| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mapdh8e | Structured version Visualization version GIF version | ||
| Description: Part of Part (8) in [Baer] p. 48. Eliminate 𝑤. (Contributed by NM, 10-May-2015.) |
| Ref | Expression |
|---|---|
| mapdh8a.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| mapdh8a.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| mapdh8a.v | ⊢ 𝑉 = (Base‘𝑈) |
| mapdh8a.s | ⊢ − = (-g‘𝑈) |
| mapdh8a.o | ⊢ 0 = (0g‘𝑈) |
| mapdh8a.n | ⊢ 𝑁 = (LSpan‘𝑈) |
| mapdh8a.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
| mapdh8a.d | ⊢ 𝐷 = (Base‘𝐶) |
| mapdh8a.r | ⊢ 𝑅 = (-g‘𝐶) |
| mapdh8a.q | ⊢ 𝑄 = (0g‘𝐶) |
| mapdh8a.j | ⊢ 𝐽 = (LSpan‘𝐶) |
| mapdh8a.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
| mapdh8a.i | ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) |
| mapdh8a.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| mapdh8e.f | ⊢ (𝜑 → 𝐹 ∈ 𝐷) |
| mapdh8e.mn | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) |
| mapdh8e.eg | ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = 𝐺) |
| mapdh8e.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
| mapdh8e.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
| mapdh8e.t | ⊢ (𝜑 → 𝑇 ∈ (𝑉 ∖ { 0 })) |
| mapdh8e.xy | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
| mapdh8e.xt | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇})) |
| mapdh8e.yt | ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑇})) |
| mapdh8e.e | ⊢ (𝜑 → 𝑋 ∈ (𝑁‘{𝑌, 𝑇})) |
| Ref | Expression |
|---|---|
| mapdh8e | ⊢ (𝜑 → (𝐼‘〈𝑌, 𝐺, 𝑇〉) = (𝐼‘〈𝑋, 𝐹, 𝑇〉)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mapdh8a.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 2 | mapdh8a.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 3 | mapdh8a.v | . . 3 ⊢ 𝑉 = (Base‘𝑈) | |
| 4 | mapdh8a.n | . . 3 ⊢ 𝑁 = (LSpan‘𝑈) | |
| 5 | mapdh8a.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
| 6 | mapdh8e.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
| 7 | 6 | eldifad 3923 | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| 8 | mapdh8e.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
| 9 | 8 | eldifad 3923 | . . 3 ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| 10 | 1, 2, 3, 4, 5, 7, 9 | dvh3dim 41413 | . 2 ⊢ (𝜑 → ∃𝑤 ∈ 𝑉 ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) |
| 11 | mapdh8a.s | . . . 4 ⊢ − = (-g‘𝑈) | |
| 12 | mapdh8a.o | . . . 4 ⊢ 0 = (0g‘𝑈) | |
| 13 | mapdh8a.c | . . . 4 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
| 14 | mapdh8a.d | . . . 4 ⊢ 𝐷 = (Base‘𝐶) | |
| 15 | mapdh8a.r | . . . 4 ⊢ 𝑅 = (-g‘𝐶) | |
| 16 | mapdh8a.q | . . . 4 ⊢ 𝑄 = (0g‘𝐶) | |
| 17 | mapdh8a.j | . . . 4 ⊢ 𝐽 = (LSpan‘𝐶) | |
| 18 | mapdh8a.m | . . . 4 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
| 19 | mapdh8a.i | . . . 4 ⊢ 𝐼 = (𝑥 ∈ V ↦ if((2nd ‘𝑥) = 0 , 𝑄, (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{(2nd ‘𝑥)})) = (𝐽‘{ℎ}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st ‘𝑥)) − (2nd ‘𝑥))})) = (𝐽‘{((2nd ‘(1st ‘𝑥))𝑅ℎ)}))))) | |
| 20 | 5 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
| 21 | mapdh8e.f | . . . . 5 ⊢ (𝜑 → 𝐹 ∈ 𝐷) | |
| 22 | 21 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → 𝐹 ∈ 𝐷) |
| 23 | mapdh8e.mn | . . . . 5 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) | |
| 24 | 23 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹})) |
| 25 | mapdh8e.eg | . . . . 5 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = 𝐺) | |
| 26 | 25 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = 𝐺) |
| 27 | 6 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → 𝑋 ∈ (𝑉 ∖ { 0 })) |
| 28 | 8 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → 𝑌 ∈ (𝑉 ∖ { 0 })) |
| 29 | mapdh8e.t | . . . . 5 ⊢ (𝜑 → 𝑇 ∈ (𝑉 ∖ { 0 })) | |
| 30 | 29 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → 𝑇 ∈ (𝑉 ∖ { 0 })) |
| 31 | mapdh8e.yt | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑇})) | |
| 32 | 31 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑇})) |
| 33 | eqid 2729 | . . . . 5 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
| 34 | 1, 2, 5 | dvhlmod 41077 | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ LMod) |
| 35 | 34 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → 𝑈 ∈ LMod) |
| 36 | 3, 33, 4, 34, 7, 9 | lspprcl 20860 | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈)) |
| 37 | 36 | 3ad2ant1 1133 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈)) |
| 38 | simp2 1137 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → 𝑤 ∈ 𝑉) | |
| 39 | simp3 1138 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) | |
| 40 | 12, 33, 35, 37, 38, 39 | lssneln0 20835 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → 𝑤 ∈ (𝑉 ∖ { 0 })) |
| 41 | 1, 2, 5 | dvhlvec 41076 | . . . . . . . . 9 ⊢ (𝜑 → 𝑈 ∈ LVec) |
| 42 | 29 | eldifad 3923 | . . . . . . . . 9 ⊢ (𝜑 → 𝑇 ∈ 𝑉) |
| 43 | mapdh8e.xy | . . . . . . . . 9 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | |
| 44 | mapdh8e.e | . . . . . . . . . 10 ⊢ (𝜑 → 𝑋 ∈ (𝑁‘{𝑌, 𝑇})) | |
| 45 | prcom 4692 | . . . . . . . . . . 11 ⊢ {𝑌, 𝑇} = {𝑇, 𝑌} | |
| 46 | 45 | fveq2i 6843 | . . . . . . . . . 10 ⊢ (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑇, 𝑌}) |
| 47 | 44, 46 | eleqtrdi 2838 | . . . . . . . . 9 ⊢ (𝜑 → 𝑋 ∈ (𝑁‘{𝑇, 𝑌})) |
| 48 | 3, 12, 4, 41, 6, 42, 9, 43, 47 | lspexch 21015 | . . . . . . . 8 ⊢ (𝜑 → 𝑇 ∈ (𝑁‘{𝑋, 𝑌})) |
| 49 | 33, 4, 34, 36, 48 | ellspsn5 20878 | . . . . . . 7 ⊢ (𝜑 → (𝑁‘{𝑇}) ⊆ (𝑁‘{𝑋, 𝑌})) |
| 50 | 49 | 3ad2ant1 1133 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝑇}) ⊆ (𝑁‘{𝑋, 𝑌})) |
| 51 | 34 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉) → 𝑈 ∈ LMod) |
| 52 | 36 | adantr 480 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉) → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈)) |
| 53 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉) → 𝑤 ∈ 𝑉) | |
| 54 | 3, 33, 4, 51, 52, 53 | ellspsn5b 20877 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉) → (𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ↔ (𝑁‘{𝑤}) ⊆ (𝑁‘{𝑋, 𝑌}))) |
| 55 | 54 | biimprd 248 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉) → ((𝑁‘{𝑤}) ⊆ (𝑁‘{𝑋, 𝑌}) → 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))) |
| 56 | 55 | con3d 152 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉) → (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) → ¬ (𝑁‘{𝑤}) ⊆ (𝑁‘{𝑋, 𝑌}))) |
| 57 | 56 | 3impia 1117 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → ¬ (𝑁‘{𝑤}) ⊆ (𝑁‘{𝑋, 𝑌})) |
| 58 | nssne2 4007 | . . . . . 6 ⊢ (((𝑁‘{𝑇}) ⊆ (𝑁‘{𝑋, 𝑌}) ∧ ¬ (𝑁‘{𝑤}) ⊆ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝑇}) ≠ (𝑁‘{𝑤})) | |
| 59 | 50, 57, 58 | syl2anc 584 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝑇}) ≠ (𝑁‘{𝑤})) |
| 60 | 59 | necomd 2980 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇})) |
| 61 | mapdh8e.xt | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇})) | |
| 62 | 61 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇})) |
| 63 | 41 | 3ad2ant1 1133 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → 𝑈 ∈ LVec) |
| 64 | 7 | 3ad2ant1 1133 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → 𝑋 ∈ 𝑉) |
| 65 | 9 | 3ad2ant1 1133 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → 𝑌 ∈ 𝑉) |
| 66 | 3, 4, 63, 38, 64, 65, 39 | lspindpi 21018 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑌}))) |
| 67 | 66 | simprd 495 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑌})) |
| 68 | 67 | necomd 2980 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑤})) |
| 69 | 43 | 3ad2ant1 1133 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
| 70 | 3, 12, 4, 63, 27, 65, 38, 69, 39 | lspindp2l 21020 | . . . . 5 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → ((𝑁‘{𝑌}) ≠ (𝑁‘{𝑤}) ∧ ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑤}))) |
| 71 | 70 | simprd 495 | . . . 4 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑤})) |
| 72 | 1, 2, 3, 11, 12, 4, 13, 14, 15, 16, 17, 18, 19, 20, 22, 24, 26, 27, 28, 30, 32, 40, 60, 62, 68, 71 | mapdh8d 41750 | . . 3 ⊢ ((𝜑 ∧ 𝑤 ∈ 𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝐼‘〈𝑌, 𝐺, 𝑇〉) = (𝐼‘〈𝑋, 𝐹, 𝑇〉)) |
| 73 | 72 | rexlimdv3a 3138 | . 2 ⊢ (𝜑 → (∃𝑤 ∈ 𝑉 ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) → (𝐼‘〈𝑌, 𝐺, 𝑇〉) = (𝐼‘〈𝑋, 𝐹, 𝑇〉))) |
| 74 | 10, 73 | mpd 15 | 1 ⊢ (𝜑 → (𝐼‘〈𝑌, 𝐺, 𝑇〉) = (𝐼‘〈𝑋, 𝐹, 𝑇〉)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∃wrex 3053 Vcvv 3444 ∖ cdif 3908 ⊆ wss 3911 ifcif 4484 {csn 4585 {cpr 4587 〈cotp 4593 ↦ cmpt 5183 ‘cfv 6499 ℩crio 7325 (class class class)co 7369 1st c1st 7945 2nd c2nd 7946 Basecbs 17155 0gc0g 17378 -gcsg 18843 LModclmod 20742 LSubSpclss 20813 LSpanclspn 20853 LVecclvec 20985 HLchlt 39316 LHypclh 39951 DVecHcdvh 41045 LCDualclcd 41553 mapdcmpd 41591 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-riotaBAD 38919 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-ot 4594 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-om 7823 df-1st 7947 df-2nd 7948 df-tpos 8182 df-undef 8229 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-n0 12419 df-z 12506 df-uz 12770 df-fz 13445 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-sca 17212 df-vsca 17213 df-0g 17380 df-mre 17523 df-mrc 17524 df-acs 17526 df-proset 18231 df-poset 18250 df-plt 18265 df-lub 18281 df-glb 18282 df-join 18283 df-meet 18284 df-p0 18360 df-p1 18361 df-lat 18367 df-clat 18434 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-submnd 18687 df-grp 18844 df-minusg 18845 df-sbg 18846 df-subg 19031 df-cntz 19225 df-oppg 19254 df-lsm 19542 df-cmn 19688 df-abl 19689 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-oppr 20222 df-dvdsr 20242 df-unit 20243 df-invr 20273 df-dvr 20286 df-nzr 20398 df-rlreg 20579 df-domn 20580 df-drng 20616 df-lmod 20744 df-lss 20814 df-lsp 20854 df-lvec 20986 df-lsatoms 38942 df-lshyp 38943 df-lcv 38985 df-lfl 39024 df-lkr 39052 df-ldual 39090 df-oposet 39142 df-ol 39144 df-oml 39145 df-covers 39232 df-ats 39233 df-atl 39264 df-cvlat 39288 df-hlat 39317 df-llines 39465 df-lplanes 39466 df-lvols 39467 df-lines 39468 df-psubsp 39470 df-pmap 39471 df-padd 39763 df-lhyp 39955 df-laut 39956 df-ldil 40071 df-ltrn 40072 df-trl 40126 df-tgrp 40710 df-tendo 40722 df-edring 40724 df-dveca 40970 df-disoa 40996 df-dvech 41046 df-dib 41106 df-dic 41140 df-dih 41196 df-doch 41315 df-djh 41362 df-lcdual 41554 df-mapd 41592 |
| This theorem is referenced by: mapdh8g 41752 |
| Copyright terms: Public domain | W3C validator |