Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > opncldeqv | Structured version Visualization version GIF version |
Description: Conditions on open sets are equivalent to conditions on closed sets. (Contributed by Zhi Wang, 30-Aug-2024.) |
Ref | Expression |
---|---|
opncldeqv.1 | ⊢ (𝜑 → 𝐽 ∈ Top) |
opncldeqv.2 | ⊢ ((𝜑 ∧ 𝑥 = (∪ 𝐽 ∖ 𝑦)) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
opncldeqv | ⊢ (𝜑 → (∀𝑥 ∈ 𝐽 𝜓 ↔ ∀𝑦 ∈ (Clsd‘𝐽)𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | 1 | cldopn 22182 | . . 3 ⊢ (𝑦 ∈ (Clsd‘𝐽) → (∪ 𝐽 ∖ 𝑦) ∈ 𝐽) |
3 | 2 | adantl 482 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ (Clsd‘𝐽)) → (∪ 𝐽 ∖ 𝑦) ∈ 𝐽) |
4 | opncldeqv.1 | . . 3 ⊢ (𝜑 → 𝐽 ∈ Top) | |
5 | 1 | opncld 22184 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽) → (∪ 𝐽 ∖ 𝑥) ∈ (Clsd‘𝐽)) |
6 | elssuni 4871 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝐽 → 𝑥 ⊆ ∪ 𝐽) | |
7 | dfss4 4192 | . . . . . . . . 9 ⊢ (𝑥 ⊆ ∪ 𝐽 ↔ (∪ 𝐽 ∖ (∪ 𝐽 ∖ 𝑥)) = 𝑥) | |
8 | 6, 7 | sylib 217 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝐽 → (∪ 𝐽 ∖ (∪ 𝐽 ∖ 𝑥)) = 𝑥) |
9 | 8 | eqcomd 2744 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐽 → 𝑥 = (∪ 𝐽 ∖ (∪ 𝐽 ∖ 𝑥))) |
10 | 9 | adantl 482 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽) → 𝑥 = (∪ 𝐽 ∖ (∪ 𝐽 ∖ 𝑥))) |
11 | 5, 10 | jca 512 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽) → ((∪ 𝐽 ∖ 𝑥) ∈ (Clsd‘𝐽) ∧ 𝑥 = (∪ 𝐽 ∖ (∪ 𝐽 ∖ 𝑥)))) |
12 | eleq1 2826 | . . . . . 6 ⊢ (𝑦 = (∪ 𝐽 ∖ 𝑥) → (𝑦 ∈ (Clsd‘𝐽) ↔ (∪ 𝐽 ∖ 𝑥) ∈ (Clsd‘𝐽))) | |
13 | difeq2 4051 | . . . . . . 7 ⊢ (𝑦 = (∪ 𝐽 ∖ 𝑥) → (∪ 𝐽 ∖ 𝑦) = (∪ 𝐽 ∖ (∪ 𝐽 ∖ 𝑥))) | |
14 | 13 | eqeq2d 2749 | . . . . . 6 ⊢ (𝑦 = (∪ 𝐽 ∖ 𝑥) → (𝑥 = (∪ 𝐽 ∖ 𝑦) ↔ 𝑥 = (∪ 𝐽 ∖ (∪ 𝐽 ∖ 𝑥)))) |
15 | 12, 14 | anbi12d 631 | . . . . 5 ⊢ (𝑦 = (∪ 𝐽 ∖ 𝑥) → ((𝑦 ∈ (Clsd‘𝐽) ∧ 𝑥 = (∪ 𝐽 ∖ 𝑦)) ↔ ((∪ 𝐽 ∖ 𝑥) ∈ (Clsd‘𝐽) ∧ 𝑥 = (∪ 𝐽 ∖ (∪ 𝐽 ∖ 𝑥))))) |
16 | 5, 11, 15 | spcedv 3537 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽) → ∃𝑦(𝑦 ∈ (Clsd‘𝐽) ∧ 𝑥 = (∪ 𝐽 ∖ 𝑦))) |
17 | df-rex 3070 | . . . 4 ⊢ (∃𝑦 ∈ (Clsd‘𝐽)𝑥 = (∪ 𝐽 ∖ 𝑦) ↔ ∃𝑦(𝑦 ∈ (Clsd‘𝐽) ∧ 𝑥 = (∪ 𝐽 ∖ 𝑦))) | |
18 | 16, 17 | sylibr 233 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽) → ∃𝑦 ∈ (Clsd‘𝐽)𝑥 = (∪ 𝐽 ∖ 𝑦)) |
19 | 4, 18 | sylan 580 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐽) → ∃𝑦 ∈ (Clsd‘𝐽)𝑥 = (∪ 𝐽 ∖ 𝑦)) |
20 | opncldeqv.2 | . 2 ⊢ ((𝜑 ∧ 𝑥 = (∪ 𝐽 ∖ 𝑦)) → (𝜓 ↔ 𝜒)) | |
21 | 3, 19, 20 | ralxfrd 5331 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐽 𝜓 ↔ ∀𝑦 ∈ (Clsd‘𝐽)𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∃wex 1782 ∈ wcel 2106 ∀wral 3064 ∃wrex 3065 ∖ cdif 3884 ⊆ wss 3887 ∪ cuni 4839 ‘cfv 6433 Topctop 22042 Clsdccld 22167 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-iota 6391 df-fun 6435 df-fn 6436 df-fv 6441 df-top 22043 df-cld 22170 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |