39493 df-lvols 39494 df-lines 39495 df-psubsp 39497 df-pmap 39498 df-padd 39790 df-lhyp 39982 df-laut 39983 df-ldil 40098 df-ltrn 40099 df-trl 40153 df-tgrp 40737 df-tendo 40749 df-edring 40751 df-dveca 40997 df-disoa 41023 df-dvech 41073 df-dib 41133 df-dic 41167 df-dih 41223 df-doch 41342 df-djh 41389 df-lcdual 41581 df-mapd 41619 df-hdmap1 41787 |
| This theorem is referenced by: hdmap1l6d 41807 hdmap1l6e 41808 hdmap1l6f 41809 hdmap1l6j 41813 |
| Copyright terms: Public domain | W3C validator |