| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > opncldeqv | Structured version Visualization version GIF version | ||
| Description: Conditions on open sets are equivalent to conditions on closed sets. (Contributed by Zhi Wang, 30-Aug-2024.) |
| Ref | Expression |
|---|---|
| opncldeqv.1 | ⊢ (𝜑 → 𝐽 ∈ Top) |
| opncldeqv.2 | ⊢ ((𝜑 ∧ 𝑥 = (∪ 𝐽 ∖ 𝑦)) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| opncldeqv | ⊢ (𝜑 → (∀𝑥 ∈ 𝐽 𝜓 ↔ ∀𝑦 ∈ (Clsd‘𝐽)𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2730 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 2 | 1 | cldopn 22925 | . . 3 ⊢ (𝑦 ∈ (Clsd‘𝐽) → (∪ 𝐽 ∖ 𝑦) ∈ 𝐽) |
| 3 | 2 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ (Clsd‘𝐽)) → (∪ 𝐽 ∖ 𝑦) ∈ 𝐽) |
| 4 | opncldeqv.1 | . . 3 ⊢ (𝜑 → 𝐽 ∈ Top) | |
| 5 | 1 | opncld 22927 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽) → (∪ 𝐽 ∖ 𝑥) ∈ (Clsd‘𝐽)) |
| 6 | elssuni 4904 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝐽 → 𝑥 ⊆ ∪ 𝐽) | |
| 7 | dfss4 4235 | . . . . . . . . 9 ⊢ (𝑥 ⊆ ∪ 𝐽 ↔ (∪ 𝐽 ∖ (∪ 𝐽 ∖ 𝑥)) = 𝑥) | |
| 8 | 6, 7 | sylib 218 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝐽 → (∪ 𝐽 ∖ (∪ 𝐽 ∖ 𝑥)) = 𝑥) |
| 9 | 8 | eqcomd 2736 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐽 → 𝑥 = (∪ 𝐽 ∖ (∪ 𝐽 ∖ 𝑥))) |
| 10 | 9 | adantl 481 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽) → 𝑥 = (∪ 𝐽 ∖ (∪ 𝐽 ∖ 𝑥))) |
| 11 | 5, 10 | jca 511 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽) → ((∪ 𝐽 ∖ 𝑥) ∈ (Clsd‘𝐽) ∧ 𝑥 = (∪ 𝐽 ∖ (∪ 𝐽 ∖ 𝑥)))) |
| 12 | eleq1 2817 | . . . . . 6 ⊢ (𝑦 = (∪ 𝐽 ∖ 𝑥) → (𝑦 ∈ (Clsd‘𝐽) ↔ (∪ 𝐽 ∖ 𝑥) ∈ (Clsd‘𝐽))) | |
| 13 | difeq2 4086 | . . . . . . 7 ⊢ (𝑦 = (∪ 𝐽 ∖ 𝑥) → (∪ 𝐽 ∖ 𝑦) = (∪ 𝐽 ∖ (∪ 𝐽 ∖ 𝑥))) | |
| 14 | 13 | eqeq2d 2741 | . . . . . 6 ⊢ (𝑦 = (∪ 𝐽 ∖ 𝑥) → (𝑥 = (∪ 𝐽 ∖ 𝑦) ↔ 𝑥 = (∪ 𝐽 ∖ (∪ 𝐽 ∖ 𝑥)))) |
| 15 | 12, 14 | anbi12d 632 | . . . . 5 ⊢ (𝑦 = (∪ 𝐽 ∖ 𝑥) → ((𝑦 ∈ (Clsd‘𝐽) ∧ 𝑥 = (∪ 𝐽 ∖ 𝑦)) ↔ ((∪ 𝐽 ∖ 𝑥) ∈ (Clsd‘𝐽) ∧ 𝑥 = (∪ 𝐽 ∖ (∪ 𝐽 ∖ 𝑥))))) |
| 16 | 5, 11, 15 | spcedv 3567 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽) → ∃𝑦(𝑦 ∈ (Clsd‘𝐽) ∧ 𝑥 = (∪ 𝐽 ∖ 𝑦))) |
| 17 | df-rex 3055 | . . . 4 ⊢ (∃𝑦 ∈ (Clsd‘𝐽)𝑥 = (∪ 𝐽 ∖ 𝑦) ↔ ∃𝑦(𝑦 ∈ (Clsd‘𝐽) ∧ 𝑥 = (∪ 𝐽 ∖ 𝑦))) | |
| 18 | 16, 17 | sylibr 234 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽) → ∃𝑦 ∈ (Clsd‘𝐽)𝑥 = (∪ 𝐽 ∖ 𝑦)) |
| 19 | 4, 18 | sylan 580 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐽) → ∃𝑦 ∈ (Clsd‘𝐽)𝑥 = (∪ 𝐽 ∖ 𝑦)) |
| 20 | opncldeqv.2 | . 2 ⊢ ((𝜑 ∧ 𝑥 = (∪ 𝐽 ∖ 𝑦)) → (𝜓 ↔ 𝜒)) | |
| 21 | 3, 19, 20 | ralxfrd 5366 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐽 𝜓 ↔ ∀𝑦 ∈ (Clsd‘𝐽)𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∀wral 3045 ∃wrex 3054 ∖ cdif 3914 ⊆ wss 3917 ∪ cuni 4874 ‘cfv 6514 Topctop 22787 Clsdccld 22910 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-iota 6467 df-fun 6516 df-fn 6517 df-fv 6522 df-top 22788 df-cld 22913 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |