HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  mdsymlem3 Structured version   Visualization version   GIF version

Theorem mdsymlem3 32167
Description: Lemma for mdsymi 32173. (Contributed by NM, 2-Jul-2004.) (New usage is discouraged.)
Hypotheses
Ref Expression
mdsymlem1.1 𝐴C
mdsymlem1.2 𝐵C
mdsymlem1.3 𝐶 = (𝐴 𝑝)
Assertion
Ref Expression
mdsymlem3 ((((𝑝 ∈ HAtoms ∧ ¬ (𝐵𝐶) ⊆ 𝐴) ∧ 𝑝 ⊆ (𝐴 𝐵)) ∧ 𝐴 ≠ 0) → ∃𝑟 ∈ HAtoms ∃𝑞 ∈ HAtoms (𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)))
Distinct variable groups:   𝑟,𝑞,𝐶   𝑞,𝑝,𝑟,𝐴   𝐵,𝑝,𝑞,𝑟
Allowed substitution hint:   𝐶(𝑝)

Proof of Theorem mdsymlem3
StepHypRef Expression
1 ssin 4225 . . . . . . . . . 10 ((𝑟𝐵𝑟𝐶) ↔ 𝑟 ⊆ (𝐵𝐶))
2 mdsymlem1.3 . . . . . . . . . . . . 13 𝐶 = (𝐴 𝑝)
32sseq2i 4006 . . . . . . . . . . . 12 (𝑟𝐶𝑟 ⊆ (𝐴 𝑝))
43biimpi 215 . . . . . . . . . . 11 (𝑟𝐶𝑟 ⊆ (𝐴 𝑝))
54adantl 481 . . . . . . . . . 10 ((𝑟𝐵𝑟𝐶) → 𝑟 ⊆ (𝐴 𝑝))
61, 5sylbir 234 . . . . . . . . 9 (𝑟 ⊆ (𝐵𝐶) → 𝑟 ⊆ (𝐴 𝑝))
7 mdsymlem1.1 . . . . . . . . . . . . . 14 𝐴C
87atcvat4i 32159 . . . . . . . . . . . . 13 ((𝑟 ∈ HAtoms ∧ 𝑝 ∈ HAtoms) → ((𝐴 ≠ 0𝑟 ⊆ (𝐴 𝑝)) → ∃𝑞 ∈ HAtoms (𝑞𝐴𝑟 ⊆ (𝑝 𝑞))))
98exp4b 430 . . . . . . . . . . . 12 (𝑟 ∈ HAtoms → (𝑝 ∈ HAtoms → (𝐴 ≠ 0 → (𝑟 ⊆ (𝐴 𝑝) → ∃𝑞 ∈ HAtoms (𝑞𝐴𝑟 ⊆ (𝑝 𝑞))))))
109com34 91 . . . . . . . . . . 11 (𝑟 ∈ HAtoms → (𝑝 ∈ HAtoms → (𝑟 ⊆ (𝐴 𝑝) → (𝐴 ≠ 0 → ∃𝑞 ∈ HAtoms (𝑞𝐴𝑟 ⊆ (𝑝 𝑞))))))
1110com23 86 . . . . . . . . . 10 (𝑟 ∈ HAtoms → (𝑟 ⊆ (𝐴 𝑝) → (𝑝 ∈ HAtoms → (𝐴 ≠ 0 → ∃𝑞 ∈ HAtoms (𝑞𝐴𝑟 ⊆ (𝑝 𝑞))))))
1211imp4b 421 . . . . . . . . 9 ((𝑟 ∈ HAtoms ∧ 𝑟 ⊆ (𝐴 𝑝)) → ((𝑝 ∈ HAtoms ∧ 𝐴 ≠ 0) → ∃𝑞 ∈ HAtoms (𝑞𝐴𝑟 ⊆ (𝑝 𝑞))))
136, 12sylan2 592 . . . . . . . 8 ((𝑟 ∈ HAtoms ∧ 𝑟 ⊆ (𝐵𝐶)) → ((𝑝 ∈ HAtoms ∧ 𝐴 ≠ 0) → ∃𝑞 ∈ HAtoms (𝑞𝐴𝑟 ⊆ (𝑝 𝑞))))
1413adantrr 714 . . . . . . 7 ((𝑟 ∈ HAtoms ∧ (𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴)) → ((𝑝 ∈ HAtoms ∧ 𝐴 ≠ 0) → ∃𝑞 ∈ HAtoms (𝑞𝐴𝑟 ⊆ (𝑝 𝑞))))
1514com12 32 . . . . . 6 ((𝑝 ∈ HAtoms ∧ 𝐴 ≠ 0) → ((𝑟 ∈ HAtoms ∧ (𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴)) → ∃𝑞 ∈ HAtoms (𝑞𝐴𝑟 ⊆ (𝑝 𝑞))))
1615adantlr 712 . . . . 5 (((𝑝 ∈ HAtoms ∧ ¬ (𝐵𝐶) ⊆ 𝐴) ∧ 𝐴 ≠ 0) → ((𝑟 ∈ HAtoms ∧ (𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴)) → ∃𝑞 ∈ HAtoms (𝑞𝐴𝑟 ⊆ (𝑝 𝑞))))
1716adantlr 712 . . . 4 ((((𝑝 ∈ HAtoms ∧ ¬ (𝐵𝐶) ⊆ 𝐴) ∧ 𝑝 ⊆ (𝐴 𝐵)) ∧ 𝐴 ≠ 0) → ((𝑟 ∈ HAtoms ∧ (𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴)) → ∃𝑞 ∈ HAtoms (𝑞𝐴𝑟 ⊆ (𝑝 𝑞))))
1817imp 406 . . 3 (((((𝑝 ∈ HAtoms ∧ ¬ (𝐵𝐶) ⊆ 𝐴) ∧ 𝑝 ⊆ (𝐴 𝐵)) ∧ 𝐴 ≠ 0) ∧ (𝑟 ∈ HAtoms ∧ (𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴))) → ∃𝑞 ∈ HAtoms (𝑞𝐴𝑟 ⊆ (𝑝 𝑞)))
19 nssne2 4040 . . . . . . . . . . . . . . . . . . . . 21 ((𝑞𝐴 ∧ ¬ 𝑟𝐴) → 𝑞𝑟)
2019adantrl 713 . . . . . . . . . . . . . . . . . . . 20 ((𝑞𝐴 ∧ (𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴)) → 𝑞𝑟)
21 atnemeq0 32139 . . . . . . . . . . . . . . . . . . . . 21 ((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) → (𝑞𝑟 ↔ (𝑞𝑟) = 0))
2221ancoms 458 . . . . . . . . . . . . . . . . . . . 20 ((𝑟 ∈ HAtoms ∧ 𝑞 ∈ HAtoms) → (𝑞𝑟 ↔ (𝑞𝑟) = 0))
2320, 22imbitrid 243 . . . . . . . . . . . . . . . . . . 19 ((𝑟 ∈ HAtoms ∧ 𝑞 ∈ HAtoms) → ((𝑞𝐴 ∧ (𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴)) → (𝑞𝑟) = 0))
2423adantll 711 . . . . . . . . . . . . . . . . . 18 (((𝑝 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ 𝑞 ∈ HAtoms) → ((𝑞𝐴 ∧ (𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴)) → (𝑞𝑟) = 0))
2524adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝑝 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ 𝑞 ∈ HAtoms) ∧ 𝑟 ⊆ (𝑝 𝑞)) → ((𝑞𝐴 ∧ (𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴)) → (𝑞𝑟) = 0))
26 atelch 32106 . . . . . . . . . . . . . . . . . . . . . 22 (𝑝 ∈ HAtoms → 𝑝C )
27 atelch 32106 . . . . . . . . . . . . . . . . . . . . . 22 (𝑞 ∈ HAtoms → 𝑞C )
28 chjcom 31268 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑝C𝑞C ) → (𝑝 𝑞) = (𝑞 𝑝))
2926, 27, 28syl2an 595 . . . . . . . . . . . . . . . . . . . . 21 ((𝑝 ∈ HAtoms ∧ 𝑞 ∈ HAtoms) → (𝑝 𝑞) = (𝑞 𝑝))
3029adantlr 712 . . . . . . . . . . . . . . . . . . . 20 (((𝑝 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ 𝑞 ∈ HAtoms) → (𝑝 𝑞) = (𝑞 𝑝))
3130sseq2d 4009 . . . . . . . . . . . . . . . . . . 19 (((𝑝 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ 𝑞 ∈ HAtoms) → (𝑟 ⊆ (𝑝 𝑞) ↔ 𝑟 ⊆ (𝑞 𝑝)))
32 atexch 32143 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑞C𝑟 ∈ HAtoms ∧ 𝑝 ∈ HAtoms) → ((𝑟 ⊆ (𝑞 𝑝) ∧ (𝑞𝑟) = 0) → 𝑝 ⊆ (𝑞 𝑟)))
3327, 32syl3an1 1160 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑞 ∈ HAtoms ∧ 𝑟 ∈ HAtoms ∧ 𝑝 ∈ HAtoms) → ((𝑟 ⊆ (𝑞 𝑝) ∧ (𝑞𝑟) = 0) → 𝑝 ⊆ (𝑞 𝑟)))
34333com13 1121 . . . . . . . . . . . . . . . . . . . . 21 ((𝑝 ∈ HAtoms ∧ 𝑟 ∈ HAtoms ∧ 𝑞 ∈ HAtoms) → ((𝑟 ⊆ (𝑞 𝑝) ∧ (𝑞𝑟) = 0) → 𝑝 ⊆ (𝑞 𝑟)))
35343expa 1115 . . . . . . . . . . . . . . . . . . . 20 (((𝑝 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ 𝑞 ∈ HAtoms) → ((𝑟 ⊆ (𝑞 𝑝) ∧ (𝑞𝑟) = 0) → 𝑝 ⊆ (𝑞 𝑟)))
3635expd 415 . . . . . . . . . . . . . . . . . . 19 (((𝑝 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ 𝑞 ∈ HAtoms) → (𝑟 ⊆ (𝑞 𝑝) → ((𝑞𝑟) = 0𝑝 ⊆ (𝑞 𝑟))))
3731, 36sylbid 239 . . . . . . . . . . . . . . . . . 18 (((𝑝 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ 𝑞 ∈ HAtoms) → (𝑟 ⊆ (𝑝 𝑞) → ((𝑞𝑟) = 0𝑝 ⊆ (𝑞 𝑟))))
3837imp 406 . . . . . . . . . . . . . . . . 17 ((((𝑝 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ 𝑞 ∈ HAtoms) ∧ 𝑟 ⊆ (𝑝 𝑞)) → ((𝑞𝑟) = 0𝑝 ⊆ (𝑞 𝑟)))
3925, 38syld 47 . . . . . . . . . . . . . . . 16 ((((𝑝 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ 𝑞 ∈ HAtoms) ∧ 𝑟 ⊆ (𝑝 𝑞)) → ((𝑞𝐴 ∧ (𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴)) → 𝑝 ⊆ (𝑞 𝑟)))
4039expd 415 . . . . . . . . . . . . . . 15 ((((𝑝 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ 𝑞 ∈ HAtoms) ∧ 𝑟 ⊆ (𝑝 𝑞)) → (𝑞𝐴 → ((𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴) → 𝑝 ⊆ (𝑞 𝑟))))
4140exp31 419 . . . . . . . . . . . . . 14 ((𝑝 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) → (𝑞 ∈ HAtoms → (𝑟 ⊆ (𝑝 𝑞) → (𝑞𝐴 → ((𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴) → 𝑝 ⊆ (𝑞 𝑟))))))
4241com24 95 . . . . . . . . . . . . 13 ((𝑝 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) → (𝑞𝐴 → (𝑟 ⊆ (𝑝 𝑞) → (𝑞 ∈ HAtoms → ((𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴) → 𝑝 ⊆ (𝑞 𝑟))))))
4342impd 410 . . . . . . . . . . . 12 ((𝑝 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) → ((𝑞𝐴𝑟 ⊆ (𝑝 𝑞)) → (𝑞 ∈ HAtoms → ((𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴) → 𝑝 ⊆ (𝑞 𝑟)))))
4443com24 95 . . . . . . . . . . 11 ((𝑝 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) → ((𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴) → (𝑞 ∈ HAtoms → ((𝑞𝐴𝑟 ⊆ (𝑝 𝑞)) → 𝑝 ⊆ (𝑞 𝑟)))))
4544imp4b 421 . . . . . . . . . 10 (((𝑝 ∈ HAtoms ∧ 𝑟 ∈ HAtoms) ∧ (𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴)) → ((𝑞 ∈ HAtoms ∧ (𝑞𝐴𝑟 ⊆ (𝑝 𝑞))) → 𝑝 ⊆ (𝑞 𝑟)))
4645anasss 466 . . . . . . . . 9 ((𝑝 ∈ HAtoms ∧ (𝑟 ∈ HAtoms ∧ (𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴))) → ((𝑞 ∈ HAtoms ∧ (𝑞𝐴𝑟 ⊆ (𝑝 𝑞))) → 𝑝 ⊆ (𝑞 𝑟)))
47 simprl 768 . . . . . . . . . . 11 ((𝑞 ∈ HAtoms ∧ (𝑞𝐴𝑟 ⊆ (𝑝 𝑞))) → 𝑞𝐴)
4847a1i 11 . . . . . . . . . 10 ((𝑝 ∈ HAtoms ∧ (𝑟 ∈ HAtoms ∧ (𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴))) → ((𝑞 ∈ HAtoms ∧ (𝑞𝐴𝑟 ⊆ (𝑝 𝑞))) → 𝑞𝐴))
49 simpl 482 . . . . . . . . . . . . 13 ((𝑟𝐵𝑟𝐶) → 𝑟𝐵)
501, 49sylbir 234 . . . . . . . . . . . 12 (𝑟 ⊆ (𝐵𝐶) → 𝑟𝐵)
5150ad2antrl 725 . . . . . . . . . . 11 ((𝑟 ∈ HAtoms ∧ (𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴)) → 𝑟𝐵)
5251adantl 481 . . . . . . . . . 10 ((𝑝 ∈ HAtoms ∧ (𝑟 ∈ HAtoms ∧ (𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴))) → 𝑟𝐵)
5348, 52jctird 526 . . . . . . . . 9 ((𝑝 ∈ HAtoms ∧ (𝑟 ∈ HAtoms ∧ (𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴))) → ((𝑞 ∈ HAtoms ∧ (𝑞𝐴𝑟 ⊆ (𝑝 𝑞))) → (𝑞𝐴𝑟𝐵)))
5446, 53jcad 512 . . . . . . . 8 ((𝑝 ∈ HAtoms ∧ (𝑟 ∈ HAtoms ∧ (𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴))) → ((𝑞 ∈ HAtoms ∧ (𝑞𝐴𝑟 ⊆ (𝑝 𝑞))) → (𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵))))
5554expd 415 . . . . . . 7 ((𝑝 ∈ HAtoms ∧ (𝑟 ∈ HAtoms ∧ (𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴))) → (𝑞 ∈ HAtoms → ((𝑞𝐴𝑟 ⊆ (𝑝 𝑞)) → (𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)))))
5655adantlr 712 . . . . . 6 (((𝑝 ∈ HAtoms ∧ ¬ (𝐵𝐶) ⊆ 𝐴) ∧ (𝑟 ∈ HAtoms ∧ (𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴))) → (𝑞 ∈ HAtoms → ((𝑞𝐴𝑟 ⊆ (𝑝 𝑞)) → (𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)))))
5756adantlr 712 . . . . 5 ((((𝑝 ∈ HAtoms ∧ ¬ (𝐵𝐶) ⊆ 𝐴) ∧ 𝑝 ⊆ (𝐴 𝐵)) ∧ (𝑟 ∈ HAtoms ∧ (𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴))) → (𝑞 ∈ HAtoms → ((𝑞𝐴𝑟 ⊆ (𝑝 𝑞)) → (𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)))))
5857adantlr 712 . . . 4 (((((𝑝 ∈ HAtoms ∧ ¬ (𝐵𝐶) ⊆ 𝐴) ∧ 𝑝 ⊆ (𝐴 𝐵)) ∧ 𝐴 ≠ 0) ∧ (𝑟 ∈ HAtoms ∧ (𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴))) → (𝑞 ∈ HAtoms → ((𝑞𝐴𝑟 ⊆ (𝑝 𝑞)) → (𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)))))
5958reximdvai 3159 . . 3 (((((𝑝 ∈ HAtoms ∧ ¬ (𝐵𝐶) ⊆ 𝐴) ∧ 𝑝 ⊆ (𝐴 𝐵)) ∧ 𝐴 ≠ 0) ∧ (𝑟 ∈ HAtoms ∧ (𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴))) → (∃𝑞 ∈ HAtoms (𝑞𝐴𝑟 ⊆ (𝑝 𝑞)) → ∃𝑞 ∈ HAtoms (𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵))))
6018, 59mpd 15 . 2 (((((𝑝 ∈ HAtoms ∧ ¬ (𝐵𝐶) ⊆ 𝐴) ∧ 𝑝 ⊆ (𝐴 𝐵)) ∧ 𝐴 ≠ 0) ∧ (𝑟 ∈ HAtoms ∧ (𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴))) → ∃𝑞 ∈ HAtoms (𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)))
61 mdsymlem1.2 . . . . . . 7 𝐵C
62 chjcl 31119 . . . . . . . . 9 ((𝐴C𝑝C ) → (𝐴 𝑝) ∈ C )
637, 62mpan 687 . . . . . . . 8 (𝑝C → (𝐴 𝑝) ∈ C )
642, 63eqeltrid 2831 . . . . . . 7 (𝑝C𝐶C )
65 chincl 31261 . . . . . . 7 ((𝐵C𝐶C ) → (𝐵𝐶) ∈ C )
6661, 64, 65sylancr 586 . . . . . 6 (𝑝C → (𝐵𝐶) ∈ C )
6726, 66syl 17 . . . . 5 (𝑝 ∈ HAtoms → (𝐵𝐶) ∈ C )
68 chrelat2 32132 . . . . 5 (((𝐵𝐶) ∈ C𝐴C ) → (¬ (𝐵𝐶) ⊆ 𝐴 ↔ ∃𝑟 ∈ HAtoms (𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴)))
6967, 7, 68sylancl 585 . . . 4 (𝑝 ∈ HAtoms → (¬ (𝐵𝐶) ⊆ 𝐴 ↔ ∃𝑟 ∈ HAtoms (𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴)))
7069biimpa 476 . . 3 ((𝑝 ∈ HAtoms ∧ ¬ (𝐵𝐶) ⊆ 𝐴) → ∃𝑟 ∈ HAtoms (𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴))
7170ad2antrr 723 . 2 ((((𝑝 ∈ HAtoms ∧ ¬ (𝐵𝐶) ⊆ 𝐴) ∧ 𝑝 ⊆ (𝐴 𝐵)) ∧ 𝐴 ≠ 0) → ∃𝑟 ∈ HAtoms (𝑟 ⊆ (𝐵𝐶) ∧ ¬ 𝑟𝐴))
7260, 71reximddv 3165 1 ((((𝑝 ∈ HAtoms ∧ ¬ (𝐵𝐶) ⊆ 𝐴) ∧ 𝑝 ⊆ (𝐴 𝐵)) ∧ 𝐴 ≠ 0) → ∃𝑟 ∈ HAtoms ∃𝑞 ∈ HAtoms (𝑝 ⊆ (𝑞 𝑟) ∧ (𝑞𝐴𝑟𝐵)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1533  wcel 2098  wne 2934  wrex 3064  cin 3942  wss 3943  (class class class)co 7405   C cch 30691   chj 30695  0c0h 30697  HAtomscat 30727
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-rep 5278  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7722  ax-inf2 9638  ax-cc 10432  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190  ax-addf 11191  ax-mulf 11192  ax-hilex 30761  ax-hfvadd 30762  ax-hvcom 30763  ax-hvass 30764  ax-hv0cl 30765  ax-hvaddid 30766  ax-hfvmul 30767  ax-hvmulid 30768  ax-hvmulass 30769  ax-hvdistr1 30770  ax-hvdistr2 30771  ax-hvmul0 30772  ax-hfi 30841  ax-his1 30844  ax-his2 30845  ax-his3 30846  ax-his4 30847  ax-hcompl 30964
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-uni 4903  df-int 4944  df-iun 4992  df-iin 4993  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-se 5625  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6294  df-ord 6361  df-on 6362  df-lim 6363  df-suc 6364  df-iota 6489  df-fun 6539  df-fn 6540  df-f 6541  df-f1 6542  df-fo 6543  df-f1o 6544  df-fv 6545  df-isom 6546  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7667  df-om 7853  df-1st 7974  df-2nd 7975  df-supp 8147  df-frecs 8267  df-wrecs 8298  df-recs 8372  df-rdg 8411  df-1o 8467  df-2o 8468  df-oadd 8471  df-omul 8472  df-er 8705  df-map 8824  df-pm 8825  df-ixp 8894  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-fsupp 9364  df-fi 9408  df-sup 9439  df-inf 9440  df-oi 9507  df-card 9936  df-acn 9939  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876  df-nn 12217  df-2 12279  df-3 12280  df-4 12281  df-5 12282  df-6 12283  df-7 12284  df-8 12285  df-9 12286  df-n0 12477  df-z 12563  df-dec 12682  df-uz 12827  df-q 12937  df-rp 12981  df-xneg 13098  df-xadd 13099  df-xmul 13100  df-ioo 13334  df-ico 13336  df-icc 13337  df-fz 13491  df-fzo 13634  df-fl 13763  df-seq 13973  df-exp 14033  df-hash 14296  df-cj 15052  df-re 15053  df-im 15054  df-sqrt 15188  df-abs 15189  df-clim 15438  df-rlim 15439  df-sum 15639  df-struct 17089  df-sets 17106  df-slot 17124  df-ndx 17136  df-base 17154  df-ress 17183  df-plusg 17219  df-mulr 17220  df-starv 17221  df-sca 17222  df-vsca 17223  df-ip 17224  df-tset 17225  df-ple 17226  df-ds 17228  df-unif 17229  df-hom 17230  df-cco 17231  df-rest 17377  df-topn 17378  df-0g 17396  df-gsum 17397  df-topgen 17398  df-pt 17399  df-prds 17402  df-xrs 17457  df-qtop 17462  df-imas 17463  df-xps 17465  df-mre 17539  df-mrc 17540  df-acs 17542  df-mgm 18573  df-sgrp 18652  df-mnd 18668  df-submnd 18714  df-mulg 18996  df-cntz 19233  df-cmn 19702  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235  df-mopn 21236  df-fbas 21237  df-fg 21238  df-cnfld 21241  df-top 22751  df-topon 22768  df-topsp 22790  df-bases 22804  df-cld 22878  df-ntr 22879  df-cls 22880  df-nei 22957  df-cn 23086  df-cnp 23087  df-lm 23088  df-haus 23174  df-tx 23421  df-hmeo 23614  df-fil 23705  df-fm 23797  df-flim 23798  df-flf 23799  df-xms 24181  df-ms 24182  df-tms 24183  df-cfil 25138  df-cau 25139  df-cmet 25140  df-grpo 30255  df-gid 30256  df-ginv 30257  df-gdiv 30258  df-ablo 30307  df-vc 30321  df-nv 30354  df-va 30357  df-ba 30358  df-sm 30359  df-0v 30360  df-vs 30361  df-nmcv 30362  df-ims 30363  df-dip 30463  df-ssp 30484  df-ph 30575  df-cbn 30625  df-hnorm 30730  df-hba 30731  df-hvsub 30733  df-hlim 30734  df-hcau 30735  df-sh 30969  df-ch 30983  df-oc 31014  df-ch0 31015  df-shs 31070  df-span 31071  df-chj 31072  df-chsup 31073  df-pjh 31157  df-cv 32041  df-at 32100
This theorem is referenced by:  mdsymlem4  32168
  Copyright terms: Public domain W3C validator