Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsupeqmax Structured version   Visualization version   GIF version

Theorem onsupeqmax 43207
Description: Condition when the supremum of a set of ordinals is the maximum element of that set. (Contributed by RP, 24-Jan-2025.)
Assertion
Ref Expression
onsupeqmax ((𝐴 ⊆ On ∧ 𝐴𝑉) → (∃𝑥𝐴𝑦𝐴 𝑦𝑥 𝐴𝐴))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝑉,𝑦

Proof of Theorem onsupeqmax
StepHypRef Expression
1 unielid 43180 . . 3 ( 𝐴𝐴 ↔ ∃𝑥𝐴𝑦𝐴 𝑦𝑥)
21a1i 11 . 2 ((𝐴 ⊆ On ∧ 𝐴𝑉) → ( 𝐴𝐴 ↔ ∃𝑥𝐴𝑦𝐴 𝑦𝑥))
32bicomd 223 1 ((𝐴 ⊆ On ∧ 𝐴𝑉) → (∃𝑥𝐴𝑦𝐴 𝑦𝑥 𝐴𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2108  wral 3067  wrex 3076  wss 3976   cuni 4931  Oncon0 6395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-tru 1540  df-ex 1778  df-nf 1782  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-ss 3993  df-uni 4932
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator