![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > onsupeqmax | Structured version Visualization version GIF version |
Description: Condition when the supremum of a set of ordinals is the maximum element of that set. (Contributed by RP, 24-Jan-2025.) |
Ref | Expression |
---|---|
onsupeqmax | ⊢ ((𝐴 ⊆ On ∧ 𝐴 ∈ 𝑉) → (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥 ↔ ∪ 𝐴 ∈ 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | unielid 43208 | . . 3 ⊢ (∪ 𝐴 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥) | |
2 | 1 | a1i 11 | . 2 ⊢ ((𝐴 ⊆ On ∧ 𝐴 ∈ 𝑉) → (∪ 𝐴 ∈ 𝐴 ↔ ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥)) |
3 | 2 | bicomd 223 | 1 ⊢ ((𝐴 ⊆ On ∧ 𝐴 ∈ 𝑉) → (∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑦 ⊆ 𝑥 ↔ ∪ 𝐴 ∈ 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2106 ∀wral 3059 ∃wrex 3068 ⊆ wss 3963 ∪ cuni 4912 Oncon0 6386 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-ex 1777 df-nf 1781 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-ss 3980 df-uni 4913 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |