Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opncldeqv Structured version   Visualization version   GIF version

Theorem opncldeqv 48698
Description: Conditions on open sets are equivalent to conditions on closed sets. (Contributed by Zhi Wang, 30-Aug-2024.)
Hypotheses
Ref Expression
opncldeqv.1 (𝜑𝐽 ∈ Top)
opncldeqv.2 ((𝜑𝑥 = ( 𝐽𝑦)) → (𝜓𝜒))
Assertion
Ref Expression
opncldeqv (𝜑 → (∀𝑥𝐽 𝜓 ↔ ∀𝑦 ∈ (Clsd‘𝐽)𝜒))
Distinct variable groups:   𝑥,𝐽,𝑦   𝜒,𝑥   𝜑,𝑥,𝑦   𝜓,𝑦
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑦)

Proof of Theorem opncldeqv
StepHypRef Expression
1 eqid 2735 . . . 4 𝐽 = 𝐽
21cldopn 23055 . . 3 (𝑦 ∈ (Clsd‘𝐽) → ( 𝐽𝑦) ∈ 𝐽)
32adantl 481 . 2 ((𝜑𝑦 ∈ (Clsd‘𝐽)) → ( 𝐽𝑦) ∈ 𝐽)
4 opncldeqv.1 . . 3 (𝜑𝐽 ∈ Top)
51opncld 23057 . . . . 5 ((𝐽 ∈ Top ∧ 𝑥𝐽) → ( 𝐽𝑥) ∈ (Clsd‘𝐽))
6 elssuni 4942 . . . . . . . . 9 (𝑥𝐽𝑥 𝐽)
7 dfss4 4275 . . . . . . . . 9 (𝑥 𝐽 ↔ ( 𝐽 ∖ ( 𝐽𝑥)) = 𝑥)
86, 7sylib 218 . . . . . . . 8 (𝑥𝐽 → ( 𝐽 ∖ ( 𝐽𝑥)) = 𝑥)
98eqcomd 2741 . . . . . . 7 (𝑥𝐽𝑥 = ( 𝐽 ∖ ( 𝐽𝑥)))
109adantl 481 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑥𝐽) → 𝑥 = ( 𝐽 ∖ ( 𝐽𝑥)))
115, 10jca 511 . . . . 5 ((𝐽 ∈ Top ∧ 𝑥𝐽) → (( 𝐽𝑥) ∈ (Clsd‘𝐽) ∧ 𝑥 = ( 𝐽 ∖ ( 𝐽𝑥))))
12 eleq1 2827 . . . . . 6 (𝑦 = ( 𝐽𝑥) → (𝑦 ∈ (Clsd‘𝐽) ↔ ( 𝐽𝑥) ∈ (Clsd‘𝐽)))
13 difeq2 4130 . . . . . . 7 (𝑦 = ( 𝐽𝑥) → ( 𝐽𝑦) = ( 𝐽 ∖ ( 𝐽𝑥)))
1413eqeq2d 2746 . . . . . 6 (𝑦 = ( 𝐽𝑥) → (𝑥 = ( 𝐽𝑦) ↔ 𝑥 = ( 𝐽 ∖ ( 𝐽𝑥))))
1512, 14anbi12d 632 . . . . 5 (𝑦 = ( 𝐽𝑥) → ((𝑦 ∈ (Clsd‘𝐽) ∧ 𝑥 = ( 𝐽𝑦)) ↔ (( 𝐽𝑥) ∈ (Clsd‘𝐽) ∧ 𝑥 = ( 𝐽 ∖ ( 𝐽𝑥)))))
165, 11, 15spcedv 3598 . . . 4 ((𝐽 ∈ Top ∧ 𝑥𝐽) → ∃𝑦(𝑦 ∈ (Clsd‘𝐽) ∧ 𝑥 = ( 𝐽𝑦)))
17 df-rex 3069 . . . 4 (∃𝑦 ∈ (Clsd‘𝐽)𝑥 = ( 𝐽𝑦) ↔ ∃𝑦(𝑦 ∈ (Clsd‘𝐽) ∧ 𝑥 = ( 𝐽𝑦)))
1816, 17sylibr 234 . . 3 ((𝐽 ∈ Top ∧ 𝑥𝐽) → ∃𝑦 ∈ (Clsd‘𝐽)𝑥 = ( 𝐽𝑦))
194, 18sylan 580 . 2 ((𝜑𝑥𝐽) → ∃𝑦 ∈ (Clsd‘𝐽)𝑥 = ( 𝐽𝑦))
20 opncldeqv.2 . 2 ((𝜑𝑥 = ( 𝐽𝑦)) → (𝜓𝜒))
213, 19, 20ralxfrd 5414 1 (𝜑 → (∀𝑥𝐽 𝜓 ↔ ∀𝑦 ∈ (Clsd‘𝐽)𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wex 1776  wcel 2106  wral 3059  wrex 3068  cdif 3960  wss 3963   cuni 4912  cfv 6563  Topctop 22915  Clsdccld 23040
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-iota 6516  df-fun 6565  df-fn 6566  df-fv 6571  df-top 22916  df-cld 23043
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator