Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opncldeqv Structured version   Visualization version   GIF version

Theorem opncldeqv 46083
Description: Conditions on open sets are equivalent to conditions on closed sets. (Contributed by Zhi Wang, 30-Aug-2024.)
Hypotheses
Ref Expression
opncldeqv.1 (𝜑𝐽 ∈ Top)
opncldeqv.2 ((𝜑𝑥 = ( 𝐽𝑦)) → (𝜓𝜒))
Assertion
Ref Expression
opncldeqv (𝜑 → (∀𝑥𝐽 𝜓 ↔ ∀𝑦 ∈ (Clsd‘𝐽)𝜒))
Distinct variable groups:   𝑥,𝐽,𝑦   𝜒,𝑥   𝜑,𝑥,𝑦   𝜓,𝑦
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑦)

Proof of Theorem opncldeqv
StepHypRef Expression
1 eqid 2738 . . . 4 𝐽 = 𝐽
21cldopn 22090 . . 3 (𝑦 ∈ (Clsd‘𝐽) → ( 𝐽𝑦) ∈ 𝐽)
32adantl 481 . 2 ((𝜑𝑦 ∈ (Clsd‘𝐽)) → ( 𝐽𝑦) ∈ 𝐽)
4 opncldeqv.1 . . 3 (𝜑𝐽 ∈ Top)
51opncld 22092 . . . . 5 ((𝐽 ∈ Top ∧ 𝑥𝐽) → ( 𝐽𝑥) ∈ (Clsd‘𝐽))
6 elssuni 4868 . . . . . . . . 9 (𝑥𝐽𝑥 𝐽)
7 dfss4 4189 . . . . . . . . 9 (𝑥 𝐽 ↔ ( 𝐽 ∖ ( 𝐽𝑥)) = 𝑥)
86, 7sylib 217 . . . . . . . 8 (𝑥𝐽 → ( 𝐽 ∖ ( 𝐽𝑥)) = 𝑥)
98eqcomd 2744 . . . . . . 7 (𝑥𝐽𝑥 = ( 𝐽 ∖ ( 𝐽𝑥)))
109adantl 481 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑥𝐽) → 𝑥 = ( 𝐽 ∖ ( 𝐽𝑥)))
115, 10jca 511 . . . . 5 ((𝐽 ∈ Top ∧ 𝑥𝐽) → (( 𝐽𝑥) ∈ (Clsd‘𝐽) ∧ 𝑥 = ( 𝐽 ∖ ( 𝐽𝑥))))
12 eleq1 2826 . . . . . 6 (𝑦 = ( 𝐽𝑥) → (𝑦 ∈ (Clsd‘𝐽) ↔ ( 𝐽𝑥) ∈ (Clsd‘𝐽)))
13 difeq2 4047 . . . . . . 7 (𝑦 = ( 𝐽𝑥) → ( 𝐽𝑦) = ( 𝐽 ∖ ( 𝐽𝑥)))
1413eqeq2d 2749 . . . . . 6 (𝑦 = ( 𝐽𝑥) → (𝑥 = ( 𝐽𝑦) ↔ 𝑥 = ( 𝐽 ∖ ( 𝐽𝑥))))
1512, 14anbi12d 630 . . . . 5 (𝑦 = ( 𝐽𝑥) → ((𝑦 ∈ (Clsd‘𝐽) ∧ 𝑥 = ( 𝐽𝑦)) ↔ (( 𝐽𝑥) ∈ (Clsd‘𝐽) ∧ 𝑥 = ( 𝐽 ∖ ( 𝐽𝑥)))))
165, 11, 15spcedv 3527 . . . 4 ((𝐽 ∈ Top ∧ 𝑥𝐽) → ∃𝑦(𝑦 ∈ (Clsd‘𝐽) ∧ 𝑥 = ( 𝐽𝑦)))
17 df-rex 3069 . . . 4 (∃𝑦 ∈ (Clsd‘𝐽)𝑥 = ( 𝐽𝑦) ↔ ∃𝑦(𝑦 ∈ (Clsd‘𝐽) ∧ 𝑥 = ( 𝐽𝑦)))
1816, 17sylibr 233 . . 3 ((𝐽 ∈ Top ∧ 𝑥𝐽) → ∃𝑦 ∈ (Clsd‘𝐽)𝑥 = ( 𝐽𝑦))
194, 18sylan 579 . 2 ((𝜑𝑥𝐽) → ∃𝑦 ∈ (Clsd‘𝐽)𝑥 = ( 𝐽𝑦))
20 opncldeqv.2 . 2 ((𝜑𝑥 = ( 𝐽𝑦)) → (𝜓𝜒))
213, 19, 20ralxfrd 5326 1 (𝜑 → (∀𝑥𝐽 𝜓 ↔ ∀𝑦 ∈ (Clsd‘𝐽)𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wex 1783  wcel 2108  wral 3063  wrex 3064  cdif 3880  wss 3883   cuni 4836  cfv 6418  Topctop 21950  Clsdccld 22075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fn 6421  df-fv 6426  df-top 21951  df-cld 22078
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator