| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdh6aN | Structured version Visualization version GIF version | ||
| Description: Lemma for mapdh6N 41856. Part (6) in [Baer] p. 47, case 1. (Contributed by NM, 23-Apr-2015.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| mapdh.q | ⊢ 𝑄 = (0g‘𝐶) |
| mapdh.i | ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) |
| mapdh.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| mapdh.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
| mapdh.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| mapdh.v | ⊢ 𝑉 = (Base‘𝑈) |
| mapdh.s | ⊢ − = (-g‘𝑈) |
| mapdhc.o | ⊢ 0 = (0g‘𝑈) |
| mapdh.n | ⊢ 𝑁 = (LSpan‘𝑈) |
| mapdh.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
| mapdh.d | ⊢ 𝐷 = (Base‘𝐶) |
| mapdh.r | ⊢ 𝑅 = (-g‘𝐶) |
| mapdh.j | ⊢ 𝐽 = (LSpan‘𝐶) |
| mapdh.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| mapdhc.f | ⊢ (𝜑 → 𝐹 ∈ 𝐷) |
| mapdh.mn | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) |
| mapdhcl.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
| mapdh.p | ⊢ + = (+g‘𝑈) |
| mapdh.a | ⊢ ✚ = (+g‘𝐶) |
| mapdhe6.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
| mapdhe6.z | ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) |
| mapdhe6.xn | ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) |
| mapdh6.yz | ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍})) |
| mapdh6.fg | ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = 𝐺) |
| mapdh6.fe | ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑍〉) = 𝐸) |
| Ref | Expression |
|---|---|
| mapdh6aN | ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉) = ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapdh.q | . . . 4 ⊢ 𝑄 = (0g‘𝐶) | |
| 2 | mapdh.i | . . . 4 ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) | |
| 3 | mapdh.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 4 | mapdh.m | . . . 4 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
| 5 | mapdh.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 6 | mapdh.v | . . . 4 ⊢ 𝑉 = (Base‘𝑈) | |
| 7 | mapdh.s | . . . 4 ⊢ − = (-g‘𝑈) | |
| 8 | mapdhc.o | . . . 4 ⊢ 0 = (0g‘𝑈) | |
| 9 | mapdh.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑈) | |
| 10 | mapdh.c | . . . 4 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
| 11 | mapdh.d | . . . 4 ⊢ 𝐷 = (Base‘𝐶) | |
| 12 | mapdh.r | . . . 4 ⊢ 𝑅 = (-g‘𝐶) | |
| 13 | mapdh.j | . . . 4 ⊢ 𝐽 = (LSpan‘𝐶) | |
| 14 | mapdh.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 15 | mapdhc.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝐷) | |
| 16 | mapdh.mn | . . . 4 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) | |
| 17 | mapdhcl.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
| 18 | mapdh.p | . . . 4 ⊢ + = (+g‘𝑈) | |
| 19 | mapdh.a | . . . 4 ⊢ ✚ = (+g‘𝐶) | |
| 20 | mapdhe6.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
| 21 | mapdhe6.z | . . . 4 ⊢ (𝜑 → 𝑍 ∈ (𝑉 ∖ { 0 })) | |
| 22 | mapdhe6.xn | . . . 4 ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) | |
| 23 | mapdh6.yz | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍})) | |
| 24 | mapdh6.fg | . . . 4 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = 𝐺) | |
| 25 | mapdh6.fe | . . . 4 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑍〉) = 𝐸) | |
| 26 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 | mapdh6lem2N 41843 | . . 3 ⊢ (𝜑 → (𝑀‘(𝑁‘{(𝑌 + 𝑍)})) = (𝐽‘{(𝐺 ✚ 𝐸)})) |
| 27 | 24, 25 | oveq12d 7364 | . . . . 5 ⊢ (𝜑 → ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉)) = (𝐺 ✚ 𝐸)) |
| 28 | 27 | sneqd 4585 | . . . 4 ⊢ (𝜑 → {((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))} = {(𝐺 ✚ 𝐸)}) |
| 29 | 28 | fveq2d 6826 | . . 3 ⊢ (𝜑 → (𝐽‘{((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))}) = (𝐽‘{(𝐺 ✚ 𝐸)})) |
| 30 | 26, 29 | eqtr4d 2769 | . 2 ⊢ (𝜑 → (𝑀‘(𝑁‘{(𝑌 + 𝑍)})) = (𝐽‘{((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))})) |
| 31 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 | mapdh6lem1N 41842 | . . 3 ⊢ (𝜑 → (𝑀‘(𝑁‘{(𝑋 − (𝑌 + 𝑍))})) = (𝐽‘{(𝐹𝑅(𝐺 ✚ 𝐸))})) |
| 32 | 27 | oveq2d 7362 | . . . . 5 ⊢ (𝜑 → (𝐹𝑅((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))) = (𝐹𝑅(𝐺 ✚ 𝐸))) |
| 33 | 32 | sneqd 4585 | . . . 4 ⊢ (𝜑 → {(𝐹𝑅((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉)))} = {(𝐹𝑅(𝐺 ✚ 𝐸))}) |
| 34 | 33 | fveq2d 6826 | . . 3 ⊢ (𝜑 → (𝐽‘{(𝐹𝑅((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉)))}) = (𝐽‘{(𝐹𝑅(𝐺 ✚ 𝐸))})) |
| 35 | 31, 34 | eqtr4d 2769 | . 2 ⊢ (𝜑 → (𝑀‘(𝑁‘{(𝑋 − (𝑌 + 𝑍))})) = (𝐽‘{(𝐹𝑅((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉)))})) |
| 36 | 3, 5, 14 | dvhlmod 41219 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ LMod) |
| 37 | 20 | eldifad 3909 | . . . . 5 ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| 38 | 21 | eldifad 3909 | . . . . 5 ⊢ (𝜑 → 𝑍 ∈ 𝑉) |
| 39 | 6, 18 | lmodvacl 20808 | . . . . 5 ⊢ ((𝑈 ∈ LMod ∧ 𝑌 ∈ 𝑉 ∧ 𝑍 ∈ 𝑉) → (𝑌 + 𝑍) ∈ 𝑉) |
| 40 | 36, 37, 38, 39 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → (𝑌 + 𝑍) ∈ 𝑉) |
| 41 | 6, 18, 8, 9, 36, 37, 38, 23 | lmodindp1 20947 | . . . 4 ⊢ (𝜑 → (𝑌 + 𝑍) ≠ 0 ) |
| 42 | eldifsn 4735 | . . . 4 ⊢ ((𝑌 + 𝑍) ∈ (𝑉 ∖ { 0 }) ↔ ((𝑌 + 𝑍) ∈ 𝑉 ∧ (𝑌 + 𝑍) ≠ 0 )) | |
| 43 | 40, 41, 42 | sylanbrc 583 | . . 3 ⊢ (𝜑 → (𝑌 + 𝑍) ∈ (𝑉 ∖ { 0 })) |
| 44 | 3, 10, 14 | lcdlmod 41701 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ LMod) |
| 45 | 3, 5, 14 | dvhlvec 41218 | . . . . . . 7 ⊢ (𝜑 → 𝑈 ∈ LVec) |
| 46 | 17 | eldifad 3909 | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| 47 | 6, 8, 9, 45, 37, 21, 46, 23, 22 | lspindp2 21072 | . . . . . 6 ⊢ (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) ∧ ¬ 𝑍 ∈ (𝑁‘{𝑋, 𝑌}))) |
| 48 | 47 | simpld 494 | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
| 49 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 37, 48 | mapdhcl 41836 | . . . 4 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) ∈ 𝐷) |
| 50 | 6, 8, 9, 45, 20, 38, 46, 23, 22 | lspindp1 21070 | . . . . . 6 ⊢ (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}) ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍}))) |
| 51 | 50 | simpld 494 | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍})) |
| 52 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 38, 51 | mapdhcl 41836 | . . . 4 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑍〉) ∈ 𝐷) |
| 53 | 11, 19 | lmodvacl 20808 | . . . 4 ⊢ ((𝐶 ∈ LMod ∧ (𝐼‘〈𝑋, 𝐹, 𝑌〉) ∈ 𝐷 ∧ (𝐼‘〈𝑋, 𝐹, 𝑍〉) ∈ 𝐷) → ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉)) ∈ 𝐷) |
| 54 | 44, 49, 52, 53 | syl3anc 1373 | . . 3 ⊢ (𝜑 → ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉)) ∈ 𝐷) |
| 55 | eqid 2731 | . . . . . 6 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
| 56 | 6, 55, 9, 36, 37, 38 | lspprcl 20911 | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝑌, 𝑍}) ∈ (LSubSp‘𝑈)) |
| 57 | 6, 18, 9, 36, 37, 38 | lspprvacl 20932 | . . . . . 6 ⊢ (𝜑 → (𝑌 + 𝑍) ∈ (𝑁‘{𝑌, 𝑍})) |
| 58 | 55, 9, 36, 56, 57 | ellspsn5 20929 | . . . . 5 ⊢ (𝜑 → (𝑁‘{(𝑌 + 𝑍)}) ⊆ (𝑁‘{𝑌, 𝑍})) |
| 59 | 6, 55, 9, 36, 56, 46 | ellspsn5b 20928 | . . . . . 6 ⊢ (𝜑 → (𝑋 ∈ (𝑁‘{𝑌, 𝑍}) ↔ (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌, 𝑍}))) |
| 60 | 22, 59 | mtbid 324 | . . . . 5 ⊢ (𝜑 → ¬ (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌, 𝑍})) |
| 61 | nssne2 3993 | . . . . 5 ⊢ (((𝑁‘{(𝑌 + 𝑍)}) ⊆ (𝑁‘{𝑌, 𝑍}) ∧ ¬ (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌, 𝑍})) → (𝑁‘{(𝑌 + 𝑍)}) ≠ (𝑁‘{𝑋})) | |
| 62 | 58, 60, 61 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝑁‘{(𝑌 + 𝑍)}) ≠ (𝑁‘{𝑋})) |
| 63 | 62 | necomd 2983 | . . 3 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{(𝑌 + 𝑍)})) |
| 64 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 43, 54, 63 | mapdheq 41837 | . 2 ⊢ (𝜑 → ((𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉) = ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉)) ↔ ((𝑀‘(𝑁‘{(𝑌 + 𝑍)})) = (𝐽‘{((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))}) ∧ (𝑀‘(𝑁‘{(𝑋 − (𝑌 + 𝑍))})) = (𝐽‘{(𝐹𝑅((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉)))})))) |
| 65 | 30, 35, 64 | mpbir2and 713 | 1 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉) = ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 Vcvv 3436 ∖ cdif 3894 ⊆ wss 3897 ifcif 4472 {csn 4573 {cpr 4575 〈cotp 4581 ↦ cmpt 5170 ‘cfv 6481 ℩crio 7302 (class class class)co 7346 1st c1st 7919 2nd c2nd 7920 Basecbs 17120 +gcplusg 17161 0gc0g 17343 -gcsg 18848 LModclmod 20793 LSubSpclss 20864 LSpanclspn 20904 HLchlt 39459 LHypclh 40093 DVecHcdvh 41187 LCDualclcd 41695 mapdcmpd 41733 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 ax-riotaBAD 39062 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-ot 4582 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-of 7610 df-om 7797 df-1st 7921 df-2nd 7922 df-tpos 8156 df-undef 8203 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-3 12189 df-4 12190 df-5 12191 df-6 12192 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-struct 17058 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-mulr 17175 df-sca 17177 df-vsca 17178 df-0g 17345 df-mre 17488 df-mrc 17489 df-acs 17491 df-proset 18200 df-poset 18219 df-plt 18234 df-lub 18250 df-glb 18251 df-join 18252 df-meet 18253 df-p0 18329 df-p1 18330 df-lat 18338 df-clat 18405 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-submnd 18692 df-grp 18849 df-minusg 18850 df-sbg 18851 df-subg 19036 df-cntz 19229 df-oppg 19258 df-lsm 19548 df-cmn 19694 df-abl 19695 df-mgp 20059 df-rng 20071 df-ur 20100 df-ring 20153 df-oppr 20255 df-dvdsr 20275 df-unit 20276 df-invr 20306 df-dvr 20319 df-nzr 20428 df-rlreg 20609 df-domn 20610 df-drng 20646 df-lmod 20795 df-lss 20865 df-lsp 20905 df-lvec 21037 df-lsatoms 39085 df-lshyp 39086 df-lcv 39128 df-lfl 39167 df-lkr 39195 df-ldual 39233 df-oposet 39285 df-ol 39287 df-oml 39288 df-covers 39375 df-ats 39376 df-atl 39407 df-cvlat 39431 df-hlat 39460 df-llines 39607 df-lplanes 39608 df-lvols 39609 df-lines 39610 df-psubsp 39612 df-pmap 39613 df-padd 39905 df-lhyp 40097 df-laut 40098 df-ldil 40213 df-ltrn 40214 df-trl 40268 df-tgrp 40852 df-tendo 40864 df-edring 40866 df-dveca 41112 df-disoa 41138 df-dvech 41188 df-dib 41248 df-dic 41282 df-dih 41338 df-doch 41457 df-djh 41504 df-lcdual 41696 df-mapd 41734 |
| This theorem is referenced by: mapdh6dN 41848 mapdh6eN 41849 mapdh6fN 41850 mapdh6jN 41854 |
| Copyright terms: Public domain | W3C validator |