![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdh6aN | Structured version Visualization version GIF version |
Description: Lemma for mapdh6N 40423. Part (6) in [Baer] p. 47, case 1. (Contributed by NM, 23-Apr-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
mapdh.q | ⊢ 𝑄 = (0g‘𝐶) |
mapdh.i | ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) |
mapdh.h | ⊢ 𝐻 = (LHyp‘𝐾) |
mapdh.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
mapdh.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
mapdh.v | ⊢ 𝑉 = (Base‘𝑈) |
mapdh.s | ⊢ − = (-g‘𝑈) |
mapdhc.o | ⊢ 0 = (0g‘𝑈) |
mapdh.n | ⊢ 𝑁 = (LSpan‘𝑈) |
mapdh.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
mapdh.d | ⊢ 𝐷 = (Base‘𝐶) |
mapdh.r | ⊢ 𝑅 = (-g‘𝐶) |
mapdh.j | ⊢ 𝐽 = (LSpan‘𝐶) |
mapdh.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
mapdhc.f | ⊢ (𝜑 → 𝐹 ∈ 𝐷) |
mapdh.mn | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) |
mapdhcl.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
mapdh.p | ⊢ + = (+g‘𝑈) |
mapdh.a | ⊢ ✚ = (+g‘𝐶) |
mapdhe6.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
mapdhe6.z | ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) |
mapdhe6.xn | ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) |
mapdh6.yz | ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍})) |
mapdh6.fg | ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = 𝐺) |
mapdh6.fe | ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑍〉) = 𝐸) |
Ref | Expression |
---|---|
mapdh6aN | ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉) = ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapdh.q | . . . 4 ⊢ 𝑄 = (0g‘𝐶) | |
2 | mapdh.i | . . . 4 ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) | |
3 | mapdh.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
4 | mapdh.m | . . . 4 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
5 | mapdh.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
6 | mapdh.v | . . . 4 ⊢ 𝑉 = (Base‘𝑈) | |
7 | mapdh.s | . . . 4 ⊢ − = (-g‘𝑈) | |
8 | mapdhc.o | . . . 4 ⊢ 0 = (0g‘𝑈) | |
9 | mapdh.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑈) | |
10 | mapdh.c | . . . 4 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
11 | mapdh.d | . . . 4 ⊢ 𝐷 = (Base‘𝐶) | |
12 | mapdh.r | . . . 4 ⊢ 𝑅 = (-g‘𝐶) | |
13 | mapdh.j | . . . 4 ⊢ 𝐽 = (LSpan‘𝐶) | |
14 | mapdh.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
15 | mapdhc.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝐷) | |
16 | mapdh.mn | . . . 4 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) | |
17 | mapdhcl.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
18 | mapdh.p | . . . 4 ⊢ + = (+g‘𝑈) | |
19 | mapdh.a | . . . 4 ⊢ ✚ = (+g‘𝐶) | |
20 | mapdhe6.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
21 | mapdhe6.z | . . . 4 ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) | |
22 | mapdhe6.xn | . . . 4 ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) | |
23 | mapdh6.yz | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍})) | |
24 | mapdh6.fg | . . . 4 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = 𝐺) | |
25 | mapdh6.fe | . . . 4 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑍〉) = 𝐸) | |
26 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 | mapdh6lem2N 40410 | . . 3 ⊢ (𝜑 → (𝑀‘(𝑁‘{(𝑌 + 𝑍)})) = (𝐽‘{(𝐺 ✚ 𝐸)})) |
27 | 24, 25 | oveq12d 7411 | . . . . 5 ⊢ (𝜑 → ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉)) = (𝐺 ✚ 𝐸)) |
28 | 27 | sneqd 4634 | . . . 4 ⊢ (𝜑 → {((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))} = {(𝐺 ✚ 𝐸)}) |
29 | 28 | fveq2d 6882 | . . 3 ⊢ (𝜑 → (𝐽‘{((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))}) = (𝐽‘{(𝐺 ✚ 𝐸)})) |
30 | 26, 29 | eqtr4d 2774 | . 2 ⊢ (𝜑 → (𝑀‘(𝑁‘{(𝑌 + 𝑍)})) = (𝐽‘{((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))})) |
31 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 | mapdh6lem1N 40409 | . . 3 ⊢ (𝜑 → (𝑀‘(𝑁‘{(𝑋 − (𝑌 + 𝑍))})) = (𝐽‘{(𝐹𝑅(𝐺 ✚ 𝐸))})) |
32 | 27 | oveq2d 7409 | . . . . 5 ⊢ (𝜑 → (𝐹𝑅((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))) = (𝐹𝑅(𝐺 ✚ 𝐸))) |
33 | 32 | sneqd 4634 | . . . 4 ⊢ (𝜑 → {(𝐹𝑅((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉)))} = {(𝐹𝑅(𝐺 ✚ 𝐸))}) |
34 | 33 | fveq2d 6882 | . . 3 ⊢ (𝜑 → (𝐽‘{(𝐹𝑅((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉)))}) = (𝐽‘{(𝐹𝑅(𝐺 ✚ 𝐸))})) |
35 | 31, 34 | eqtr4d 2774 | . 2 ⊢ (𝜑 → (𝑀‘(𝑁‘{(𝑋 − (𝑌 + 𝑍))})) = (𝐽‘{(𝐹𝑅((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉)))})) |
36 | 3, 5, 14 | dvhlmod 39786 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ LMod) |
37 | 20 | eldifad 3956 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
38 | 21 | eldifad 3956 | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ 𝑉) |
39 | 6, 18 | lmodvacl 20435 | . . . . 5 ⊢ ((𝑈 ∈ LMod ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉) → (𝑌 + 𝑍) ∈ 𝑉) |
40 | 36, 37, 38, 39 | syl3anc 1371 | . . . 4 ⊢ (𝜑 → (𝑌 + 𝑍) ∈ 𝑉) |
41 | 6, 18, 8, 9, 36, 37, 38, 23 | lmodindp1 20574 | . . . 4 ⊢ (𝜑 → (𝑌 + 𝑍) ≠ 0 ) |
42 | eldifsn 4783 | . . . 4 ⊢ ((𝑌 + 𝑍) ∈ (𝑉 ∖ { 0 }) ↔ ((𝑌 + 𝑍) ∈ 𝑉 ∧ (𝑌 + 𝑍) ≠ 0 )) | |
43 | 40, 41, 42 | sylanbrc 583 | . . 3 ⊢ (𝜑 → (𝑌 + 𝑍) ∈ (𝑉 ∖ { 0 })) |
44 | 3, 10, 14 | lcdlmod 40268 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ LMod) |
45 | 3, 5, 14 | dvhlvec 39785 | . . . . . . 7 ⊢ (𝜑 → 𝑈 ∈ LVec) |
46 | 17 | eldifad 3956 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
47 | 6, 8, 9, 45, 37, 21, 46, 23, 22 | lspindp2 20697 | . . . . . 6 ⊢ (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) ∧ ¬ 𝑍 ∈ (𝑁‘{𝑋, 𝑌}))) |
48 | 47 | simpld 495 | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
49 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 37, 48 | mapdhcl 40403 | . . . 4 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) ∈ 𝐷) |
50 | 6, 8, 9, 45, 20, 38, 46, 23, 22 | lspindp1 20695 | . . . . . 6 ⊢ (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}) ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍}))) |
51 | 50 | simpld 495 | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍})) |
52 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 38, 51 | mapdhcl 40403 | . . . 4 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑍〉) ∈ 𝐷) |
53 | 11, 19 | lmodvacl 20435 | . . . 4 ⊢ ((𝐶 ∈ LMod ∧ (𝐼‘〈𝑋, 𝐹, 𝑌〉) ∈ 𝐷 ∧ (𝐼‘〈𝑋, 𝐹, 𝑍〉) ∈ 𝐷) → ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉)) ∈ 𝐷) |
54 | 44, 49, 52, 53 | syl3anc 1371 | . . 3 ⊢ (𝜑 → ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉)) ∈ 𝐷) |
55 | eqid 2731 | . . . . . 6 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
56 | 6, 55, 9, 36, 37, 38 | lspprcl 20538 | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝑌, 𝑍}) ∈ (LSubSp‘𝑈)) |
57 | 6, 18, 9, 36, 37, 38 | lspprvacl 20559 | . . . . . 6 ⊢ (𝜑 → (𝑌 + 𝑍) ∈ (𝑁‘{𝑌, 𝑍})) |
58 | 55, 9, 36, 56, 57 | lspsnel5a 20556 | . . . . 5 ⊢ (𝜑 → (𝑁‘{(𝑌 + 𝑍)}) ⊆ (𝑁‘{𝑌, 𝑍})) |
59 | 6, 55, 9, 36, 56, 46 | lspsnel5 20555 | . . . . . 6 ⊢ (𝜑 → (𝑋 ∈ (𝑁‘{𝑌, 𝑍}) ↔ (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌, 𝑍}))) |
60 | 22, 59 | mtbid 323 | . . . . 5 ⊢ (𝜑 → ¬ (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌, 𝑍})) |
61 | nssne2 4041 | . . . . 5 ⊢ (((𝑁‘{(𝑌 + 𝑍)}) ⊆ (𝑁‘{𝑌, 𝑍}) ∧ ¬ (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌, 𝑍})) → (𝑁‘{(𝑌 + 𝑍)}) ≠ (𝑁‘{𝑋})) | |
62 | 58, 60, 61 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝑁‘{(𝑌 + 𝑍)}) ≠ (𝑁‘{𝑋})) |
63 | 62 | necomd 2995 | . . 3 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{(𝑌 + 𝑍)})) |
64 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 43, 54, 63 | mapdheq 40404 | . 2 ⊢ (𝜑 → ((𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉) = ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉)) ↔ ((𝑀‘(𝑁‘{(𝑌 + 𝑍)})) = (𝐽‘{((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))}) ∧ (𝑀‘(𝑁‘{(𝑋 − (𝑌 + 𝑍))})) = (𝐽‘{(𝐹𝑅((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉)))})))) |
65 | 30, 35, 64 | mpbir2and 711 | 1 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉) = ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1541 ∈ wcel 2106 ≠ wne 2939 Vcvv 3473 ∖ cdif 3941 ⊆ wss 3944 ifcif 4522 {csn 4622 {cpr 4624 〈cotp 4630 ↦ cmpt 5224 ‘cfv 6532 ℩crio 7348 (class class class)co 7393 1st c1st 7955 2nd c2nd 7956 Basecbs 17126 +gcplusg 17179 0gc0g 17367 -gcsg 18796 LModclmod 20420 LSubSpclss 20491 LSpanclspn 20531 HLchlt 38025 LHypclh 38660 DVecHcdvh 39754 LCDualclcd 40262 mapdcmpd 40300 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2702 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7708 ax-cnex 11148 ax-resscn 11149 ax-1cn 11150 ax-icn 11151 ax-addcl 11152 ax-addrcl 11153 ax-mulcl 11154 ax-mulrcl 11155 ax-mulcom 11156 ax-addass 11157 ax-mulass 11158 ax-distr 11159 ax-i2m1 11160 ax-1ne0 11161 ax-1rid 11162 ax-rnegex 11163 ax-rrecex 11164 ax-cnre 11165 ax-pre-lttri 11166 ax-pre-lttrn 11167 ax-pre-ltadd 11168 ax-pre-mulgt0 11169 ax-riotaBAD 37628 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4523 df-pw 4598 df-sn 4623 df-pr 4625 df-tp 4627 df-op 4629 df-ot 4631 df-uni 4902 df-int 4944 df-iun 4992 df-iin 4993 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6289 df-ord 6356 df-on 6357 df-lim 6358 df-suc 6359 df-iota 6484 df-fun 6534 df-fn 6535 df-f 6536 df-f1 6537 df-fo 6538 df-f1o 6539 df-fv 6540 df-riota 7349 df-ov 7396 df-oprab 7397 df-mpo 7398 df-of 7653 df-om 7839 df-1st 7957 df-2nd 7958 df-tpos 8193 df-undef 8240 df-frecs 8248 df-wrecs 8279 df-recs 8353 df-rdg 8392 df-1o 8448 df-er 8686 df-map 8805 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-pnf 11232 df-mnf 11233 df-xr 11234 df-ltxr 11235 df-le 11236 df-sub 11428 df-neg 11429 df-nn 12195 df-2 12257 df-3 12258 df-4 12259 df-5 12260 df-6 12261 df-n0 12455 df-z 12541 df-uz 12805 df-fz 13467 df-struct 17062 df-sets 17079 df-slot 17097 df-ndx 17109 df-base 17127 df-ress 17156 df-plusg 17192 df-mulr 17193 df-sca 17195 df-vsca 17196 df-0g 17369 df-mre 17512 df-mrc 17513 df-acs 17515 df-proset 18230 df-poset 18248 df-plt 18265 df-lub 18281 df-glb 18282 df-join 18283 df-meet 18284 df-p0 18360 df-p1 18361 df-lat 18367 df-clat 18434 df-mgm 18543 df-sgrp 18592 df-mnd 18603 df-submnd 18648 df-grp 18797 df-minusg 18798 df-sbg 18799 df-subg 18975 df-cntz 19147 df-oppg 19174 df-lsm 19468 df-cmn 19614 df-abl 19615 df-mgp 19947 df-ur 19964 df-ring 20016 df-oppr 20102 df-dvdsr 20123 df-unit 20124 df-invr 20154 df-dvr 20165 df-drng 20267 df-lmod 20422 df-lss 20492 df-lsp 20532 df-lvec 20663 df-lsatoms 37651 df-lshyp 37652 df-lcv 37694 df-lfl 37733 df-lkr 37761 df-ldual 37799 df-oposet 37851 df-ol 37853 df-oml 37854 df-covers 37941 df-ats 37942 df-atl 37973 df-cvlat 37997 df-hlat 38026 df-llines 38174 df-lplanes 38175 df-lvols 38176 df-lines 38177 df-psubsp 38179 df-pmap 38180 df-padd 38472 df-lhyp 38664 df-laut 38665 df-ldil 38780 df-ltrn 38781 df-trl 38835 df-tgrp 39419 df-tendo 39431 df-edring 39433 df-dveca 39679 df-disoa 39705 df-dvech 39755 df-dib 39815 df-dic 39849 df-dih 39905 df-doch 40024 df-djh 40071 df-lcdual 40263 df-mapd 40301 |
This theorem is referenced by: mapdh6dN 40415 mapdh6eN 40416 mapdh6fN 40417 mapdh6jN 40421 |
Copyright terms: Public domain | W3C validator |