Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdh6aN Structured version   Visualization version   GIF version

Theorem mapdh6aN 41722
Description: Lemma for mapdh6N 41734. Part (6) in [Baer] p. 47, case 1. (Contributed by NM, 23-Apr-2015.) (New usage is discouraged.)
Hypotheses
Ref Expression
mapdh.q 𝑄 = (0g𝐶)
mapdh.i 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
mapdh.h 𝐻 = (LHyp‘𝐾)
mapdh.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdh.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdh.v 𝑉 = (Base‘𝑈)
mapdh.s = (-g𝑈)
mapdhc.o 0 = (0g𝑈)
mapdh.n 𝑁 = (LSpan‘𝑈)
mapdh.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdh.d 𝐷 = (Base‘𝐶)
mapdh.r 𝑅 = (-g𝐶)
mapdh.j 𝐽 = (LSpan‘𝐶)
mapdh.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdhc.f (𝜑𝐹𝐷)
mapdh.mn (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
mapdhcl.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
mapdh.p + = (+g𝑈)
mapdh.a = (+g𝐶)
mapdhe6.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
mapdhe6.z (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
mapdhe6.xn (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
mapdh6.yz (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
mapdh6.fg (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺)
mapdh6.fe (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑍⟩) = 𝐸)
Assertion
Ref Expression
mapdh6aN (𝜑 → (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩) = ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)))
Distinct variable groups:   𝑥,𝐷,   ,𝐹,𝑥   𝑥,𝐽   𝑥,𝑀   𝑥,𝑁   𝑥, 0   𝑥,𝑄   𝑥,𝑅   𝑥,   ,𝑋,𝑥   ,𝑌,𝑥   𝜑,   0 ,   𝐶,   𝐷,   ,𝐽   ,𝑀   ,𝑁   𝑅,   𝑈,   ,   ,𝐺,𝑥   ,𝐸   ,𝑍,𝑥   ,   ,𝐼   + ,,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   (𝑥)   𝑄()   𝑈(𝑥)   𝐸(𝑥)   𝐻(𝑥,)   𝐼(𝑥)   𝐾(𝑥,)   𝑉(𝑥,)   𝑊(𝑥,)

Proof of Theorem mapdh6aN
StepHypRef Expression
1 mapdh.q . . . 4 𝑄 = (0g𝐶)
2 mapdh.i . . . 4 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
3 mapdh.h . . . 4 𝐻 = (LHyp‘𝐾)
4 mapdh.m . . . 4 𝑀 = ((mapd‘𝐾)‘𝑊)
5 mapdh.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
6 mapdh.v . . . 4 𝑉 = (Base‘𝑈)
7 mapdh.s . . . 4 = (-g𝑈)
8 mapdhc.o . . . 4 0 = (0g𝑈)
9 mapdh.n . . . 4 𝑁 = (LSpan‘𝑈)
10 mapdh.c . . . 4 𝐶 = ((LCDual‘𝐾)‘𝑊)
11 mapdh.d . . . 4 𝐷 = (Base‘𝐶)
12 mapdh.r . . . 4 𝑅 = (-g𝐶)
13 mapdh.j . . . 4 𝐽 = (LSpan‘𝐶)
14 mapdh.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
15 mapdhc.f . . . 4 (𝜑𝐹𝐷)
16 mapdh.mn . . . 4 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
17 mapdhcl.x . . . 4 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
18 mapdh.p . . . 4 + = (+g𝑈)
19 mapdh.a . . . 4 = (+g𝐶)
20 mapdhe6.y . . . 4 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
21 mapdhe6.z . . . 4 (𝜑𝑍 ∈ (𝑉 ∖ { 0 }))
22 mapdhe6.xn . . . 4 (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍}))
23 mapdh6.yz . . . 4 (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑍}))
24 mapdh6.fg . . . 4 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺)
25 mapdh6.fe . . . 4 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑍⟩) = 𝐸)
261, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25mapdh6lem2N 41721 . . 3 (𝜑 → (𝑀‘(𝑁‘{(𝑌 + 𝑍)})) = (𝐽‘{(𝐺 𝐸)}))
