![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdh8e | Structured version Visualization version GIF version |
Description: Part of Part (8) in [Baer] p. 48. Eliminate 𝑤. (Contributed by NM, 10-May-2015.) |
Ref | Expression |
---|---|
mapdh8a.h | ⊢ 𝐻 = (LHyp‘𝐾) |
mapdh8a.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
mapdh8a.v | ⊢ 𝑉 = (Base‘𝑈) |
mapdh8a.s | ⊢ − = (-g‘𝑈) |
mapdh8a.o | ⊢ 0 = (0g‘𝑈) |
mapdh8a.n | ⊢ 𝑁 = (LSpan‘𝑈) |
mapdh8a.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
mapdh8a.d | ⊢ 𝐷 = (Base‘𝐶) |
mapdh8a.r | ⊢ 𝑅 = (-g‘𝐶) |
mapdh8a.q | ⊢ 𝑄 = (0g‘𝐶) |
mapdh8a.j | ⊢ 𝐽 = (LSpan‘𝐶) |
mapdh8a.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
mapdh8a.i | ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) |
mapdh8a.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
mapdh8e.f | ⊢ (𝜑 → 𝐹 ∈ 𝐷) |
mapdh8e.mn | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) |
mapdh8e.eg | ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = 𝐺) |
mapdh8e.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
mapdh8e.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
mapdh8e.t | ⊢ (𝜑 → 𝑇 ∈ (𝑉 ∖ { 0 })) |
mapdh8e.xy | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
mapdh8e.xt | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇})) |
mapdh8e.yt | ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑇})) |
mapdh8e.e | ⊢ (𝜑 → 𝑋 ∈ (𝑁‘{𝑌, 𝑇})) |
Ref | Expression |
---|---|
mapdh8e | ⊢ (𝜑 → (𝐼‘〈𝑌, 𝐺, 𝑇〉) = (𝐼‘〈𝑋, 𝐹, 𝑇〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mapdh8a.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | mapdh8a.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
3 | mapdh8a.v | . . 3 ⊢ 𝑉 = (Base‘𝑈) | |
4 | mapdh8a.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑈) | |
5 | mapdh8a.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
6 | mapdh8e.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
7 | 6 | eldifad 3988 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
8 | mapdh8e.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
9 | 8 | eldifad 3988 | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
10 | 1, 2, 3, 4, 5, 7, 9 | dvh3dim 41403 | . 2 ⊢ (𝜑 → ∃𝑤 ∈ 𝑉 ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) |
11 | mapdh8a.s | . . . 4 ⊢ − = (-g‘𝑈) | |
12 | mapdh8a.o | . . . 4 ⊢ 0 = (0g‘𝑈) | |
13 | mapdh8a.c | . . . 4 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
14 | mapdh8a.d | . . . 4 ⊢ 𝐷 = (Base‘𝐶) | |
15 | mapdh8a.r | . . . 4 ⊢ 𝑅 = (-g‘𝐶) | |
16 | mapdh8a.q | . . . 4 ⊢ 𝑄 = (0g‘𝐶) | |
17 | mapdh8a.j | . . . 4 ⊢ 𝐽 = (LSpan‘𝐶) | |
18 | mapdh8a.m | . . . 4 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
19 | mapdh8a.i | . . . 4 ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) | |
20 | 5 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
21 | mapdh8e.f | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ 𝐷) | |
22 | 21 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → 𝐹 ∈ 𝐷) |
23 | mapdh8e.mn | . . . . 5 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) | |
24 | 23 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) |
25 | mapdh8e.eg | . . . . 5 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = 𝐺) | |
26 | 25 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = 𝐺) |
27 | 6 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → 𝑋 ∈ (𝑉 ∖ { 0 })) |
28 | 8 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → 𝑌 ∈ (𝑉 ∖ { 0 })) |
29 | mapdh8e.t | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ (𝑉 ∖ { 0 })) | |
30 | 29 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → 𝑇 ∈ (𝑉 ∖ { 0 })) |
31 | mapdh8e.yt | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑇})) | |
32 | 31 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑇})) |
33 | eqid 2740 | . . . . 5 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
34 | 1, 2, 5 | dvhlmod 41067 | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ LMod) |
35 | 34 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → 𝑈 ∈ LMod) |
36 | 3, 33, 4, 34, 7, 9 | lspprcl 20999 | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈)) |
37 | 36 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈)) |
38 | simp2 1137 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → 𝑤 ∈ 𝑉) | |
39 | simp3 1138 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) | |
40 | 12, 33, 35, 37, 38, 39 | lssneln0 20974 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → 𝑤 ∈ (𝑉 ∖ { 0 })) |
41 | 1, 2, 5 | dvhlvec 41066 | . . . . . . . . 9 ⊢ (𝜑 → 𝑈 ∈ LVec) |
42 | 29 | eldifad 3988 | . . . . . . . . 9 ⊢ (𝜑 → 𝑇 ∈ 𝑉) |
43 | mapdh8e.xy | . . . . . . . . 9 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | |
44 | mapdh8e.e | . . . . . . . . . 10 ⊢ (𝜑 → 𝑋 ∈ (𝑁‘{𝑌, 𝑇})) | |
45 | prcom 4757 | . . . . . . . . . . 11 ⊢ {𝑌, 𝑇} = {𝑇, 𝑌} | |
46 | 45 | fveq2i 6923 | . . . . . . . . . 10 ⊢ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑇, 𝑌}) |
47 | 44, 46 | eleqtrdi 2854 | . . . . . . . . 9 ⊢ (𝜑 → 𝑋 ∈ (𝑁‘{𝑇, 𝑌})) |
48 | 3, 12, 4, 41, 6, 42, 9, 43, 47 | lspexch 21154 | . . . . . . . 8 ⊢ (𝜑 → 𝑇 ∈ (𝑁‘{𝑋, 𝑌})) |
49 | 33, 4, 34, 36, 48 | ellspsn5 21017 | . . . . . . 7 ⊢ (𝜑 → (𝑁‘{𝑇}) ⊆ (𝑁‘{𝑋, 𝑌})) |
50 | 49 | 3ad2ant1 1133 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝑇}) ⊆ (𝑁‘{𝑋, 𝑌})) |
51 | 34 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉) → 𝑈 ∈ LMod) |
52 | 36 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉) → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈)) |
53 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉) → 𝑤 ∈ 𝑉) | |
54 | 3, 33, 4, 51, 52, 53 | ellspsn5b 21016 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉) → (𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ↔ (𝑁‘{𝑤}) ⊆ (𝑁‘{𝑋, 𝑌}))) |
55 | 54 | biimprd 248 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉) → ((𝑁‘{𝑤}) ⊆ (𝑁‘{𝑋, 𝑌}) → 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))) |
56 | 55 | con3d 152 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉) → (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) → ¬ (𝑁‘{𝑤}) ⊆ (𝑁‘{𝑋, 𝑌}))) |
57 | 56 | 3impia 1117 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → ¬ (𝑁‘{𝑤}) ⊆ (𝑁‘{𝑋, 𝑌})) |
58 | nssne2 4072 | . . . . . 6 ⊢ (((𝑁‘{𝑇}) ⊆ (𝑁‘{𝑋, 𝑌}) ∧ ¬ (𝑁‘{𝑤}) ⊆ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝑇}) ≠ (𝑁‘{𝑤})) | |
59 | 50, 57, 58 | syl2anc 583 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝑇}) ≠ (𝑁‘{𝑤})) |
60 | 59 | necomd 3002 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇})) |
61 | mapdh8e.xt | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇})) | |
62 | 61 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇})) |
63 | 41 | 3ad2ant1 1133 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → 𝑈 ∈ LVec) |
64 | 7 | 3ad2ant1 1133 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → 𝑋 ∈ 𝑉) |
65 | 9 | 3ad2ant1 1133 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → 𝑌 ∈ 𝑉) |
66 | 3, 4, 63, 38, 64, 65, 39 | lspindpi 21157 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑌}))) |
67 | 66 | simprd 495 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑌})) |
68 | 67 | necomd 3002 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑤})) |
69 | 43 | 3ad2ant1 1133 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
70 | 3, 12, 4, 63, 27, 65, 38, 69, 39 | lspindp2l 21159 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → ((𝑁‘{𝑌}) ≠ (𝑁‘{𝑤}) ∧ ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑤}))) |
71 | 70 | simprd 495 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑤})) |
72 | 1, 2, 3, 11, 12, 4, 13, 14, 15, 16, 17, 18, 19, 20, 22, 24, 26, 27, 28, 30, 32, 40, 60, 62, 68, 71 | mapdh8d 41740 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝐼‘〈𝑌, 𝐺, 𝑇〉) = (𝐼‘〈𝑋, 𝐹, 𝑇〉)) |
73 | 72 | rexlimdv3a 3165 | . 2 ⊢ (𝜑 → (∃𝑤 ∈ 𝑉 ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) → (𝐼‘〈𝑌, 𝐺, 𝑇〉) = (𝐼‘〈𝑋, 𝐹, 𝑇〉))) |
74 | 10, 73 | mpd 15 | 1 ⊢ (𝜑 → (𝐼‘〈𝑌, 𝐺, 𝑇〉) = (𝐼‘〈𝑋, 𝐹, 𝑇〉)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∃wrex 3076 Vcvv 3488 ∖ cdif 3973 ⊆ wss 3976 ifcif 4548 {csn 4648 {cpr 4650 〈cotp 4656 ↦ cmpt 5249 ‘cfv 6573 ℩crio 7403 (class class class)co 7448 1st c1st 8028 2nd c2nd 8029 Basecbs 17258 0gc0g 17499 -gcsg 18975 LModclmod 20880 LSubSpclss 20952 LSpanclspn 20992 LVecclvec 21124 HLchlt 39306 LHypclh 39941 DVecHcdvh 41035 LCDualclcd 41543 mapdcmpd 41581 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-riotaBAD 38909 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-ot 4657 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-om 7904 df-1st 8030 df-2nd 8031 df-tpos 8267 df-undef 8314 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-n0 12554 df-z 12640 df-uz 12904 df-fz 13568 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-sca 17327 df-vsca 17328 df-0g 17501 df-mre 17644 df-mrc 17645 df-acs 17647 df-proset 18365 df-poset 18383 df-plt 18400 df-lub 18416 df-glb 18417 df-join 18418 df-meet 18419 df-p0 18495 df-p1 18496 df-lat 18502 df-clat 18569 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-submnd 18819 df-grp 18976 df-minusg 18977 df-sbg 18978 df-subg 19163 df-cntz 19357 df-oppg 19386 df-lsm 19678 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-ring 20262 df-oppr 20360 df-dvdsr 20383 df-unit 20384 df-invr 20414 df-dvr 20427 df-nzr 20539 df-rlreg 20716 df-domn 20717 df-drng 20753 df-lmod 20882 df-lss 20953 df-lsp 20993 df-lvec 21125 df-lsatoms 38932 df-lshyp 38933 df-lcv 38975 df-lfl 39014 df-lkr 39042 df-ldual 39080 df-oposet 39132 df-ol 39134 df-oml 39135 df-covers 39222 df-ats 39223 df-atl 39254 df-cvlat 39278 df-hlat 39307 df-llines 39455 df-lplanes 39456 df-lvols 39457 df-lines 39458 df-psubsp 39460 df-pmap 39461 df-padd 39753 df-lhyp 39945 df-laut 39946 df-ldil 40061 df-ltrn 40062 df-trl 40116 df-tgrp 40700 df-tendo 40712 df-edring 40714 df-dveca 40960 df-disoa 40986 df-dvech 41036 df-dib 41096 df-dic 41130 df-dih 41186 df-doch 41305 df-djh 41352 df-lcdual 41544 df-mapd 41582 |
This theorem is referenced by: mapdh8g 41742 |
Copyright terms: Public domain | W3C validator |