Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdh8e Structured version   Visualization version   GIF version

Theorem mapdh8e 40247
Description: Part of Part (8) in [Baer] p. 48. Eliminate 𝑤. (Contributed by NM, 10-May-2015.)
Hypotheses
Ref Expression
mapdh8a.h 𝐻 = (LHyp‘𝐾)
mapdh8a.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdh8a.v 𝑉 = (Base‘𝑈)
mapdh8a.s = (-g𝑈)
mapdh8a.o 0 = (0g𝑈)
mapdh8a.n 𝑁 = (LSpan‘𝑈)
mapdh8a.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdh8a.d 𝐷 = (Base‘𝐶)
mapdh8a.r 𝑅 = (-g𝐶)
mapdh8a.q 𝑄 = (0g𝐶)
mapdh8a.j 𝐽 = (LSpan‘𝐶)
mapdh8a.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdh8a.i 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
mapdh8a.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdh8e.f (𝜑𝐹𝐷)
mapdh8e.mn (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
mapdh8e.eg (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺)
mapdh8e.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
mapdh8e.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
mapdh8e.t (𝜑𝑇 ∈ (𝑉 ∖ { 0 }))
mapdh8e.xy (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
mapdh8e.xt (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇}))
mapdh8e.yt (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑇}))
mapdh8e.e (𝜑𝑋 ∈ (𝑁‘{𝑌, 𝑇}))
Assertion
Ref Expression
mapdh8e (𝜑 → (𝐼‘⟨𝑌, 𝐺, 𝑇⟩) = (𝐼‘⟨𝑋, 𝐹, 𝑇⟩))
Distinct variable groups:   𝑥,,   0 ,,𝑥   𝐶,   𝐷,,𝑥   ,𝐹,𝑥   ,𝐼   ,𝐺,𝑥   ,𝐽,𝑥   ,𝑀,𝑥   ,𝑁,𝑥   𝜑,   𝑅,,𝑥   𝑥,𝑄   𝑇,,𝑥   𝑈,   ,𝑋,𝑥   ,𝑌,𝑥   𝑥,𝐼   ,𝑉
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   𝑄()   𝑈(𝑥)   𝐻(𝑥,)   𝐾(𝑥,)   𝑉(𝑥)   𝑊(𝑥,)

Proof of Theorem mapdh8e
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 mapdh8a.h . . 3 𝐻 = (LHyp‘𝐾)
2 mapdh8a.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 mapdh8a.v . . 3 𝑉 = (Base‘𝑈)
4 mapdh8a.n . . 3 𝑁 = (LSpan‘𝑈)
5 mapdh8a.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
6 mapdh8e.x . . . 4 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
76eldifad 3922 . . 3 (𝜑𝑋𝑉)
8 mapdh8e.y . . . 4 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
98eldifad 3922 . . 3 (𝜑𝑌𝑉)
101, 2, 3, 4, 5, 7, 9dvh3dim 39909 . 2 (𝜑 → ∃𝑤𝑉 ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
11 mapdh8a.s . . . 4 = (-g𝑈)
12 mapdh8a.o . . . 4 0 = (0g𝑈)
13 mapdh8a.c . . . 4 𝐶 = ((LCDual‘𝐾)‘𝑊)
14 mapdh8a.d . . . 4 𝐷 = (Base‘𝐶)
15 mapdh8a.r . . . 4 𝑅 = (-g𝐶)
16 mapdh8a.q . . . 4 𝑄 = (0g𝐶)
17 mapdh8a.j . . . 4 𝐽 = (LSpan‘𝐶)
18 mapdh8a.m . . . 4 𝑀 = ((mapd‘𝐾)‘𝑊)
19 mapdh8a.i . . . 4 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
2053ad2ant1 1133 . . . 4 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝐾 ∈ HL ∧ 𝑊𝐻))
21 mapdh8e.f . . . . 5 (𝜑𝐹𝐷)
22213ad2ant1 1133 . . . 4 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → 𝐹𝐷)
23 mapdh8e.mn . . . . 5 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
24233ad2ant1 1133 . . . 4 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
25 mapdh8e.eg . . . . 5 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺)
26253ad2ant1 1133 . . . 4 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺)
2763ad2ant1 1133 . . . 4 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → 𝑋 ∈ (𝑉 ∖ { 0 }))
2883ad2ant1 1133 . . . 4 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → 𝑌 ∈ (𝑉 ∖ { 0 }))
29 mapdh8e.t . . . . 5 (𝜑𝑇 ∈ (𝑉 ∖ { 0 }))
30293ad2ant1 1133 . . . 4 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → 𝑇 ∈ (𝑉 ∖ { 0 }))
31 mapdh8e.yt . . . . 5 (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑇}))
32313ad2ant1 1133 . . . 4 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑇}))
33 eqid 2736 . . . . 5 (LSubSp‘𝑈) = (LSubSp‘𝑈)
341, 2, 5dvhlmod 39573 . . . . . 6 (𝜑𝑈 ∈ LMod)
35343ad2ant1 1133 . . . . 5 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → 𝑈 ∈ LMod)
363, 33, 4, 34, 7, 9lspprcl 20439 . . . . . 6 (𝜑 → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈))
37363ad2ant1 1133 . . . . 5 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈))
38 simp2 1137 . . . . 5 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → 𝑤𝑉)
39 simp3 1138 . . . . 5 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
4012, 33, 35, 37, 38, 39lssneln0 20413 . . . 4 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → 𝑤 ∈ (𝑉 ∖ { 0 }))
411, 2, 5dvhlvec 39572 . . . . . . . . 9 (𝜑𝑈 ∈ LVec)
4229eldifad 3922 . . . . . . . . 9 (𝜑𝑇𝑉)
43 mapdh8e.xy . . . . . . . . 9 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
44 mapdh8e.e . . . . . . . . . 10 (𝜑𝑋 ∈ (𝑁‘{𝑌, 𝑇}))
45 prcom 4693 . . . . . . . . . . 11 {𝑌, 𝑇} = {𝑇, 𝑌}
4645fveq2i 6845 . . . . . . . . . 10 (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑇, 𝑌})
4744, 46eleqtrdi 2848 . . . . . . . . 9 (𝜑𝑋 ∈ (𝑁‘{𝑇, 𝑌}))
483, 12, 4, 41, 6, 42, 9, 43, 47lspexch 20590 . . . . . . . 8 (𝜑𝑇 ∈ (𝑁‘{𝑋, 𝑌}))
4933, 4, 34, 36, 48lspsnel5a 20457 . . . . . . 7 (𝜑 → (𝑁‘{𝑇}) ⊆ (𝑁‘{𝑋, 𝑌}))
50493ad2ant1 1133 . . . . . 6 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝑇}) ⊆ (𝑁‘{𝑋, 𝑌}))
5134adantr 481 . . . . . . . . . 10 ((𝜑𝑤𝑉) → 𝑈 ∈ LMod)
5236adantr 481 . . . . . . . . . 10 ((𝜑𝑤𝑉) → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈))
53 simpr 485 . . . . . . . . . 10 ((𝜑𝑤𝑉) → 𝑤𝑉)
543, 33, 4, 51, 52, 53lspsnel5 20456 . . . . . . . . 9 ((𝜑𝑤𝑉) → (𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ↔ (𝑁‘{𝑤}) ⊆ (𝑁‘{𝑋, 𝑌})))
5554biimprd 247 . . . . . . . 8 ((𝜑𝑤𝑉) → ((𝑁‘{𝑤}) ⊆ (𝑁‘{𝑋, 𝑌}) → 𝑤 ∈ (𝑁‘{𝑋, 𝑌})))
5655con3d 152 . . . . . . 7 ((𝜑𝑤𝑉) → (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) → ¬ (𝑁‘{𝑤}) ⊆ (𝑁‘{𝑋, 𝑌})))
57563impia 1117 . . . . . 6 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → ¬ (𝑁‘{𝑤}) ⊆ (𝑁‘{𝑋, 𝑌}))
58 nssne2 4005 . . . . . 6 (((𝑁‘{𝑇}) ⊆ (𝑁‘{𝑋, 𝑌}) ∧ ¬ (𝑁‘{𝑤}) ⊆ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝑇}) ≠ (𝑁‘{𝑤}))
5950, 57, 58syl2anc 584 . . . . 5 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝑇}) ≠ (𝑁‘{𝑤}))
6059necomd 2999 . . . 4 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇}))
61 mapdh8e.xt . . . . 5 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇}))
62613ad2ant1 1133 . . . 4 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇}))
63413ad2ant1 1133 . . . . . . 7 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → 𝑈 ∈ LVec)
6473ad2ant1 1133 . . . . . . 7 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → 𝑋𝑉)
6593ad2ant1 1133 . . . . . . 7 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → 𝑌𝑉)
663, 4, 63, 38, 64, 65, 39lspindpi 20593 . . . . . 6 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑌})))
6766simprd 496 . . . . 5 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑌}))
6867necomd 2999 . . . 4 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑤}))
69433ad2ant1 1133 . . . . . 6 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
703, 12, 4, 63, 27, 65, 38, 69, 39lspindp2l 20595 . . . . 5 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → ((𝑁‘{𝑌}) ≠ (𝑁‘{𝑤}) ∧ ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑤})))
7170simprd 496 . . . 4 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑤}))
721, 2, 3, 11, 12, 4, 13, 14, 15, 16, 17, 18, 19, 20, 22, 24, 26, 27, 28, 30, 32, 40, 60, 62, 68, 71mapdh8d 40246 . . 3 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝐼‘⟨𝑌, 𝐺, 𝑇⟩) = (𝐼‘⟨𝑋, 𝐹, 𝑇⟩))
7372rexlimdv3a 3156 . 2 (𝜑 → (∃𝑤𝑉 ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) → (𝐼‘⟨𝑌, 𝐺, 𝑇⟩) = (𝐼‘⟨𝑋, 𝐹, 𝑇⟩)))
7410, 73mpd 15 1 (𝜑 → (𝐼‘⟨𝑌, 𝐺, 𝑇⟩) = (𝐼‘⟨𝑋, 𝐹, 𝑇⟩))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wrex 3073  Vcvv 3445  cdif 3907  wss 3910  ifcif 4486  {csn 4586  {cpr 4588  cotp 4594  cmpt 5188  cfv 6496  crio 7312  (class class class)co 7357  1st c1st 7919  2nd c2nd 7920  Basecbs 17083  0gc0g 17321  -gcsg 18750  LModclmod 20322  LSubSpclss 20392  LSpanclspn 20432  LVecclvec 20563  HLchlt 37812  LHypclh 38447  DVecHcdvh 39541  LCDualclcd 40049  mapdcmpd 40087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-riotaBAD 37415
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-ot 4595  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-tpos 8157  df-undef 8204  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-sca 17149  df-vsca 17150  df-0g 17323  df-mre 17466  df-mrc 17467  df-acs 17469  df-proset 18184  df-poset 18202  df-plt 18219  df-lub 18235  df-glb 18236  df-join 18237  df-meet 18238  df-p0 18314  df-p1 18315  df-lat 18321  df-clat 18388  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-grp 18751  df-minusg 18752  df-sbg 18753  df-subg 18925  df-cntz 19097  df-oppg 19124  df-lsm 19418  df-cmn 19564  df-abl 19565  df-mgp 19897  df-ur 19914  df-ring 19966  df-oppr 20049  df-dvdsr 20070  df-unit 20071  df-invr 20101  df-dvr 20112  df-drng 20187  df-lmod 20324  df-lss 20393  df-lsp 20433  df-lvec 20564  df-lsatoms 37438  df-lshyp 37439  df-lcv 37481  df-lfl 37520  df-lkr 37548  df-ldual 37586  df-oposet 37638  df-ol 37640  df-oml 37641  df-covers 37728  df-ats 37729  df-atl 37760  df-cvlat 37784  df-hlat 37813  df-llines 37961  df-lplanes 37962  df-lvols 37963  df-lines 37964  df-psubsp 37966  df-pmap 37967  df-padd 38259  df-lhyp 38451  df-laut 38452  df-ldil 38567  df-ltrn 38568  df-trl 38622  df-tgrp 39206  df-tendo 39218  df-edring 39220  df-dveca 39466  df-disoa 39492  df-dvech 39542  df-dib 39602  df-dic 39636  df-dih 39692  df-doch 39811  df-djh 39858  df-lcdual 40050  df-mapd 40088
This theorem is referenced by:  mapdh8g  40248
  Copyright terms: Public domain W3C validator