![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > opndisj | Structured version Visualization version GIF version |
Description: Two ways of saying that two open sets are disjoint, if 𝐽 is a topology and 𝑋 is an open set. (Contributed by Zhi Wang, 6-Sep-2024.) |
Ref | Expression |
---|---|
opndisj | ⊢ (𝑍 = (∪ 𝐽 ∖ 𝑋) → (𝑌 ∈ (𝐽 ∩ 𝒫 𝑍) ↔ (𝑌 ∈ 𝐽 ∧ (𝑋 ∩ 𝑌) = ∅))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elpwg 4609 | . . . 4 ⊢ (𝑌 ∈ 𝐽 → (𝑌 ∈ 𝒫 𝑍 ↔ 𝑌 ⊆ 𝑍)) | |
2 | sseq2 4023 | . . . 4 ⊢ (𝑍 = (∪ 𝐽 ∖ 𝑋) → (𝑌 ⊆ 𝑍 ↔ 𝑌 ⊆ (∪ 𝐽 ∖ 𝑋))) | |
3 | 1, 2 | sylan9bbr 510 | . . 3 ⊢ ((𝑍 = (∪ 𝐽 ∖ 𝑋) ∧ 𝑌 ∈ 𝐽) → (𝑌 ∈ 𝒫 𝑍 ↔ 𝑌 ⊆ (∪ 𝐽 ∖ 𝑋))) |
4 | 3 | pm5.32da 579 | . 2 ⊢ (𝑍 = (∪ 𝐽 ∖ 𝑋) → ((𝑌 ∈ 𝐽 ∧ 𝑌 ∈ 𝒫 𝑍) ↔ (𝑌 ∈ 𝐽 ∧ 𝑌 ⊆ (∪ 𝐽 ∖ 𝑋)))) |
5 | elin 3980 | . 2 ⊢ (𝑌 ∈ (𝐽 ∩ 𝒫 𝑍) ↔ (𝑌 ∈ 𝐽 ∧ 𝑌 ∈ 𝒫 𝑍)) | |
6 | elssuni 4943 | . . . 4 ⊢ (𝑌 ∈ 𝐽 → 𝑌 ⊆ ∪ 𝐽) | |
7 | incom 4218 | . . . . . 6 ⊢ (𝑋 ∩ 𝑌) = (𝑌 ∩ 𝑋) | |
8 | 7 | eqeq1i 2741 | . . . . 5 ⊢ ((𝑋 ∩ 𝑌) = ∅ ↔ (𝑌 ∩ 𝑋) = ∅) |
9 | reldisj 4460 | . . . . 5 ⊢ (𝑌 ⊆ ∪ 𝐽 → ((𝑌 ∩ 𝑋) = ∅ ↔ 𝑌 ⊆ (∪ 𝐽 ∖ 𝑋))) | |
10 | 8, 9 | bitrid 283 | . . . 4 ⊢ (𝑌 ⊆ ∪ 𝐽 → ((𝑋 ∩ 𝑌) = ∅ ↔ 𝑌 ⊆ (∪ 𝐽 ∖ 𝑋))) |
11 | 6, 10 | syl 17 | . . 3 ⊢ (𝑌 ∈ 𝐽 → ((𝑋 ∩ 𝑌) = ∅ ↔ 𝑌 ⊆ (∪ 𝐽 ∖ 𝑋))) |
12 | 11 | pm5.32i 574 | . 2 ⊢ ((𝑌 ∈ 𝐽 ∧ (𝑋 ∩ 𝑌) = ∅) ↔ (𝑌 ∈ 𝐽 ∧ 𝑌 ⊆ (∪ 𝐽 ∖ 𝑋))) |
13 | 4, 5, 12 | 3bitr4g 314 | 1 ⊢ (𝑍 = (∪ 𝐽 ∖ 𝑋) → (𝑌 ∈ (𝐽 ∩ 𝒫 𝑍) ↔ (𝑌 ∈ 𝐽 ∧ (𝑋 ∩ 𝑌) = ∅))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1538 ∈ wcel 2107 ∖ cdif 3961 ∩ cin 3963 ⊆ wss 3964 ∅c0 4340 𝒫 cpw 4606 ∪ cuni 4913 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1541 df-fal 1551 df-ex 1778 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ral 3061 df-rab 3435 df-v 3481 df-dif 3967 df-in 3971 df-ss 3981 df-nul 4341 df-pw 4608 df-uni 4914 |
This theorem is referenced by: clddisj 48721 |
Copyright terms: Public domain | W3C validator |