| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdh8e | Structured version Visualization version GIF version | ||
| Description: Part of Part (8) in [Baer] p. 48. Eliminate 𝑤. (Contributed by NM, 10-May-2015.) |
| Ref | Expression |
|---|---|
| mapdh8a.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| mapdh8a.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| mapdh8a.v | ⊢ 𝑉 = (Base‘𝑈) |
| mapdh8a.s | ⊢ − = (-g‘𝑈) |
| mapdh8a.o | ⊢ 0 = (0g‘𝑈) |
| mapdh8a.n | ⊢ 𝑁 = (LSpan‘𝑈) |
| mapdh8a.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
| mapdh8a.d | ⊢ 𝐷 = (Base‘𝐶) |
| mapdh8a.r | ⊢ 𝑅 = (-g‘𝐶) |
| mapdh8a.q | ⊢ 𝑄 = (0g‘𝐶) |
| mapdh8a.j | ⊢ 𝐽 = (LSpan‘𝐶) |
| mapdh8a.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
| mapdh8a.i | ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) |
| mapdh8a.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| mapdh8e.f | ⊢ (𝜑 → 𝐹 ∈ 𝐷) |
| mapdh8e.mn | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) |
| mapdh8e.eg | ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = 𝐺) |
| mapdh8e.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
| mapdh8e.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
| mapdh8e.t | ⊢ (𝜑 → 𝑇 ∈ (𝑉 ∖ { 0 })) |
| mapdh8e.xy | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
| mapdh8e.xt | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇})) |
| mapdh8e.yt | ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑇})) |
| mapdh8e.e | ⊢ (𝜑 → 𝑋 ∈ (𝑁‘{𝑌, 𝑇})) |
| Ref | Expression |
|---|---|
| mapdh8e | ⊢ (𝜑 → (𝐼‘〈𝑌, 𝐺, 𝑇〉) = (𝐼‘〈𝑋, 𝐹, 𝑇〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapdh8a.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | mapdh8a.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 3 | mapdh8a.v | . . 3 ⊢ 𝑉 = (Base‘𝑈) | |
| 4 | mapdh8a.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑈) | |
| 5 | mapdh8a.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 6 | mapdh8e.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
| 7 | 6 | eldifad 3943 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| 8 | mapdh8e.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
| 9 | 8 | eldifad 3943 | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| 10 | 1, 2, 3, 4, 5, 7, 9 | dvh3dim 41470 | . 2 ⊢ (𝜑 → ∃𝑤 ∈ 𝑉 ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) |
| 11 | mapdh8a.s | . . . 4 ⊢ − = (-g‘𝑈) | |
| 12 | mapdh8a.o | . . . 4 ⊢ 0 = (0g‘𝑈) | |
| 13 | mapdh8a.c | . . . 4 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
| 14 | mapdh8a.d | . . . 4 ⊢ 𝐷 = (Base‘𝐶) | |
| 15 | mapdh8a.r | . . . 4 ⊢ 𝑅 = (-g‘𝐶) | |
| 16 | mapdh8a.q | . . . 4 ⊢ 𝑄 = (0g‘𝐶) | |
| 17 | mapdh8a.j | . . . 4 ⊢ 𝐽 = (LSpan‘𝐶) | |
| 18 | mapdh8a.m | . . . 4 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
| 19 | mapdh8a.i | . . . 4 ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) | |
| 20 | 5 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 21 | mapdh8e.f | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ 𝐷) | |
| 22 | 21 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → 𝐹 ∈ 𝐷) |
| 23 | mapdh8e.mn | . . . . 5 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) | |
| 24 | 23 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) |
| 25 | mapdh8e.eg | . . . . 5 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = 𝐺) | |
| 26 | 25 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = 𝐺) |
| 27 | 6 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → 𝑋 ∈ (𝑉 ∖ { 0 })) |
| 28 | 8 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → 𝑌 ∈ (𝑉 ∖ { 0 })) |
| 29 | mapdh8e.t | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ (𝑉 ∖ { 0 })) | |
| 30 | 29 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → 𝑇 ∈ (𝑉 ∖ { 0 })) |
| 31 | mapdh8e.yt | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑇})) | |
| 32 | 31 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑇})) |
| 33 | eqid 2736 | . . . . 5 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
| 34 | 1, 2, 5 | dvhlmod 41134 | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ LMod) |
| 35 | 34 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → 𝑈 ∈ LMod) |
| 36 | 3, 33, 4, 34, 7, 9 | lspprcl 20940 | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈)) |
| 37 | 36 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈)) |
| 38 | simp2 1137 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → 𝑤 ∈ 𝑉) | |
| 39 | simp3 1138 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) | |
| 40 | 12, 33, 35, 37, 38, 39 | lssneln0 20915 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → 𝑤 ∈ (𝑉 ∖ { 0 })) |
| 41 | 1, 2, 5 | dvhlvec 41133 | . . . . . . . . 9 ⊢ (𝜑 → 𝑈 ∈ LVec) |
| 42 | 29 | eldifad 3943 | . . . . . . . . 9 ⊢ (𝜑 → 𝑇 ∈ 𝑉) |
| 43 | mapdh8e.xy | . . . . . . . . 9 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | |
| 44 | mapdh8e.e | . . . . . . . . . 10 ⊢ (𝜑 → 𝑋 ∈ (𝑁‘{𝑌, 𝑇})) | |
| 45 | prcom 4713 | . . . . . . . . . . 11 ⊢ {𝑌, 𝑇} = {𝑇, 𝑌} | |
| 46 | 45 | fveq2i 6884 | . . . . . . . . . 10 ⊢ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑇, 𝑌}) |
| 47 | 44, 46 | eleqtrdi 2845 | . . . . . . . . 9 ⊢ (𝜑 → 𝑋 ∈ (𝑁‘{𝑇, 𝑌})) |
| 48 | 3, 12, 4, 41, 6, 42, 9, 43, 47 | lspexch 21095 | . . . . . . . 8 ⊢ (𝜑 → 𝑇 ∈ (𝑁‘{𝑋, 𝑌})) |
| 49 | 33, 4, 34, 36, 48 | ellspsn5 20958 | . . . . . . 7 ⊢ (𝜑 → (𝑁‘{𝑇}) ⊆ (𝑁‘{𝑋, 𝑌})) |
| 50 | 49 | 3ad2ant1 1133 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝑇}) ⊆ (𝑁‘{𝑋, 𝑌})) |
| 51 | 34 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉) → 𝑈 ∈ LMod) |
| 52 | 36 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉) → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈)) |
| 53 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉) → 𝑤 ∈ 𝑉) | |
| 54 | 3, 33, 4, 51, 52, 53 | ellspsn5b 20957 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉) → (𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ↔ (𝑁‘{𝑤}) ⊆ (𝑁‘{𝑋, 𝑌}))) |
| 55 | 54 | biimprd 248 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉) → ((𝑁‘{𝑤}) ⊆ (𝑁‘{𝑋, 𝑌}) → 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))) |
| 56 | 55 | con3d 152 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉) → (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) → ¬ (𝑁‘{𝑤}) ⊆ (𝑁‘{𝑋, 𝑌}))) |
| 57 | 56 | 3impia 1117 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → ¬ (𝑁‘{𝑤}) ⊆ (𝑁‘{𝑋, 𝑌})) |
| 58 | nssne2 4027 | . . . . . 6 ⊢ (((𝑁‘{𝑇}) ⊆ (𝑁‘{𝑋, 𝑌}) ∧ ¬ (𝑁‘{𝑤}) ⊆ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝑇}) ≠ (𝑁‘{𝑤})) | |
| 59 | 50, 57, 58 | syl2anc 584 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝑇}) ≠ (𝑁‘{𝑤})) |
| 60 | 59 | necomd 2988 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇})) |
| 61 | mapdh8e.xt | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇})) | |
| 62 | 61 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇})) |
| 63 | 41 | 3ad2ant1 1133 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → 𝑈 ∈ LVec) |
| 64 | 7 | 3ad2ant1 1133 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → 𝑋 ∈ 𝑉) |
| 65 | 9 | 3ad2ant1 1133 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → 𝑌 ∈ 𝑉) |
| 66 | 3, 4, 63, 38, 64, 65, 39 | lspindpi 21098 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑌}))) |
| 67 | 66 | simprd 495 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑌})) |
| 68 | 67 | necomd 2988 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑤})) |
| 69 | 43 | 3ad2ant1 1133 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
| 70 | 3, 12, 4, 63, 27, 65, 38, 69, 39 | lspindp2l 21100 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → ((𝑁‘{𝑌}) ≠ (𝑁‘{𝑤}) ∧ ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑤}))) |
| 71 | 70 | simprd 495 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑤})) |
| 72 | 1, 2, 3, 11, 12, 4, 13, 14, 15, 16, 17, 18, 19, 20, 22, 24, 26, 27, 28, 30, 32, 40, 60, 62, 68, 71 | mapdh8d 41807 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝐼‘〈𝑌, 𝐺, 𝑇〉) = (𝐼‘〈𝑋, 𝐹, 𝑇〉)) |
| 73 | 72 | rexlimdv3a 3146 | . 2 ⊢ (𝜑 → (∃𝑤 ∈ 𝑉 ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) → (𝐼‘〈𝑌, 𝐺, 𝑇〉) = (𝐼‘〈𝑋, 𝐹, 𝑇〉))) |
| 74 | 10, 73 | mpd 15 | 1 ⊢ (𝜑 → (𝐼‘〈𝑌, 𝐺, 𝑇〉) = (𝐼‘〈𝑋, 𝐹, 𝑇〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2933 ∃wrex 3061 Vcvv 3464 ∖ cdif 3928 ⊆ wss 3931 ifcif 4505 {csn 4606 {cpr 4608 〈cotp 4614 ↦ cmpt 5206 ‘cfv 6536 ℩crio 7366 (class class class)co 7410 1st c1st 7991 2nd c2nd 7992 Basecbs 17233 0gc0g 17458 -gcsg 18923 LModclmod 20822 LSubSpclss 20893 LSpanclspn 20933 LVecclvec 21065 HLchlt 39373 LHypclh 40008 DVecHcdvh 41102 LCDualclcd 41610 mapdcmpd 41648 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 ax-riotaBAD 38976 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-ot 4615 df-uni 4889 df-int 4928 df-iun 4974 df-iin 4975 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-of 7676 df-om 7867 df-1st 7993 df-2nd 7994 df-tpos 8230 df-undef 8277 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-2o 8486 df-er 8724 df-map 8847 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-n0 12507 df-z 12594 df-uz 12858 df-fz 13530 df-struct 17171 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-mulr 17290 df-sca 17292 df-vsca 17293 df-0g 17460 df-mre 17603 df-mrc 17604 df-acs 17606 df-proset 18311 df-poset 18330 df-plt 18345 df-lub 18361 df-glb 18362 df-join 18363 df-meet 18364 df-p0 18440 df-p1 18441 df-lat 18447 df-clat 18514 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-submnd 18767 df-grp 18924 df-minusg 18925 df-sbg 18926 df-subg 19111 df-cntz 19305 df-oppg 19334 df-lsm 19622 df-cmn 19768 df-abl 19769 df-mgp 20106 df-rng 20118 df-ur 20147 df-ring 20200 df-oppr 20302 df-dvdsr 20322 df-unit 20323 df-invr 20353 df-dvr 20366 df-nzr 20478 df-rlreg 20659 df-domn 20660 df-drng 20696 df-lmod 20824 df-lss 20894 df-lsp 20934 df-lvec 21066 df-lsatoms 38999 df-lshyp 39000 df-lcv 39042 df-lfl 39081 df-lkr 39109 df-ldual 39147 df-oposet 39199 df-ol 39201 df-oml 39202 df-covers 39289 df-ats 39290 df-atl 39321 df-cvlat 39345 df-hlat 39374 df-llines 39522 df-lplanes 39523 df-lvols 39524 df-lines 39525 df-psubsp 39527 df-pmap 39528 df-padd 39820 df-lhyp 40012 df-laut 40013 df-ldil 40128 df-ltrn 40129 df-trl 40183 df-tgrp 40767 df-tendo 40779 df-edring 40781 df-dveca 41027 df-disoa 41053 df-dvech 41103 df-dib 41163 df-dic 41197 df-dih 41253 df-doch 41372 df-djh 41419 df-lcdual 41611 df-mapd 41649 |
| This theorem is referenced by: mapdh8g 41809 |
| Copyright terms: Public domain | W3C validator |