2724, 25oveq12d 7387 . . . . 5 (𝜑 → ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)) = (𝐺 𝐸))
2827sneqd 4597 . . . 4 (𝜑 → {((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩))} = {(𝐺 𝐸)})
2928fveq2d 6844 . . 3 (𝜑 → (𝐽‘{((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩))}) = (𝐽‘{(𝐺 𝐸)}))
3026, 29eqtr4d 2767 . 2 (𝜑 → (𝑀‘(𝑁‘{(𝑌 + 𝑍)})) = (𝐽‘{((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩))}))
311, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25mapdh6lem1N 41720 . . 3 (𝜑 → (𝑀‘(𝑁‘{(𝑋 (𝑌 + 𝑍))})) = (𝐽‘{(𝐹𝑅(𝐺 𝐸))}))
3227oveq2d 7385 . . . . 5 (𝜑 → (𝐹𝑅((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩))) = (𝐹𝑅(𝐺 𝐸)))
3332sneqd 4597 . . . 4 (𝜑 → {(𝐹𝑅((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)))} = {(𝐹𝑅(𝐺 𝐸))})
3433fveq2d 6844 . . 3 (𝜑 → (𝐽‘{(𝐹𝑅((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)))}) = (𝐽‘{(𝐹𝑅(𝐺 𝐸))}))
3531, 34eqtr4d 2767 . 2 (𝜑 → (𝑀‘(𝑁‘{(𝑋 (𝑌 + 𝑍))})) = (𝐽‘{(𝐹𝑅((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)))}))
363, 5, 14dvhlmod 41097 . . . . 5 (𝜑𝑈 ∈ LMod)
3720eldifad 3923 . . . . 5 (𝜑𝑌𝑉)
3821eldifad 3923 . . . . 5 (𝜑𝑍𝑉)
396, 18lmodvacl 20813 . . . . 5 ((𝑈 ∈ LMod ∧ 𝑌𝑉𝑍𝑉) → (𝑌 + 𝑍) ∈ 𝑉)
4036, 37, 38, 39syl3anc 1373 . . . 4 (𝜑 → (𝑌 + 𝑍) ∈ 𝑉)
416, 18, 8, 9, 36, 37, 38, 23lmodindp1 20952 . . . 4 (𝜑 → (𝑌 + 𝑍) ≠ 0 )
42 eldifsn 4746 . . . 4 ((𝑌 + 𝑍) ∈ (𝑉 ∖ { 0 }) ↔ ((𝑌 + 𝑍) ∈ 𝑉 ∧ (𝑌 + 𝑍) ≠ 0 ))
4340, 41, 42sylanbrc 583 . . 3 (𝜑 → (𝑌 + 𝑍) ∈ (𝑉 ∖ { 0 }))
443, 10, 14lcdlmod 41579 . . . 4 (𝜑𝐶 ∈ LMod)
453, 5, 14dvhlvec 41096 . . . . . . 7 (𝜑𝑈 ∈ LVec)
4617eldifad 3923 . . . . . . 7 (𝜑𝑋𝑉)
476, 8, 9, 45, 37, 21, 46, 23, 22lspindp2 21077 . . . . . 6 (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) ∧ ¬ 𝑍 ∈ (𝑁‘{𝑋, 𝑌})))
4847simpld 494 . . . . 5 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
491, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 37, 48mapdhcl 41714 . . . 4 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) ∈ 𝐷)
506, 8, 9, 45, 20, 38, 46, 23, 22lspindp1 21075 . . . . . 6 (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}) ∧ ¬ 𝑌 ∈ (𝑁‘{𝑋, 𝑍})))
5150simpld 494 . . . . 5 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}))
521, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 38, 51mapdhcl 41714 . . . 4 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑍⟩) ∈ 𝐷)
5311, 19lmodvacl 20813 . . . 4 ((𝐶 ∈ LMod ∧ (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) ∈ 𝐷 ∧ (𝐼‘⟨𝑋, 𝐹, 𝑍⟩) ∈ 𝐷) → ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)) ∈ 𝐷)
5444, 49, 52, 53syl3anc 1373 . . 3 (𝜑 → ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)) ∈ 𝐷)
55 eqid 2729 . . . . . 6 (LSubSp‘𝑈) = (LSubSp‘𝑈)
566, 55, 9, 36, 37, 38lspprcl 20916 . . . . . 6 (𝜑 → (𝑁‘{𝑌, 𝑍}) ∈ (LSubSp‘𝑈))
576, 18, 9, 36, 37, 38lspprvacl 20937 . . . . . 6 (𝜑 → (𝑌 + 𝑍) ∈ (𝑁‘{𝑌, 𝑍}))
5855, 9, 36, 56, 57ellspsn5 20934 . . . . 5 (𝜑 → (𝑁‘{(𝑌 + 𝑍)}) ⊆ (𝑁‘{𝑌, 𝑍}))
596, 55, 9, 36, 56, 46ellspsn5b 20933 . . . . . 6 (𝜑 → (𝑋 ∈ (𝑁‘{𝑌, 𝑍}) ↔ (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌, 𝑍})))
6022, 59mtbid 324 . . . . 5 (𝜑 → ¬ (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌, 𝑍}))
61 nssne2 4007 . . . . 5 (((𝑁‘{(𝑌 + 𝑍)}) ⊆ (𝑁‘{𝑌, 𝑍}) ∧ ¬ (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑌, 𝑍})) → (𝑁‘{(𝑌 + 𝑍)}) ≠ (𝑁‘{𝑋}))
6258, 60, 61syl2anc 584 . . . 4 (𝜑 → (𝑁‘{(𝑌 + 𝑍)}) ≠ (𝑁‘{𝑋}))
6362necomd 2980 . . 3 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{(𝑌 + 𝑍)}))
641, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 43, 54, 63mapdheq 41715 . 2 (𝜑 → ((𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩) = ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)) ↔ ((𝑀‘(𝑁‘{(𝑌 + 𝑍)})) = (𝐽‘{((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩))}) ∧ (𝑀‘(𝑁‘{(𝑋 (𝑌 + 𝑍))})) = (𝐽‘{(𝐹𝑅((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)))}))))
6530, 35, 64mpbir2and 713 1 (𝜑 → (𝐼‘⟨𝑋, 𝐹, (𝑌 + 𝑍)⟩) = ((𝐼‘⟨𝑋, 𝐹, 𝑌⟩) (𝐼‘⟨𝑋, 𝐹, 𝑍⟩)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wcel 2109  wne 2925  Vcvv 3444  cdif 3908  wss 3911  ifcif 4484  {csn 4585  {cpr 4587  cotp 4593  cmpt 5183  cfv 6499  crio 7325  (class class class)co 7369  1st c1st 7945  2nd c2nd 7946  Basecbs 17155  +gcplusg 17196  0gc0g 17378  -gcsg 18849  LModclmod 20798  LSubSpclss 20869  LSpanclspn 20909  HLchlt 39336  LHypclh 39971  DVecHcdvh 41065  LCDualclcd 41573  mapdcmpd 41611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-riotaBAD 38939
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-ot 4594  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-of 7633  df-om 7823  df-1st 7947  df-2nd 7948  df-tpos 8182  df-undef 8229  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-struct 17093  df-sets 17110  df-slot 17128  df-ndx 17140  df-base 17156  df-ress 17177  df-plusg 17209  df-mulr 17210  df-sca 17212  df-vsca 17213  df-0g 17380  df-mre 17523  df-mrc 17524  df-acs 17526  df-proset 18235  df-poset 18254  df-plt 18269  df-lub 18285  df-glb 18286  df-join 18287  df-meet 18288  df-p0 18364  df-p1 18365  df-lat 18373  df-clat 18440  df-mgm 18549  df-sgrp 18628  df-mnd 18644  df-submnd 18693  df-grp 18850  df-minusg 18851  df-sbg 18852  df-subg 19037  df-cntz 19231  df-oppg 19260  df-lsm 19550  df-cmn 19696  df-abl 19697  df-mgp 20061  df-rng 20073  df-ur 20102  df-ring 20155  df-oppr 20257  df-dvdsr 20277  df-unit 20278  df-invr 20308  df-dvr 20321  df-nzr 20433  df-rlreg 20614  df-domn 20615  df-drng 20651  df-lmod 20800  df-lss 20870  df-lsp 20910  df-lvec 21042  df-lsatoms 38962  df-lshyp 38963  df-lcv 39005  df-lfl 39044  df-lkr 39072  df-ldual 39110  df-oposet 39162  df-ol 39164  df-oml 39165  df-covers 39252  df-ats 39253  df-atl 39284  df-cvlat 39308  df-hlat 39337  df-llines 39485  df-lplanes 39486  df-lvols 39487  df-lines 39488  df-psubsp 39490  df-pmap 39491  df-padd 39783  df-lhyp 39975  df-laut 39976  df-ldil 40091  df-ltrn 40092  df-trl 40146  df-tgrp 40730  df-tendo 40742  df-edring 40744  df-dveca 40990  df-disoa 41016  df-dvech 41066  df-dib 41126  df-dic 41160  df-dih 41216  df-doch 41335  df-djh 41382  df-lcdual 41574  df-mapd 41612
This theorem is referenced by:  mapdh6dN  41726  mapdh6eN  41727  mapdh6fN  41728  mapdh6jN  41732
  Copyright terms: Public domain W3C validator