Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdh8e Structured version   Visualization version   GIF version

Theorem mapdh8e 41808
Description: Part of Part (8) in [Baer] p. 48. Eliminate 𝑤. (Contributed by NM, 10-May-2015.)
Hypotheses
Ref Expression
mapdh8a.h 𝐻 = (LHyp‘𝐾)
mapdh8a.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdh8a.v 𝑉 = (Base‘𝑈)
mapdh8a.s = (-g𝑈)
mapdh8a.o 0 = (0g𝑈)
mapdh8a.n 𝑁 = (LSpan‘𝑈)
mapdh8a.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdh8a.d 𝐷 = (Base‘𝐶)
mapdh8a.r 𝑅 = (-g𝐶)
mapdh8a.q 𝑄 = (0g𝐶)
mapdh8a.j 𝐽 = (LSpan‘𝐶)
mapdh8a.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdh8a.i 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
mapdh8a.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdh8e.f (𝜑𝐹𝐷)
mapdh8e.mn (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
mapdh8e.eg (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺)
mapdh8e.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
mapdh8e.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
mapdh8e.t (𝜑𝑇 ∈ (𝑉 ∖ { 0 }))
mapdh8e.xy (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
mapdh8e.xt (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇}))
mapdh8e.yt (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑇}))
mapdh8e.e (𝜑𝑋 ∈ (𝑁‘{𝑌, 𝑇}))
Assertion
Ref Expression
mapdh8e (𝜑 → (𝐼‘⟨𝑌, 𝐺, 𝑇⟩) = (𝐼‘⟨𝑋, 𝐹, 𝑇⟩))
Distinct variable groups:   𝑥,,   0 ,,𝑥   𝐶,   𝐷,,𝑥   ,𝐹,𝑥   ,𝐼   ,𝐺,𝑥   ,𝐽,𝑥   ,𝑀,𝑥   ,𝑁,𝑥   𝜑,   𝑅,,𝑥   𝑥,𝑄   𝑇,,𝑥   𝑈,   ,𝑋,𝑥   ,𝑌,𝑥   𝑥,𝐼   ,𝑉
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   𝑄()   𝑈(𝑥)   𝐻(𝑥,)   𝐾(𝑥,)   𝑉(𝑥)   𝑊(𝑥,)

Proof of Theorem mapdh8e
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 mapdh8a.h . . 3 𝐻 = (LHyp‘𝐾)
2 mapdh8a.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 mapdh8a.v . . 3 𝑉 = (Base‘𝑈)
4 mapdh8a.n . . 3 𝑁 = (LSpan‘𝑈)
5 mapdh8a.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
6 mapdh8e.x . . . 4 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
76eldifad 3943 . . 3 (𝜑𝑋𝑉)
8 mapdh8e.y . . . 4 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
98eldifad 3943 . . 3 (𝜑𝑌𝑉)
101, 2, 3, 4, 5, 7, 9dvh3dim 41470 . 2 (𝜑 → ∃𝑤𝑉 ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
11 mapdh8a.s . . . 4 = (-g𝑈)
12 mapdh8a.o . . . 4 0 = (0g𝑈)
13 mapdh8a.c . . . 4 𝐶 = ((LCDual‘𝐾)‘𝑊)
14 mapdh8a.d . . . 4 𝐷 = (Base‘𝐶)
15 mapdh8a.r . . . 4 𝑅 = (-g𝐶)
16 mapdh8a.q . . . 4 𝑄 = (0g𝐶)
17 mapdh8a.j . . . 4 𝐽 = (LSpan‘𝐶)
18 mapdh8a.m . . . 4 𝑀 = ((mapd‘𝐾)‘𝑊)
19 mapdh8a.i . . . 4 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
2053ad2ant1 1133 . . . 4 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝐾 ∈ HL ∧ 𝑊𝐻))
21 mapdh8e.f . . . . 5 (𝜑𝐹𝐷)
22213ad2ant1 1133 . . . 4 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → 𝐹𝐷)
23 mapdh8e.mn . . . . 5 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
24233ad2ant1 1133 . . . 4 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
25 mapdh8e.eg . . . . 5 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺)
26253ad2ant1 1133 . . . 4 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺)
2763ad2ant1 1133 . . . 4 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → 𝑋 ∈ (𝑉 ∖ { 0 }))
2883ad2ant1 1133 . . . 4 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → 𝑌 ∈ (𝑉 ∖ { 0 }))
29 mapdh8e.t . . . . 5 (𝜑𝑇 ∈ (𝑉 ∖ { 0 }))
30293ad2ant1 1133 . . . 4 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → 𝑇 ∈ (𝑉 ∖ { 0 }))
31 mapdh8e.yt . . . . 5 (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑇}))
32313ad2ant1 1133 . . . 4 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑇}))
33 eqid 2736 . . . . 5 (LSubSp‘𝑈) = (LSubSp‘𝑈)
341, 2, 5dvhlmod 41134 . . . . . 6 (𝜑𝑈 ∈ LMod)
35343ad2ant1 1133 . . . . 5 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → 𝑈 ∈ LMod)
363, 33, 4, 34, 7, 9lspprcl 20940 . . . . . 6 (𝜑 → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈))
37363ad2ant1 1133 . . . . 5 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈))
38 simp2 1137 . . . . 5 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → 𝑤𝑉)
39 simp3 1138 . . . . 5 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
4012, 33, 35, 37, 38, 39lssneln0 20915 . . . 4 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → 𝑤 ∈ (𝑉 ∖ { 0 }))
411, 2, 5dvhlvec 41133 . . . . . . . . 9 (𝜑𝑈 ∈ LVec)
4229eldifad 3943 . . . . . . . . 9 (𝜑𝑇𝑉)
43 mapdh8e.xy . . . . . . . . 9 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
44 mapdh8e.e . . . . . . . . . 10 (𝜑𝑋 ∈ (𝑁‘{𝑌, 𝑇}))
45 prcom 4713 . . . . . . . . . . 11 {𝑌, 𝑇} = {𝑇, 𝑌}
4645fveq2i 6884 . . . . . . . . . 10 (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑇, 𝑌})
4744, 46eleqtrdi 2845 . . . . . . . . 9 (𝜑𝑋 ∈ (𝑁‘{𝑇, 𝑌}))
483, 12, 4, 41, 6, 42, 9, 43, 47lspexch 21095 . . . . . . . 8 (𝜑𝑇 ∈ (𝑁‘{𝑋, 𝑌}))
4933, 4, 34, 36, 48ellspsn5 20958 . . . . . . 7 (𝜑 → (𝑁‘{𝑇}) ⊆ (𝑁‘{𝑋, 𝑌}))
50493ad2ant1 1133 . . . . . 6 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝑇}) ⊆ (𝑁‘{𝑋, 𝑌}))
5134adantr 480 . . . . . . . . . 10 ((𝜑𝑤𝑉) → 𝑈 ∈ LMod)
5236adantr 480 . . . . . . . . . 10 ((𝜑𝑤𝑉) → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈))
53 simpr 484 . . . . . . . . . 10 ((𝜑𝑤𝑉) → 𝑤𝑉)
543, 33, 4, 51, 52, 53ellspsn5b 20957 . . . . . . . . 9 ((𝜑𝑤𝑉) → (𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ↔ (𝑁‘{𝑤}) ⊆ (𝑁‘{𝑋, 𝑌})))
5554biimprd 248 . . . . . . . 8 ((𝜑𝑤𝑉) → ((𝑁‘{𝑤}) ⊆ (𝑁‘{𝑋, 𝑌}) → 𝑤 ∈ (𝑁‘{𝑋, 𝑌})))
5655con3d 152 . . . . . . 7 ((𝜑𝑤𝑉) → (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) → ¬ (𝑁‘{𝑤}) ⊆ (𝑁‘{𝑋, 𝑌})))
57563impia 1117 . . . . . 6 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → ¬ (𝑁‘{𝑤}) ⊆ (𝑁‘{𝑋, 𝑌}))
58 nssne2 4027 . . . . . 6 (((𝑁‘{𝑇}) ⊆ (𝑁‘{𝑋, 𝑌}) ∧ ¬ (𝑁‘{𝑤}) ⊆ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝑇}) ≠ (𝑁‘{𝑤}))
5950, 57, 58syl2anc 584 . . . . 5 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝑇}) ≠ (𝑁‘{𝑤}))
6059necomd 2988 . . . 4 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇}))
61 mapdh8e.xt . . . . 5 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇}))
62613ad2ant1 1133 . . . 4 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇}))
63413ad2ant1 1133 . . . . . . 7 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → 𝑈 ∈ LVec)
6473ad2ant1 1133 . . . . . . 7 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → 𝑋𝑉)
6593ad2ant1 1133 . . . . . . 7 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → 𝑌𝑉)
663, 4, 63, 38, 64, 65, 39lspindpi 21098 . . . . . 6 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑌})))
6766simprd 495 . . . . 5 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑌}))
6867necomd 2988 . . . 4 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑤}))
69433ad2ant1 1133 . . . . . 6 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
703, 12, 4, 63, 27, 65, 38, 69, 39lspindp2l 21100 . . . . 5 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → ((𝑁‘{𝑌}) ≠ (𝑁‘{𝑤}) ∧ ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑤})))
7170simprd 495 . . . 4 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑤}))
721, 2, 3, 11, 12, 4, 13, 14, 15, 16, 17, 18, 19, 20, 22, 24, 26, 27, 28, 30, 32, 40, 60, 62, 68, 71mapdh8d 41807 . . 3 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝐼‘⟨𝑌, 𝐺, 𝑇⟩) = (𝐼‘⟨𝑋, 𝐹, 𝑇⟩))
7372rexlimdv3a 3146 . 2 (𝜑 → (∃𝑤𝑉 ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) → (𝐼‘⟨𝑌, 𝐺, 𝑇⟩) = (𝐼‘⟨𝑋, 𝐹, 𝑇⟩)))
7410, 73mpd 15 1 (𝜑 → (𝐼‘⟨𝑌, 𝐺, 𝑇⟩) = (𝐼‘⟨𝑋, 𝐹, 𝑇⟩))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2933  wrex 3061  Vcvv 3464  cdif 3928  wss 3931  ifcif 4505  {csn 4606  {cpr 4608  cotp 4614  cmpt 5206  cfv 6536  crio 7366  (class class class)co 7410  1st c1st 7991  2nd c2nd 7992  Basecbs 17233  0gc0g 17458  -gcsg 18923  LModclmod 20822  LSubSpclss 20893  LSpanclspn 20933  LVecclvec 21065  HLchlt 39373  LHypclh 40008  DVecHcdvh 41102  LCDualclcd 41610  mapdcmpd 41648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-riotaBAD 38976
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-ot 4615  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-tpos 8230  df-undef 8277  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-n0 12507  df-z 12594  df-uz 12858  df-fz 13530  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-sca 17292  df-vsca 17293  df-0g 17460  df-mre 17603  df-mrc 17604  df-acs 17606  df-proset 18311  df-poset 18330  df-plt 18345  df-lub 18361  df-glb 18362  df-join 18363  df-meet 18364  df-p0 18440  df-p1 18441  df-lat 18447  df-clat 18514  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-grp 18924  df-minusg 18925  df-sbg 18926  df-subg 19111  df-cntz 19305  df-oppg 19334  df-lsm 19622  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-oppr 20302  df-dvdsr 20322  df-unit 20323  df-invr 20353  df-dvr 20366  df-nzr 20478  df-rlreg 20659  df-domn 20660  df-drng 20696  df-lmod 20824  df-lss 20894  df-lsp 20934  df-lvec 21066  df-lsatoms 38999  df-lshyp 39000  df-lcv 39042  df-lfl 39081  df-lkr 39109  df-ldual 39147  df-oposet 39199  df-ol 39201  df-oml 39202  df-covers 39289  df-ats 39290  df-atl 39321  df-cvlat 39345  df-hlat 39374  df-llines 39522  df-lplanes 39523  df-lvols 39524  df-lines 39525  df-psubsp 39527  df-pmap 39528  df-padd 39820  df-lhyp 40012  df-laut 40013  df-ldil 40128  df-ltrn 40129  df-trl 40183  df-tgrp 40767  df-tendo 40779  df-edring 40781  df-dveca 41027  df-disoa 41053  df-dvech 41103  df-dib 41163  df-dic 41197  df-dih 41253  df-doch 41372  df-djh 41419  df-lcdual 41611  df-mapd 41649
This theorem is referenced by:  mapdh8g  41809
  Copyright terms: Public domain W3C validator