Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  onsupeqmax Structured version   Visualization version   GIF version

Theorem onsupeqmax 43235
Description: Condition when the supremum of a set of ordinals is the maximum element of that set. (Contributed by RP, 24-Jan-2025.)
Assertion
Ref Expression
onsupeqmax ((𝐴 ⊆ On ∧ 𝐴𝑉) → (∃𝑥𝐴𝑦𝐴 𝑦𝑥 𝐴𝐴))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝑉,𝑦

Proof of Theorem onsupeqmax
StepHypRef Expression
1 unielid 43208 . . 3 ( 𝐴𝐴 ↔ ∃𝑥𝐴𝑦𝐴 𝑦𝑥)
21a1i 11 . 2 ((𝐴 ⊆ On ∧ 𝐴𝑉) → ( 𝐴𝐴 ↔ ∃𝑥𝐴𝑦𝐴 𝑦𝑥))
32bicomd 223 1 ((𝐴 ⊆ On ∧ 𝐴𝑉) → (∃𝑥𝐴𝑦𝐴 𝑦𝑥 𝐴𝐴))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2106  wral 3059  wrex 3068  wss 3963   cuni 4912  Oncon0 6386
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1540  df-ex 1777  df-nf 1781  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-ss 3980  df-uni 4913
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator