Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mapdh8e Structured version   Visualization version   GIF version

Theorem mapdh8e 39561
Description: Part of Part (8) in [Baer] p. 48. Eliminate 𝑤. (Contributed by NM, 10-May-2015.)
Hypotheses
Ref Expression
mapdh8a.h 𝐻 = (LHyp‘𝐾)
mapdh8a.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
mapdh8a.v 𝑉 = (Base‘𝑈)
mapdh8a.s = (-g𝑈)
mapdh8a.o 0 = (0g𝑈)
mapdh8a.n 𝑁 = (LSpan‘𝑈)
mapdh8a.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
mapdh8a.d 𝐷 = (Base‘𝐶)
mapdh8a.r 𝑅 = (-g𝐶)
mapdh8a.q 𝑄 = (0g𝐶)
mapdh8a.j 𝐽 = (LSpan‘𝐶)
mapdh8a.m 𝑀 = ((mapd‘𝐾)‘𝑊)
mapdh8a.i 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
mapdh8a.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
mapdh8e.f (𝜑𝐹𝐷)
mapdh8e.mn (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
mapdh8e.eg (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺)
mapdh8e.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
mapdh8e.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
mapdh8e.t (𝜑𝑇 ∈ (𝑉 ∖ { 0 }))
mapdh8e.xy (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
mapdh8e.xt (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇}))
mapdh8e.yt (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑇}))
mapdh8e.e (𝜑𝑋 ∈ (𝑁‘{𝑌, 𝑇}))
Assertion
Ref Expression
mapdh8e (𝜑 → (𝐼‘⟨𝑌, 𝐺, 𝑇⟩) = (𝐼‘⟨𝑋, 𝐹, 𝑇⟩))
Distinct variable groups:   𝑥,,   0 ,,𝑥   𝐶,   𝐷,,𝑥   ,𝐹,𝑥   ,𝐼   ,𝐺,𝑥   ,𝐽,𝑥   ,𝑀,𝑥   ,𝑁,𝑥   𝜑,   𝑅,,𝑥   𝑥,𝑄   𝑇,,𝑥   𝑈,   ,𝑋,𝑥   ,𝑌,𝑥   𝑥,𝐼   ,𝑉
Allowed substitution hints:   𝜑(𝑥)   𝐶(𝑥)   𝑄()   𝑈(𝑥)   𝐻(𝑥,)   𝐾(𝑥,)   𝑉(𝑥)   𝑊(𝑥,)

Proof of Theorem mapdh8e
Dummy variable 𝑤 is distinct from all other variables.
StepHypRef Expression
1 mapdh8a.h . . 3 𝐻 = (LHyp‘𝐾)
2 mapdh8a.u . . 3 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 mapdh8a.v . . 3 𝑉 = (Base‘𝑈)
4 mapdh8a.n . . 3 𝑁 = (LSpan‘𝑈)
5 mapdh8a.k . . 3 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
6 mapdh8e.x . . . 4 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
76eldifad 3892 . . 3 (𝜑𝑋𝑉)
8 mapdh8e.y . . . 4 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
98eldifad 3892 . . 3 (𝜑𝑌𝑉)
101, 2, 3, 4, 5, 7, 9dvh3dim 39223 . 2 (𝜑 → ∃𝑤𝑉 ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
11 mapdh8a.s . . . 4 = (-g𝑈)
12 mapdh8a.o . . . 4 0 = (0g𝑈)
13 mapdh8a.c . . . 4 𝐶 = ((LCDual‘𝐾)‘𝑊)
14 mapdh8a.d . . . 4 𝐷 = (Base‘𝐶)
15 mapdh8a.r . . . 4 𝑅 = (-g𝐶)
16 mapdh8a.q . . . 4 𝑄 = (0g𝐶)
17 mapdh8a.j . . . 4 𝐽 = (LSpan‘𝐶)
18 mapdh8a.m . . . 4 𝑀 = ((mapd‘𝐾)‘𝑊)
19 mapdh8a.i . . . 4 𝐼 = (𝑥 ∈ V ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
2053ad2ant1 1135 . . . 4 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝐾 ∈ HL ∧ 𝑊𝐻))
21 mapdh8e.f . . . . 5 (𝜑𝐹𝐷)
22213ad2ant1 1135 . . . 4 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → 𝐹𝐷)
23 mapdh8e.mn . . . . 5 (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
24233ad2ant1 1135 . . . 4 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑀‘(𝑁‘{𝑋})) = (𝐽‘{𝐹}))
25 mapdh8e.eg . . . . 5 (𝜑 → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺)
26253ad2ant1 1135 . . . 4 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝐼‘⟨𝑋, 𝐹, 𝑌⟩) = 𝐺)
2763ad2ant1 1135 . . . 4 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → 𝑋 ∈ (𝑉 ∖ { 0 }))
2883ad2ant1 1135 . . . 4 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → 𝑌 ∈ (𝑉 ∖ { 0 }))
29 mapdh8e.t . . . . 5 (𝜑𝑇 ∈ (𝑉 ∖ { 0 }))
30293ad2ant1 1135 . . . 4 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → 𝑇 ∈ (𝑉 ∖ { 0 }))
31 mapdh8e.yt . . . . 5 (𝜑 → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑇}))
32313ad2ant1 1135 . . . 4 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑇}))
33 eqid 2738 . . . . 5 (LSubSp‘𝑈) = (LSubSp‘𝑈)
341, 2, 5dvhlmod 38887 . . . . . 6 (𝜑𝑈 ∈ LMod)
35343ad2ant1 1135 . . . . 5 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → 𝑈 ∈ LMod)
363, 33, 4, 34, 7, 9lspprcl 20039 . . . . . 6 (𝜑 → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈))
37363ad2ant1 1135 . . . . 5 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈))
38 simp2 1139 . . . . 5 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → 𝑤𝑉)
39 simp3 1140 . . . . 5 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}))
4012, 33, 35, 37, 38, 39lssneln0 20013 . . . 4 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → 𝑤 ∈ (𝑉 ∖ { 0 }))
411, 2, 5dvhlvec 38886 . . . . . . . . 9 (𝜑𝑈 ∈ LVec)
4229eldifad 3892 . . . . . . . . 9 (𝜑𝑇𝑉)
43 mapdh8e.xy . . . . . . . . 9 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
44 mapdh8e.e . . . . . . . . . 10 (𝜑𝑋 ∈ (𝑁‘{𝑌, 𝑇}))
45 prcom 4662 . . . . . . . . . . 11 {𝑌, 𝑇} = {𝑇, 𝑌}
4645fveq2i 6738 . . . . . . . . . 10 (𝑁‘{𝑌, 𝑇}) = (𝑁‘{𝑇, 𝑌})
4744, 46eleqtrdi 2849 . . . . . . . . 9 (𝜑𝑋 ∈ (𝑁‘{𝑇, 𝑌}))
483, 12, 4, 41, 6, 42, 9, 43, 47lspexch 20190 . . . . . . . 8 (𝜑𝑇 ∈ (𝑁‘{𝑋, 𝑌}))
4933, 4, 34, 36, 48lspsnel5a 20057 . . . . . . 7 (𝜑 → (𝑁‘{𝑇}) ⊆ (𝑁‘{𝑋, 𝑌}))
50493ad2ant1 1135 . . . . . 6 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝑇}) ⊆ (𝑁‘{𝑋, 𝑌}))
5134adantr 484 . . . . . . . . . 10 ((𝜑𝑤𝑉) → 𝑈 ∈ LMod)
5236adantr 484 . . . . . . . . . 10 ((𝜑𝑤𝑉) → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑈))
53 simpr 488 . . . . . . . . . 10 ((𝜑𝑤𝑉) → 𝑤𝑉)
543, 33, 4, 51, 52, 53lspsnel5 20056 . . . . . . . . 9 ((𝜑𝑤𝑉) → (𝑤 ∈ (𝑁‘{𝑋, 𝑌}) ↔ (𝑁‘{𝑤}) ⊆ (𝑁‘{𝑋, 𝑌})))
5554biimprd 251 . . . . . . . 8 ((𝜑𝑤𝑉) → ((𝑁‘{𝑤}) ⊆ (𝑁‘{𝑋, 𝑌}) → 𝑤 ∈ (𝑁‘{𝑋, 𝑌})))
5655con3d 155 . . . . . . 7 ((𝜑𝑤𝑉) → (¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) → ¬ (𝑁‘{𝑤}) ⊆ (𝑁‘{𝑋, 𝑌})))
57563impia 1119 . . . . . 6 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → ¬ (𝑁‘{𝑤}) ⊆ (𝑁‘{𝑋, 𝑌}))
58 nssne2 3976 . . . . . 6 (((𝑁‘{𝑇}) ⊆ (𝑁‘{𝑋, 𝑌}) ∧ ¬ (𝑁‘{𝑤}) ⊆ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝑇}) ≠ (𝑁‘{𝑤}))
5950, 57, 58syl2anc 587 . . . . 5 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝑇}) ≠ (𝑁‘{𝑤}))
6059necomd 2997 . . . 4 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑇}))
61 mapdh8e.xt . . . . 5 (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇}))
62613ad2ant1 1135 . . . 4 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑇}))
63413ad2ant1 1135 . . . . . . 7 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → 𝑈 ∈ LVec)
6473ad2ant1 1135 . . . . . . 7 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → 𝑋𝑉)
6593ad2ant1 1135 . . . . . . 7 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → 𝑌𝑉)
663, 4, 63, 38, 64, 65, 39lspindpi 20193 . . . . . 6 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → ((𝑁‘{𝑤}) ≠ (𝑁‘{𝑋}) ∧ (𝑁‘{𝑤}) ≠ (𝑁‘{𝑌})))
6766simprd 499 . . . . 5 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝑤}) ≠ (𝑁‘{𝑌}))
6867necomd 2997 . . . 4 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝑌}) ≠ (𝑁‘{𝑤}))
69433ad2ant1 1135 . . . . . 6 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}))
703, 12, 4, 63, 27, 65, 38, 69, 39lspindp2l 20195 . . . . 5 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → ((𝑁‘{𝑌}) ≠ (𝑁‘{𝑤}) ∧ ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑤})))
7170simprd 499 . . . 4 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑤}))
721, 2, 3, 11, 12, 4, 13, 14, 15, 16, 17, 18, 19, 20, 22, 24, 26, 27, 28, 30, 32, 40, 60, 62, 68, 71mapdh8d 39560 . . 3 ((𝜑𝑤𝑉 ∧ ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌})) → (𝐼‘⟨𝑌, 𝐺, 𝑇⟩) = (𝐼‘⟨𝑋, 𝐹, 𝑇⟩))
7372rexlimdv3a 3213 . 2 (𝜑 → (∃𝑤𝑉 ¬ 𝑤 ∈ (𝑁‘{𝑋, 𝑌}) → (𝐼‘⟨𝑌, 𝐺, 𝑇⟩) = (𝐼‘⟨𝑋, 𝐹, 𝑇⟩)))
7410, 73mpd 15 1 (𝜑 → (𝐼‘⟨𝑌, 𝐺, 𝑇⟩) = (𝐼‘⟨𝑋, 𝐹, 𝑇⟩))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  w3a 1089   = wceq 1543  wcel 2111  wne 2941  wrex 3063  Vcvv 3420  cdif 3877  wss 3880  ifcif 4453  {csn 4555  {cpr 4557  cotp 4563  cmpt 5149  cfv 6397  crio 7187  (class class class)co 7231  1st c1st 7777  2nd c2nd 7778  Basecbs 16784  0gc0g 16968  -gcsg 18391  LModclmod 19923  LSubSpclss 19992  LSpanclspn 20032  LVecclvec 20163  HLchlt 37127  LHypclh 37761  DVecHcdvh 38855  LCDualclcd 39363  mapdcmpd 39401
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2159  ax-12 2176  ax-ext 2709  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5272  ax-pr 5336  ax-un 7541  ax-cnex 10809  ax-resscn 10810  ax-1cn 10811  ax-icn 10812  ax-addcl 10813  ax-addrcl 10814  ax-mulcl 10815  ax-mulrcl 10816  ax-mulcom 10817  ax-addass 10818  ax-mulass 10819  ax-distr 10820  ax-i2m1 10821  ax-1ne0 10822  ax-1rid 10823  ax-rnegex 10824  ax-rrecex 10825  ax-cnre 10826  ax-pre-lttri 10827  ax-pre-lttrn 10828  ax-pre-ltadd 10829  ax-pre-mulgt0 10830  ax-riotaBAD 36730
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2072  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3067  df-rex 3068  df-reu 3069  df-rmo 3070  df-rab 3071  df-v 3422  df-sbc 3709  df-csb 3826  df-dif 3883  df-un 3885  df-in 3887  df-ss 3897  df-pss 3899  df-nul 4252  df-if 4454  df-pw 4529  df-sn 4556  df-pr 4558  df-tp 4560  df-op 4562  df-ot 4564  df-uni 4834  df-int 4874  df-iun 4920  df-iin 4921  df-br 5068  df-opab 5130  df-mpt 5150  df-tr 5176  df-id 5469  df-eprel 5474  df-po 5482  df-so 5483  df-fr 5523  df-we 5525  df-xp 5571  df-rel 5572  df-cnv 5573  df-co 5574  df-dm 5575  df-rn 5576  df-res 5577  df-ima 5578  df-pred 6175  df-ord 6233  df-on 6234  df-lim 6235  df-suc 6236  df-iota 6355  df-fun 6399  df-fn 6400  df-f 6401  df-f1 6402  df-fo 6403  df-f1o 6404  df-fv 6405  df-riota 7188  df-ov 7234  df-oprab 7235  df-mpo 7236  df-of 7487  df-om 7663  df-1st 7779  df-2nd 7780  df-tpos 7988  df-undef 8035  df-wrecs 8067  df-recs 8128  df-rdg 8166  df-1o 8222  df-er 8411  df-map 8530  df-en 8647  df-dom 8648  df-sdom 8649  df-fin 8650  df-pnf 10893  df-mnf 10894  df-xr 10895  df-ltxr 10896  df-le 10897  df-sub 11088  df-neg 11089  df-nn 11855  df-2 11917  df-3 11918  df-4 11919  df-5 11920  df-6 11921  df-n0 12115  df-z 12201  df-uz 12463  df-fz 13120  df-struct 16724  df-sets 16741  df-slot 16759  df-ndx 16769  df-base 16785  df-ress 16809  df-plusg 16839  df-mulr 16840  df-sca 16842  df-vsca 16843  df-0g 16970  df-mre 17113  df-mrc 17114  df-acs 17116  df-proset 17826  df-poset 17844  df-plt 17860  df-lub 17876  df-glb 17877  df-join 17878  df-meet 17879  df-p0 17955  df-p1 17956  df-lat 17962  df-clat 18029  df-mgm 18138  df-sgrp 18187  df-mnd 18198  df-submnd 18243  df-grp 18392  df-minusg 18393  df-sbg 18394  df-subg 18564  df-cntz 18735  df-oppg 18762  df-lsm 19049  df-cmn 19196  df-abl 19197  df-mgp 19529  df-ur 19541  df-ring 19588  df-oppr 19665  df-dvdsr 19683  df-unit 19684  df-invr 19714  df-dvr 19725  df-drng 19793  df-lmod 19925  df-lss 19993  df-lsp 20033  df-lvec 20164  df-lsatoms 36753  df-lshyp 36754  df-lcv 36796  df-lfl 36835  df-lkr 36863  df-ldual 36901  df-oposet 36953  df-ol 36955  df-oml 36956  df-covers 37043  df-ats 37044  df-atl 37075  df-cvlat 37099  df-hlat 37128  df-llines 37275  df-lplanes 37276  df-lvols 37277  df-lines 37278  df-psubsp 37280  df-pmap 37281  df-padd 37573  df-lhyp 37765  df-laut 37766  df-ldil 37881  df-ltrn 37882  df-trl 37936  df-tgrp 38520  df-tendo 38532  df-edring 38534  df-dveca 38780  df-disoa 38806  df-dvech 38856  df-dib 38916  df-dic 38950  df-dih 39006  df-doch 39125  df-djh 39172  df-lcdual 39364  df-mapd 39402
This theorem is referenced by:  mapdh8g  39562
  Copyright terms: Public domain W3C validator