Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmap1l6a | Structured version Visualization version GIF version |
Description: Lemma for hdmap1l6 39762. Part (6) in [Baer] p. 47, case 1. (Contributed by NM, 23-Apr-2015.) |
Ref | Expression |
---|---|
hdmap1l6.h | ⊢ 𝐻 = (LHyp‘𝐾) |
hdmap1l6.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
hdmap1l6.v | ⊢ 𝑉 = (Base‘𝑈) |
hdmap1l6.p | ⊢ + = (+g‘𝑈) |
hdmap1l6.s | ⊢ − = (-g‘𝑈) |
hdmap1l6c.o | ⊢ 0 = (0g‘𝑈) |
hdmap1l6.n | ⊢ 𝑁 = (LSpan‘𝑈) |
hdmap1l6.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
hdmap1l6.d | ⊢ 𝐷 = (Base‘𝐶) |
hdmap1l6.a | ⊢ ✚ = (+g‘𝐶) |
hdmap1l6.r | ⊢ 𝑅 = (-g‘𝐶) |
hdmap1l6.q | ⊢ 𝑄 = (0g‘𝐶) |
hdmap1l6.l | ⊢ 𝐿 = (LSpan‘𝐶) |
hdmap1l6.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
hdmap1l6.i | ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) |
hdmap1l6.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
hdmap1l6.f | ⊢ (𝜑 → 𝐹 ∈ 𝐷) |
hdmap1l6cl.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
hdmap1l6.mn | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹})) |
hdmap1l6e.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
hdmap1l6e.z | ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) |
hdmap1l6e.xn | ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) |
hdmap1l6.yz | ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍})) |
hdmap1l6.fg | ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = 𝐺) |
hdmap1l6.fe | ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑍〉) = 𝐸) |
Ref | Expression |
---|---|
hdmap1l6a | ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉) = ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hdmap1l6.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | hdmap1l6.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
3 | hdmap1l6.v | . . . 4 ⊢ 𝑉 = (Base‘𝑈) | |
4 | hdmap1l6.p | . . . 4 ⊢ + = (+g‘𝑈) | |
5 | hdmap1l6.s | . . . 4 ⊢ − = (-g‘𝑈) | |
6 | hdmap1l6c.o | . . . 4 ⊢ 0 = (0g‘𝑈) | |
7 | hdmap1l6.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑈) | |
8 | hdmap1l6.c | . . . 4 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
9 | hdmap1l6.d | . . . 4 ⊢ 𝐷 = (Base‘𝐶) | |
10 | hdmap1l6.a | . . . 4 ⊢ ✚ = (+g‘𝐶) | |
11 | hdmap1l6.r | . . . 4 ⊢ 𝑅 = (-g‘𝐶) | |
12 | hdmap1l6.q | . . . 4 ⊢ 𝑄 = (0g‘𝐶) | |
13 | hdmap1l6.l | . . . 4 ⊢ 𝐿 = (LSpan‘𝐶) | |
14 | hdmap1l6.m | . . . 4 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
15 | hdmap1l6.i | . . . 4 ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) | |
16 | hdmap1l6.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
17 | hdmap1l6.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝐷) | |
18 | hdmap1l6cl.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
19 | hdmap1l6.mn | . . . 4 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹})) | |
20 | hdmap1l6e.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
21 | hdmap1l6e.z | . . . 4 ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) | |
22 | hdmap1l6e.xn | . . . 4 ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) | |
23 | hdmap1l6.yz | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍})) | |
24 | hdmap1l6.fg | . . . 4 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = 𝐺) | |
25 | hdmap1l6.fe | . . . 4 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑍〉) = 𝐸) | |
