![]() |
Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > opncldeqv | Structured version Visualization version GIF version |
Description: Conditions on open sets are equivalent to conditions on closed sets. (Contributed by Zhi Wang, 30-Aug-2024.) |
Ref | Expression |
---|---|
opncldeqv.1 | ⊢ (𝜑 → 𝐽 ∈ Top) |
opncldeqv.2 | ⊢ ((𝜑 ∧ 𝑥 = (∪ 𝐽 ∖ 𝑦)) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
opncldeqv | ⊢ (𝜑 → (∀𝑥 ∈ 𝐽 𝜓 ↔ ∀𝑦 ∈ (Clsd‘𝐽)𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2732 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | 1 | cldopn 22534 | . . 3 ⊢ (𝑦 ∈ (Clsd‘𝐽) → (∪ 𝐽 ∖ 𝑦) ∈ 𝐽) |
3 | 2 | adantl 482 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ (Clsd‘𝐽)) → (∪ 𝐽 ∖ 𝑦) ∈ 𝐽) |
4 | opncldeqv.1 | . . 3 ⊢ (𝜑 → 𝐽 ∈ Top) | |
5 | 1 | opncld 22536 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽) → (∪ 𝐽 ∖ 𝑥) ∈ (Clsd‘𝐽)) |
6 | elssuni 4941 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝐽 → 𝑥 ⊆ ∪ 𝐽) | |
7 | dfss4 4258 | . . . . . . . . 9 ⊢ (𝑥 ⊆ ∪ 𝐽 ↔ (∪ 𝐽 ∖ (∪ 𝐽 ∖ 𝑥)) = 𝑥) | |
8 | 6, 7 | sylib 217 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝐽 → (∪ 𝐽 ∖ (∪ 𝐽 ∖ 𝑥)) = 𝑥) |
9 | 8 | eqcomd 2738 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐽 → 𝑥 = (∪ 𝐽 ∖ (∪ 𝐽 ∖ 𝑥))) |
10 | 9 | adantl 482 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽) → 𝑥 = (∪ 𝐽 ∖ (∪ 𝐽 ∖ 𝑥))) |
11 | 5, 10 | jca 512 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽) → ((∪ 𝐽 ∖ 𝑥) ∈ (Clsd‘𝐽) ∧ 𝑥 = (∪ 𝐽 ∖ (∪ 𝐽 ∖ 𝑥)))) |
12 | eleq1 2821 | . . . . . 6 ⊢ (𝑦 = (∪ 𝐽 ∖ 𝑥) → (𝑦 ∈ (Clsd‘𝐽) ↔ (∪ 𝐽 ∖ 𝑥) ∈ (Clsd‘𝐽))) | |
13 | difeq2 4116 | . . . . . . 7 ⊢ (𝑦 = (∪ 𝐽 ∖ 𝑥) → (∪ 𝐽 ∖ 𝑦) = (∪ 𝐽 ∖ (∪ 𝐽 ∖ 𝑥))) | |
14 | 13 | eqeq2d 2743 | . . . . . 6 ⊢ (𝑦 = (∪ 𝐽 ∖ 𝑥) → (𝑥 = (∪ 𝐽 ∖ 𝑦) ↔ 𝑥 = (∪ 𝐽 ∖ (∪ 𝐽 ∖ 𝑥)))) |
15 | 12, 14 | anbi12d 631 | . . . . 5 ⊢ (𝑦 = (∪ 𝐽 ∖ 𝑥) → ((𝑦 ∈ (Clsd‘𝐽) ∧ 𝑥 = (∪ 𝐽 ∖ 𝑦)) ↔ ((∪ 𝐽 ∖ 𝑥) ∈ (Clsd‘𝐽) ∧ 𝑥 = (∪ 𝐽 ∖ (∪ 𝐽 ∖ 𝑥))))) |
16 | 5, 11, 15 | spcedv 3588 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽) → ∃𝑦(𝑦 ∈ (Clsd‘𝐽) ∧ 𝑥 = (∪ 𝐽 ∖ 𝑦))) |
17 | df-rex 3071 | . . . 4 ⊢ (∃𝑦 ∈ (Clsd‘𝐽)𝑥 = (∪ 𝐽 ∖ 𝑦) ↔ ∃𝑦(𝑦 ∈ (Clsd‘𝐽) ∧ 𝑥 = (∪ 𝐽 ∖ 𝑦))) | |
18 | 16, 17 | sylibr 233 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽) → ∃𝑦 ∈ (Clsd‘𝐽)𝑥 = (∪ 𝐽 ∖ 𝑦)) |
19 | 4, 18 | sylan 580 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐽) → ∃𝑦 ∈ (Clsd‘𝐽)𝑥 = (∪ 𝐽 ∖ 𝑦)) |
20 | opncldeqv.2 | . 2 ⊢ ((𝜑 ∧ 𝑥 = (∪ 𝐽 ∖ 𝑦)) → (𝜓 ↔ 𝜒)) | |
21 | 3, 19, 20 | ralxfrd 5406 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐽 𝜓 ↔ ∀𝑦 ∈ (Clsd‘𝐽)𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∃wex 1781 ∈ wcel 2106 ∀wral 3061 ∃wrex 3070 ∖ cdif 3945 ⊆ wss 3948 ∪ cuni 4908 ‘cfv 6543 Topctop 22394 Clsdccld 22519 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-iota 6495 df-fun 6545 df-fn 6546 df-fv 6551 df-top 22395 df-cld 22522 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |