Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmap1l6a Structured version   Visualization version   GIF version

Theorem hdmap1l6a 40301
Description: Lemma for hdmap1l6 40313. Part (6) in [Baer] p. 47, case 1. (Contributed by NM, 23-Apr-2015.)
Hypotheses
Ref Expression
hdmap1l6.h 𝐻 = (LHypβ€˜πΎ)
hdmap1l6.u π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)
hdmap1l6.v 𝑉 = (Baseβ€˜π‘ˆ)
hdmap1l6.p + = (+gβ€˜π‘ˆ)
hdmap1l6.s βˆ’ = (-gβ€˜π‘ˆ)
hdmap1l6c.o 0 = (0gβ€˜π‘ˆ)
hdmap1l6.n 𝑁 = (LSpanβ€˜π‘ˆ)
hdmap1l6.c 𝐢 = ((LCDualβ€˜πΎ)β€˜π‘Š)
hdmap1l6.d 𝐷 = (Baseβ€˜πΆ)
hdmap1l6.a ✚ = (+gβ€˜πΆ)
hdmap1l6.r 𝑅 = (-gβ€˜πΆ)
hdmap1l6.q 𝑄 = (0gβ€˜πΆ)
hdmap1l6.l 𝐿 = (LSpanβ€˜πΆ)
hdmap1l6.m 𝑀 = ((mapdβ€˜πΎ)β€˜π‘Š)
hdmap1l6.i 𝐼 = ((HDMap1β€˜πΎ)β€˜π‘Š)
hdmap1l6.k (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
hdmap1l6.f (πœ‘ β†’ 𝐹 ∈ 𝐷)
hdmap1l6cl.x (πœ‘ β†’ 𝑋 ∈ (𝑉 βˆ– { 0 }))
hdmap1l6.mn (πœ‘ β†’ (π‘€β€˜(π‘β€˜{𝑋})) = (πΏβ€˜{𝐹}))
hdmap1l6e.y (πœ‘ β†’ π‘Œ ∈ (𝑉 βˆ– { 0 }))
hdmap1l6e.z (πœ‘ β†’ 𝑍 ∈ (𝑉 βˆ– { 0 }))
hdmap1l6e.xn (πœ‘ β†’ Β¬ 𝑋 ∈ (π‘β€˜{π‘Œ, 𝑍}))
hdmap1l6.yz (πœ‘ β†’ (π‘β€˜{π‘Œ}) β‰  (π‘β€˜{𝑍}))
hdmap1l6.fg (πœ‘ β†’ (πΌβ€˜βŸ¨π‘‹, 𝐹, π‘ŒβŸ©) = 𝐺)
hdmap1l6.fe (πœ‘ β†’ (πΌβ€˜βŸ¨π‘‹, 𝐹, π‘βŸ©) = 𝐸)
Assertion
Ref Expression
hdmap1l6a (πœ‘ β†’ (πΌβ€˜βŸ¨π‘‹, 𝐹, (π‘Œ + 𝑍)⟩) = ((πΌβ€˜βŸ¨π‘‹, 𝐹, π‘ŒβŸ©) ✚ (πΌβ€˜βŸ¨π‘‹, 𝐹, π‘βŸ©)))

Proof of Theorem hdmap1l6a
StepHypRef Expression
1 hdmap1l6.h . . . 4 𝐻 = (LHypβ€˜πΎ)
2 hdmap1l6.u . . . 4 π‘ˆ = ((DVecHβ€˜πΎ)β€˜π‘Š)
3 hdmap1l6.v . . . 4 𝑉 = (Baseβ€˜π‘ˆ)
4 hdmap1l6.p . . . 4 + = (+gβ€˜π‘ˆ)
5 hdmap1l6.s . . . 4 βˆ’ = (-gβ€˜π‘ˆ)
6 hdmap1l6c.o . . . 4 0 = (0gβ€˜π‘ˆ)
7 hdmap1l6.n . . . 4 𝑁 = (LSpanβ€˜π‘ˆ)
8 hdmap1l6.c . . . 4 𝐢 = ((LCDualβ€˜πΎ)β€˜π‘Š)
9 hdmap1l6.d . . . 4 𝐷 = (Baseβ€˜πΆ)
10 hdmap1l6.a . . . 4 ✚ = (+gβ€˜πΆ)
11 hdmap1l6.r . . . 4 𝑅 = (-gβ€˜πΆ)
12 hdmap1l6.q . . . 4 𝑄 = (0gβ€˜πΆ)
13 hdmap1l6.l . . . 4 𝐿 = (LSpanβ€˜πΆ)
14 hdmap1l6.m . . . 4 𝑀 = ((mapdβ€˜πΎ)β€˜π‘Š)
15 hdmap1l6.i . . . 4 𝐼 = ((HDMap1β€˜πΎ)β€˜π‘Š)
16 hdmap1l6.k . . . 4 (πœ‘ β†’ (𝐾 ∈ HL ∧ π‘Š ∈ 𝐻))
17 hdmap1l6.f . . . 4 (πœ‘ β†’ 𝐹 ∈ 𝐷)
18 hdmap1l6cl.x . . . 4 (πœ‘ β†’ 𝑋 ∈ (𝑉 βˆ– { 0 }))
19 hdmap1l6.mn . . . 4 (πœ‘ β†’ (π‘€β€˜(π‘β€˜{𝑋})) = (πΏβ€˜{𝐹}))
20 hdmap1l6e.y . . . 4 (πœ‘ β†’ π‘Œ ∈ (𝑉 βˆ– { 0 }))
21 hdmap1l6e.z . . . 4 (πœ‘ β†’ 𝑍 ∈ (𝑉 βˆ– { 0 }))
22 hdmap1l6e.xn . . . 4 (πœ‘ β†’ Β¬ 𝑋 ∈ (π‘β€˜{π‘Œ, 𝑍}))
23 hdmap1l6.yz . . . 4 (πœ‘ β†’ (π‘β€˜{π‘Œ}) β‰  (π‘β€˜{𝑍}))
24 hdmap1l6.fg . . . 4 (πœ‘ β†’ (πΌβ€˜βŸ¨π‘‹, 𝐹, π‘ŒβŸ©) = 𝐺)
25 hdmap1l6.fe . . . 4 (πœ‘ β†’ (πΌβ€˜βŸ¨π‘‹, 𝐹, π‘βŸ©) = 𝐸)
261, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25hdmap1l6lem2 40300 . . 3 (πœ‘ β†’ (π‘€β€˜(π‘β€˜{(π‘Œ + 𝑍)})) = (πΏβ€˜{(𝐺 ✚ 𝐸)}))
2724, 25oveq12d 7380 . . . . 5 (πœ‘ β†’ ((πΌβ€˜βŸ¨π‘‹, 𝐹, π‘ŒβŸ©) ✚ (πΌβ€˜βŸ¨π‘‹, 𝐹, π‘βŸ©)) = (𝐺 ✚ 𝐸))
2827sneqd 4603 . . . 4 (πœ‘ β†’ {((πΌβ€˜βŸ¨π‘‹, 𝐹, π‘ŒβŸ©) ✚ (πΌβ€˜βŸ¨π‘‹, 𝐹, π‘βŸ©))} = {(𝐺 ✚ 𝐸)})
2928fveq2d 6851 . . 3 (πœ‘ β†’ (πΏβ€˜{((πΌβ€˜βŸ¨π‘‹, 𝐹, π‘ŒβŸ©) ✚ (πΌβ€˜βŸ¨π‘‹, 𝐹, π‘βŸ©))}) = (πΏβ€˜{(𝐺 ✚ 𝐸)}))
3026, 29eqtr4d 2780 . 2 (πœ‘ β†’ (π‘€β€˜(π‘β€˜{(π‘Œ + 𝑍)})) = (πΏβ€˜{((πΌβ€˜βŸ¨π‘‹, 𝐹, π‘ŒβŸ©) ✚ (πΌβ€˜βŸ¨π‘‹, 𝐹, π‘βŸ©))}))
311, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25hdmap1l6lem1 40299 . . 3 (πœ‘ β†’ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ (π‘Œ + 𝑍))})) = (πΏβ€˜{(𝐹𝑅(𝐺 ✚ 𝐸))}))
3227oveq2d 7378 . . . . 5 (πœ‘ β†’ (𝐹𝑅((πΌβ€˜βŸ¨π‘‹, 𝐹, π‘ŒβŸ©) ✚ (πΌβ€˜βŸ¨π‘‹, 𝐹, π‘βŸ©))) = (𝐹𝑅(𝐺 ✚ 𝐸)))
3332sneqd 4603 . . . 4 (πœ‘ β†’ {(𝐹𝑅((πΌβ€˜βŸ¨π‘‹, 𝐹, π‘ŒβŸ©) ✚ (πΌβ€˜βŸ¨π‘‹, 𝐹, π‘βŸ©)))} = {(𝐹𝑅(𝐺 ✚ 𝐸))})
3433fveq2d 6851 . . 3 (πœ‘ β†’ (πΏβ€˜{(𝐹𝑅((πΌβ€˜βŸ¨π‘‹, 𝐹, π‘ŒβŸ©) ✚ (πΌβ€˜βŸ¨π‘‹, 𝐹, π‘βŸ©)))}) = (πΏβ€˜{(𝐹𝑅(𝐺 ✚ 𝐸))}))
3531, 34eqtr4d 2780 . 2 (πœ‘ β†’ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ (π‘Œ + 𝑍))})) = (πΏβ€˜{(𝐹𝑅((πΌβ€˜βŸ¨π‘‹, 𝐹, π‘ŒβŸ©) ✚ (πΌβ€˜βŸ¨π‘‹, 𝐹, π‘βŸ©)))}))
361, 2, 16dvhlmod 39602 . . . . 5 (πœ‘ β†’ π‘ˆ ∈ LMod)
3720eldifad 3927 . . . . 5 (πœ‘ β†’ π‘Œ ∈ 𝑉)
3821eldifad 3927 . . . . 5 (πœ‘ β†’ 𝑍 ∈ 𝑉)
393, 4lmodvacl 20352 . . . . 5 ((π‘ˆ ∈ LMod ∧ π‘Œ ∈ 𝑉 ∧ 𝑍 ∈ 𝑉) β†’ (π‘Œ + 𝑍) ∈ 𝑉)
4036, 37, 38, 39syl3anc 1372 . . . 4 (πœ‘ β†’ (π‘Œ + 𝑍) ∈ 𝑉)
413, 4, 6, 7, 36, 37, 38, 23lmodindp1 20491 . . . 4 (πœ‘ β†’ (π‘Œ + 𝑍) β‰  0 )
42 eldifsn 4752 . . . 4 ((π‘Œ + 𝑍) ∈ (𝑉 βˆ– { 0 }) ↔ ((π‘Œ + 𝑍) ∈ 𝑉 ∧ (π‘Œ + 𝑍) β‰  0 ))
4340, 41, 42sylanbrc 584 . . 3 (πœ‘ β†’ (π‘Œ + 𝑍) ∈ (𝑉 βˆ– { 0 }))
441, 8, 16lcdlmod 40084 . . . 4 (πœ‘ β†’ 𝐢 ∈ LMod)
451, 2, 16dvhlvec 39601 . . . . . . 7 (πœ‘ β†’ π‘ˆ ∈ LVec)
4618eldifad 3927 . . . . . . 7 (πœ‘ β†’ 𝑋 ∈ 𝑉)
473, 6, 7, 45, 37, 21, 46, 23, 22lspindp2 20612 . . . . . 6 (πœ‘ β†’ ((π‘β€˜{𝑋}) β‰  (π‘β€˜{π‘Œ}) ∧ Β¬ 𝑍 ∈ (π‘β€˜{𝑋, π‘Œ})))
4847simpld 496 . . . . 5 (πœ‘ β†’ (π‘β€˜{𝑋}) β‰  (π‘β€˜{π‘Œ}))
491, 2, 3, 6, 7, 8, 9, 13, 14, 15, 16, 17, 19, 48, 18, 37hdmap1cl 40296 . . . 4 (πœ‘ β†’ (πΌβ€˜βŸ¨π‘‹, 𝐹, π‘ŒβŸ©) ∈ 𝐷)
503, 6, 7, 45, 20, 38, 46, 23, 22lspindp1 20610 . . . . . 6 (πœ‘ β†’ ((π‘β€˜{𝑋}) β‰  (π‘β€˜{𝑍}) ∧ Β¬ π‘Œ ∈ (π‘β€˜{𝑋, 𝑍})))
5150simpld 496 . . . . 5 (πœ‘ β†’ (π‘β€˜{𝑋}) β‰  (π‘β€˜{𝑍}))
521, 2, 3, 6, 7, 8, 9, 13, 14, 15, 16, 17, 19, 51, 18, 38hdmap1cl 40296 . . . 4 (πœ‘ β†’ (πΌβ€˜βŸ¨π‘‹, 𝐹, π‘βŸ©) ∈ 𝐷)
539, 10lmodvacl 20352 . . . 4 ((𝐢 ∈ LMod ∧ (πΌβ€˜βŸ¨π‘‹, 𝐹, π‘ŒβŸ©) ∈ 𝐷 ∧ (πΌβ€˜βŸ¨π‘‹, 𝐹, π‘βŸ©) ∈ 𝐷) β†’ ((πΌβ€˜βŸ¨π‘‹, 𝐹, π‘ŒβŸ©) ✚ (πΌβ€˜βŸ¨π‘‹, 𝐹, π‘βŸ©)) ∈ 𝐷)
5444, 49, 52, 53syl3anc 1372 . . 3 (πœ‘ β†’ ((πΌβ€˜βŸ¨π‘‹, 𝐹, π‘ŒβŸ©) ✚ (πΌβ€˜βŸ¨π‘‹, 𝐹, π‘βŸ©)) ∈ 𝐷)
55 eqid 2737 . . . . . 6 (LSubSpβ€˜π‘ˆ) = (LSubSpβ€˜π‘ˆ)
563, 55, 7, 36, 37, 38lspprcl 20455 . . . . . 6 (πœ‘ β†’ (π‘β€˜{π‘Œ, 𝑍}) ∈ (LSubSpβ€˜π‘ˆ))
573, 4, 7, 36, 37, 38lspprvacl 20476 . . . . . 6 (πœ‘ β†’ (π‘Œ + 𝑍) ∈ (π‘β€˜{π‘Œ, 𝑍}))
5855, 7, 36, 56, 57lspsnel5a 20473 . . . . 5 (πœ‘ β†’ (π‘β€˜{(π‘Œ + 𝑍)}) βŠ† (π‘β€˜{π‘Œ, 𝑍}))
593, 55, 7, 36, 56, 46lspsnel5 20472 . . . . . 6 (πœ‘ β†’ (𝑋 ∈ (π‘β€˜{π‘Œ, 𝑍}) ↔ (π‘β€˜{𝑋}) βŠ† (π‘β€˜{π‘Œ, 𝑍})))
6022, 59mtbid 324 . . . . 5 (πœ‘ β†’ Β¬ (π‘β€˜{𝑋}) βŠ† (π‘β€˜{π‘Œ, 𝑍}))
61 nssne2 4010 . . . . 5 (((π‘β€˜{(π‘Œ + 𝑍)}) βŠ† (π‘β€˜{π‘Œ, 𝑍}) ∧ Β¬ (π‘β€˜{𝑋}) βŠ† (π‘β€˜{π‘Œ, 𝑍})) β†’ (π‘β€˜{(π‘Œ + 𝑍)}) β‰  (π‘β€˜{𝑋}))
6258, 60, 61syl2anc 585 . . . 4 (πœ‘ β†’ (π‘β€˜{(π‘Œ + 𝑍)}) β‰  (π‘β€˜{𝑋}))
6362necomd 3000 . . 3 (πœ‘ β†’ (π‘β€˜{𝑋}) β‰  (π‘β€˜{(π‘Œ + 𝑍)}))
641, 2, 3, 5, 6, 7, 8, 9, 11, 13, 14, 15, 16, 18, 17, 43, 54, 63, 19hdmap1eq 40293 . 2 (πœ‘ β†’ ((πΌβ€˜βŸ¨π‘‹, 𝐹, (π‘Œ + 𝑍)⟩) = ((πΌβ€˜βŸ¨π‘‹, 𝐹, π‘ŒβŸ©) ✚ (πΌβ€˜βŸ¨π‘‹, 𝐹, π‘βŸ©)) ↔ ((π‘€β€˜(π‘β€˜{(π‘Œ + 𝑍)})) = (πΏβ€˜{((πΌβ€˜βŸ¨π‘‹, 𝐹, π‘ŒβŸ©) ✚ (πΌβ€˜βŸ¨π‘‹, 𝐹, π‘βŸ©))}) ∧ (π‘€β€˜(π‘β€˜{(𝑋 βˆ’ (π‘Œ + 𝑍))})) = (πΏβ€˜{(𝐹𝑅((πΌβ€˜βŸ¨π‘‹, 𝐹, π‘ŒβŸ©) ✚ (πΌβ€˜βŸ¨π‘‹, 𝐹, π‘βŸ©)))}))))
6530, 35, 64mpbir2and 712 1 (πœ‘ β†’ (πΌβ€˜βŸ¨π‘‹, 𝐹, (π‘Œ + 𝑍)⟩) = ((πΌβ€˜βŸ¨π‘‹, 𝐹, π‘ŒβŸ©) ✚ (πΌβ€˜βŸ¨π‘‹, 𝐹, π‘βŸ©)))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 397   = wceq 1542   ∈ wcel 2107   β‰  wne 2944   βˆ– cdif 3912   βŠ† wss 3915  {csn 4591  {cpr 4593  βŸ¨cotp 4599  β€˜cfv 6501  (class class class)co 7362  Basecbs 17090  +gcplusg 17140  0gc0g 17328  -gcsg 18757  LModclmod 20338  LSubSpclss 20408  LSpanclspn 20448  HLchlt 37841  LHypclh 38476  DVecHcdvh 39570  LCDualclcd 40078  mapdcmpd 40116  HDMap1chdma1 40283
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2708  ax-rep 5247  ax-sep 5261  ax-nul 5268  ax-pow 5325  ax-pr 5389  ax-un 7677  ax-cnex 11114  ax-resscn 11115  ax-1cn 11116  ax-icn 11117  ax-addcl 11118  ax-addrcl 11119  ax-mulcl 11120  ax-mulrcl 11121  ax-mulcom 11122  ax-addass 11123  ax-mulass 11124  ax-distr 11125  ax-i2m1 11126  ax-1ne0 11127  ax-1rid 11128  ax-rnegex 11129  ax-rrecex 11130  ax-cnre 11131  ax-pre-lttri 11132  ax-pre-lttrn 11133  ax-pre-ltadd 11134  ax-pre-mulgt0 11135  ax-riotaBAD 37444
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3066  df-rex 3075  df-rmo 3356  df-reu 3357  df-rab 3411  df-v 3450  df-sbc 3745  df-csb 3861  df-dif 3918  df-un 3920  df-in 3922  df-ss 3932  df-pss 3934  df-nul 4288  df-if 4492  df-pw 4567  df-sn 4592  df-pr 4594  df-tp 4596  df-op 4598  df-ot 4600  df-uni 4871  df-int 4913  df-iun 4961  df-iin 4962  df-br 5111  df-opab 5173  df-mpt 5194  df-tr 5228  df-id 5536  df-eprel 5542  df-po 5550  df-so 5551  df-fr 5593  df-we 5595  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6258  df-ord 6325  df-on 6326  df-lim 6327  df-suc 6328  df-iota 6453  df-fun 6503  df-fn 6504  df-f 6505  df-f1 6506  df-fo 6507  df-f1o 6508  df-fv 6509  df-riota 7318  df-ov 7365  df-oprab 7366  df-mpo 7367  df-of 7622  df-om 7808  df-1st 7926  df-2nd 7927  df-tpos 8162  df-undef 8209  df-frecs 8217  df-wrecs 8248  df-recs 8322  df-rdg 8361  df-1o 8417  df-er 8655  df-map 8774  df-en 8891  df-dom 8892  df-sdom 8893  df-fin 8894  df-pnf 11198  df-mnf 11199  df-xr 11200  df-ltxr 11201  df-le 11202  df-sub 11394  df-neg 11395  df-nn 12161  df-2 12223  df-3 12224  df-4 12225  df-5 12226  df-6 12227  df-n0 12421  df-z 12507  df-uz 12771  df-fz 13432  df-struct 17026  df-sets 17043  df-slot 17061  df-ndx 17073  df-base 17091  df-ress 17120  df-plusg 17153  df-mulr 17154  df-sca 17156  df-vsca 17157  df-0g 17330  df-mre 17473  df-mrc 17474  df-acs 17476  df-proset 18191  df-poset 18209  df-plt 18226  df-lub 18242  df-glb 18243  df-join 18244  df-meet 18245  df-p0 18321  df-p1 18322  df-lat 18328  df-clat 18395  df-mgm 18504  df-sgrp 18553  df-mnd 18564  df-submnd 18609  df-grp 18758  df-minusg 18759  df-sbg 18760  df-subg 18932  df-cntz 19104  df-oppg 19131  df-lsm 19425  df-cmn 19571  df-abl 19572  df-mgp 19904  df-ur 19921  df-ring 19973  df-oppr 20056  df-dvdsr 20077  df-unit 20078  df-invr 20108  df-dvr 20119  df-drng 20201  df-lmod 20340  df-lss 20409  df-lsp 20449  df-lvec 20580  df-lsatoms 37467  df-lshyp 37468  df-lcv 37510  df-lfl 37549  df-lkr 37577  df-ldual 37615  df-oposet 37667  df-ol 37669  df-oml 37670  df-covers 37757  df-ats 37758  df-atl 37789  df-cvlat 37813  df-hlat 37842  df-llines 37990  df-lplanes 37991  df-lvols 37992  df-lines 37993  df-psubsp 37995  df-pmap 37996  df-padd 38288  df-lhyp 38480  df-laut 38481  df-ldil 38596  df-ltrn 38597  df-trl 38651  df-tgrp 39235  df-tendo 39247  df-edring 39249  df-dveca 39495  df-disoa 39521  df-dvech 39571  df-dib 39631  df-dic 39665  df-dih 39721  df-doch 39840  df-djh 39887  df-lcdual 40079  df-mapd 40117  df-hdmap1 40285
This theorem is referenced by:  hdmap1l6d  40305  hdmap1l6e  40306  hdmap1l6f  40307  hdmap1l6j  40311
  Copyright terms: Public domain W3C validator