26 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 | hdmap1l6lem2 39749 | . . 3 ⊢ (𝜑 → (𝑀‘(𝑁‘{(𝑌 + 𝑍)})) = (𝐿‘{(𝐺 ✚ 𝐸)})) |
27 | 24, 25 | oveq12d 7273 | . . . . 5 ⊢ (𝜑 → ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉)) = (𝐺 ✚ 𝐸)) |
28 | 27 | sneqd 4570 | . . . 4 ⊢ (𝜑 → {((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))} = {(𝐺 ✚ 𝐸)}) |
29 | 28 | fveq2d 6760 | . . 3 ⊢ (𝜑 → (𝐿‘{((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))}) = (𝐿‘{(𝐺 ✚ 𝐸)})) |
30 | 26, 29 | eqtr4d 2781 | . 2 ⊢ (𝜑 → (𝑀‘(𝑁‘{(𝑌 + 𝑍)})) = (𝐿‘{((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))})) |
31 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 | hdmap1l6lem1 39748 | . . 3 ⊢ (𝜑 → (𝑀‘(𝑁‘{(𝑋 − (𝑌 + 𝑍))})) = (𝐿‘{(𝐹𝑅(𝐺 ✚ 𝐸))})) |
32 | 27 | oveq2d 7271 | . . . . 5 ⊢ (𝜑 → (𝐹𝑅((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))) = (𝐹𝑅(𝐺 ✚ 𝐸))) |
33 | 32 | sneqd 4570 | . . . 4 ⊢ (𝜑 → {(𝐹𝑅((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉)))} = {(𝐹𝑅(𝐺 ✚ 𝐸))}) |
34 | 33 | fveq2d 6760 | . . 3 ⊢ (𝜑 → (𝐿‘{(𝐹𝑅((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉)))}) = (𝐿‘{(𝐹𝑅(𝐺 ✚ 𝐸))})) |
35 | 31, 34 | eqtr4d 2781 | . 2 ⊢ (𝜑 → (𝑀‘(𝑁‘{(𝑋 − (𝑌 + 𝑍))})) = (𝐿‘{(𝐹𝑅((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉)))})) |
36 | 1, 2, 16 | dvhlmod 39051 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ LMod) |
37 | 20 | eldifad 3895 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
38 | 21 | eldifad 3895 | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ 𝑉) |
39 | 3, 4 | lmodvacl 20052 | . . . . 5 ⊢ ((𝑈 ∈ LMod ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉) → (𝑌 + 𝑍) ∈ 𝑉) |
40 | 36, 37, 38, 39 | syl3anc 1369 | . . . 4 ⊢ (𝜑 → (𝑌 + 𝑍) ∈ 𝑉) |
41 | 3, 4, 6, 7, 36, 37, 38, 23 | lmodindp1 20191 | . . . 4 ⊢ (𝜑 → (𝑌 + 𝑍) ≠ 0 ) |
42 | eldifsn 4717 | . . . 4 ⊢ ((𝑌 + 𝑍) ∈ (𝑉 ∖ { 0 }) ↔ ((𝑌 + 𝑍) ∈ 𝑉 ∧ (𝑌 + 𝑍) ≠ 0 )) | |
43 | 40, 41, 42 | sylanbrc 582 | . . 3 ⊢ (𝜑 → (𝑌 + 𝑍) ∈ (𝑉 ∖ { 0 })) |
44 | 1, 8, 16 | lcdlmod 39533 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ LMod) |
45 | 1, 2, 16 | dvhlvec 39050 | . . . . . . 7 ⊢ (𝜑 → 𝑈 ∈ LVec) |
46 | 18 | eldifad 3895 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
47 | 3, 6, 7, 45, 37, 21, 46, 23, 22 | lspindp2 20312 | . . . . . 6 ⊢ (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) ∧ ¬ 𝑍 ∈ (𝑁‘{𝑋, 𝑌}))) |
48 | 47 | simpld 494 | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
49 | 1, 2, 3, 6, 7, 8, 9, 13, 14, 15, 16, 17, 19, 48, 18, 37 | hdmap1cl 39745 | . . . 4 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) ∈ 𝐷) |
50 | 3, 6, 7, 45, 20, 38, 46, 23, 22 | lspindp1 20310 | . . . . . 6 ⊢ (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}) ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍}))) |
51 | 50 | simpld 494 | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍})) |
52 | 1, 2, 3, 6, 7, 8, 9, 13, 14, 15, 16, 17, 19, 51, 18, 38 | hdmap1cl 39745 | . . . 4 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑍〉) ∈ 𝐷) |
53 | 9, 10 | lmodvacl 20052 | . . . 4 ⊢ ((𝐶 ∈ LMod ∧ (𝐼‘〈𝑋, 𝐹, 𝑌〉) ∈ 𝐷 ∧ (𝐼‘〈𝑋, 𝐹, 𝑍〉) ∈ 𝐷) → ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉)) ∈ 𝐷) |
54 | 44, 49, 52, 53 | syl3anc 1369 | . . 3 ⊢ (𝜑 → ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉)) ∈ 𝐷) |
55 | eqid 2738 | . . . . . 6 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
56 | 3, 55, 7, 36, 37, 38 | lspprcl 20155 | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝑌, 𝑍}) ∈ (LSubSp‘𝑈)) |
57 | 3, 4, 7, 36, 37, 38 | lspprvacl 20176 | . . . . . 6 ⊢ (𝜑 → (𝑌 + 𝑍) ∈ (𝑁‘{𝑌, 𝑍})) |
58 | 55, 7, 36, 56, 57 | lspsnel5a 20173 | . . . . 5 ⊢ (𝜑 → (𝑁‘{(𝑌 + 𝑍)}) ⊆ (𝑁‘{𝑌, 𝑍})) |
59 | 3, 55, 7, 36, 56, 46 | lspsnel5 20172 | . . . . . 6 ⊢ (𝜑 → (𝑋 ∈ (𝑁‘{𝑌, 𝑍}) ↔ (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌, 𝑍}))) |
60 | 22, 59 | mtbid 323 | . . . . 5 ⊢ (𝜑 → ¬ (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌, 𝑍})) |
61 | nssne2 3978 | . . . . 5 ⊢ (((𝑁‘{(𝑌 + 𝑍)}) ⊆ (𝑁‘{𝑌, 𝑍}) ∧ ¬ (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌, 𝑍})) → (𝑁‘{(𝑌 + 𝑍)}) ≠ (𝑁‘{𝑋})) | |
62 | 58, 60, 61 | syl2anc 583 | . . . 4 ⊢ (𝜑 → (𝑁‘{(𝑌 + 𝑍)}) ≠ (𝑁‘{𝑋})) |
63 | 62 | necomd 2998 | . . 3 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{(𝑌 + 𝑍)})) |
64 | 1, 2, 3, 5, 6, 7, 8, 9, 11, 13, 14, 15, 16, 18, 17, 43, 54, 63, 19 | hdmap1eq 39742 | . 2 ⊢ (𝜑 → ((𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉) = ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉)) ↔ ((𝑀‘(𝑁‘{(𝑌 + 𝑍)})) = (𝐿‘{((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))}) ∧ (𝑀‘(𝑁‘{(𝑋 − (𝑌 + 𝑍))})) = (𝐿‘{(𝐹𝑅((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉)))})))) |
65 | 30, 35, 64 | mpbir2and 709 | 1 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉) = ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ≠ wne 2942 ∖ cdif 3880 ⊆ wss 3883 {csn 4558 {cpr 4560 〈cotp 4566 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 +gcplusg 16888 0gc0g 17067 -gcsg 18494 LModclmod 20038 LSubSpclss 20108 LSpanclspn 20148 HLchlt 37291 LHypclh 37925 DVecHcdvh 39019 LCDualclcd 39527 mapdcmpd 39565 HDMap1chdma1 39732 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-riotaBAD 36894 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-ot 4567 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-tpos 8013 df-undef 8060 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-sca 16904 df-vsca 16905 df-0g 17069 df-mre 17212 df-mrc 17213 df-acs 17215 df-proset 17928 df-poset 17946 df-plt 17963 df-lub 17979 df-glb 17980 df-join 17981 df-meet 17982 df-p0 18058 df-p1 18059 df-lat 18065 df-clat 18132 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-grp 18495 df-minusg 18496 df-sbg 18497 df-subg 18667 df-cntz 18838 df-oppg 18865 df-lsm 19156 df-cmn 19303 df-abl 19304 df-mgp 19636 df-ur 19653 df-ring 19700 df-oppr 19777 df-dvdsr 19798 df-unit 19799 df-invr 19829 df-dvr 19840 df-drng 19908 df-lmod 20040 df-lss 20109 df-lsp 20149 df-lvec 20280 df-lsatoms 36917 df-lshyp 36918 df-lcv 36960 df-lfl 36999 df-lkr 37027 df-ldual 37065 df-oposet 37117 df-ol 37119 df-oml 37120 df-covers 37207 df-ats 37208 df-atl 37239 df-cvlat 37263 df-hlat 37292 df-llines 37439 df-lplanes 37440 df-lvols 37441 df-lines 37442 df-psubsp 37444 df-pmap 37445 df-padd 37737 df-lhyp 37929 df-laut 37930 df-ldil 38045 df-ltrn 38046 df-trl 38100 df-tgrp 38684 df-tendo 38696 df-edring 38698 df-dveca 38944 df-disoa 38970 df-dvech 39020 df-dib 39080 df-dic 39114 df-dih 39170 df-doch 39289 df-djh 39336 df-lcdual 39528 df-mapd 39566 df-hdmap1 39734 |
This theorem is referenced by: hdmap1l6d 39754 hdmap1l6e 39755 hdmap1l6f 39756 hdmap1l6j 39760 |
Copyright terms: Public domain | W3C validator |