| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > opndisj | Structured version Visualization version GIF version | ||
| Description: Two ways of saying that two open sets are disjoint, if 𝐽 is a topology and 𝑋 is an open set. (Contributed by Zhi Wang, 6-Sep-2024.) |
| Ref | Expression |
|---|---|
| opndisj | ⊢ (𝑍 = (∪ 𝐽 ∖ 𝑋) → (𝑌 ∈ (𝐽 ∩ 𝒫 𝑍) ↔ (𝑌 ∈ 𝐽 ∧ (𝑋 ∩ 𝑌) = ∅))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elpwg 4583 | . . . 4 ⊢ (𝑌 ∈ 𝐽 → (𝑌 ∈ 𝒫 𝑍 ↔ 𝑌 ⊆ 𝑍)) | |
| 2 | sseq2 3990 | . . . 4 ⊢ (𝑍 = (∪ 𝐽 ∖ 𝑋) → (𝑌 ⊆ 𝑍 ↔ 𝑌 ⊆ (∪ 𝐽 ∖ 𝑋))) | |
| 3 | 1, 2 | sylan9bbr 510 | . . 3 ⊢ ((𝑍 = (∪ 𝐽 ∖ 𝑋) ∧ 𝑌 ∈ 𝐽) → (𝑌 ∈ 𝒫 𝑍 ↔ 𝑌 ⊆ (∪ 𝐽 ∖ 𝑋))) |
| 4 | 3 | pm5.32da 579 | . 2 ⊢ (𝑍 = (∪ 𝐽 ∖ 𝑋) → ((𝑌 ∈ 𝐽 ∧ 𝑌 ∈ 𝒫 𝑍) ↔ (𝑌 ∈ 𝐽 ∧ 𝑌 ⊆ (∪ 𝐽 ∖ 𝑋)))) |
| 5 | elin 3947 | . 2 ⊢ (𝑌 ∈ (𝐽 ∩ 𝒫 𝑍) ↔ (𝑌 ∈ 𝐽 ∧ 𝑌 ∈ 𝒫 𝑍)) | |
| 6 | elssuni 4918 | . . . 4 ⊢ (𝑌 ∈ 𝐽 → 𝑌 ⊆ ∪ 𝐽) | |
| 7 | incom 4189 | . . . . . 6 ⊢ (𝑋 ∩ 𝑌) = (𝑌 ∩ 𝑋) | |
| 8 | 7 | eqeq1i 2741 | . . . . 5 ⊢ ((𝑋 ∩ 𝑌) = ∅ ↔ (𝑌 ∩ 𝑋) = ∅) |
| 9 | reldisj 4433 | . . . . 5 ⊢ (𝑌 ⊆ ∪ 𝐽 → ((𝑌 ∩ 𝑋) = ∅ ↔ 𝑌 ⊆ (∪ 𝐽 ∖ 𝑋))) | |
| 10 | 8, 9 | bitrid 283 | . . . 4 ⊢ (𝑌 ⊆ ∪ 𝐽 → ((𝑋 ∩ 𝑌) = ∅ ↔ 𝑌 ⊆ (∪ 𝐽 ∖ 𝑋))) |
| 11 | 6, 10 | syl 17 | . . 3 ⊢ (𝑌 ∈ 𝐽 → ((𝑋 ∩ 𝑌) = ∅ ↔ 𝑌 ⊆ (∪ 𝐽 ∖ 𝑋))) |
| 12 | 11 | pm5.32i 574 | . 2 ⊢ ((𝑌 ∈ 𝐽 ∧ (𝑋 ∩ 𝑌) = ∅) ↔ (𝑌 ∈ 𝐽 ∧ 𝑌 ⊆ (∪ 𝐽 ∖ 𝑋))) |
| 13 | 4, 5, 12 | 3bitr4g 314 | 1 ⊢ (𝑍 = (∪ 𝐽 ∖ 𝑋) → (𝑌 ∈ (𝐽 ∩ 𝒫 𝑍) ↔ (𝑌 ∈ 𝐽 ∧ (𝑋 ∩ 𝑌) = ∅))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∖ cdif 3928 ∩ cin 3930 ⊆ wss 3931 ∅c0 4313 𝒫 cpw 4580 ∪ cuni 4888 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rab 3421 df-v 3466 df-dif 3934 df-in 3938 df-ss 3948 df-nul 4314 df-pw 4582 df-uni 4889 |
| This theorem is referenced by: clddisj 48858 |
| Copyright terms: Public domain | W3C validator |