| Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > opncldeqv | Structured version Visualization version GIF version | ||
| Description: Conditions on open sets are equivalent to conditions on closed sets. (Contributed by Zhi Wang, 30-Aug-2024.) |
| Ref | Expression |
|---|---|
| opncldeqv.1 | ⊢ (𝜑 → 𝐽 ∈ Top) |
| opncldeqv.2 | ⊢ ((𝜑 ∧ 𝑥 = (∪ 𝐽 ∖ 𝑦)) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| opncldeqv | ⊢ (𝜑 → (∀𝑥 ∈ 𝐽 𝜓 ↔ ∀𝑦 ∈ (Clsd‘𝐽)𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 2 | 1 | cldopn 22946 | . . 3 ⊢ (𝑦 ∈ (Clsd‘𝐽) → (∪ 𝐽 ∖ 𝑦) ∈ 𝐽) |
| 3 | 2 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ (Clsd‘𝐽)) → (∪ 𝐽 ∖ 𝑦) ∈ 𝐽) |
| 4 | opncldeqv.1 | . . 3 ⊢ (𝜑 → 𝐽 ∈ Top) | |
| 5 | 1 | opncld 22948 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽) → (∪ 𝐽 ∖ 𝑥) ∈ (Clsd‘𝐽)) |
| 6 | elssuni 4887 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝐽 → 𝑥 ⊆ ∪ 𝐽) | |
| 7 | dfss4 4216 | . . . . . . . . 9 ⊢ (𝑥 ⊆ ∪ 𝐽 ↔ (∪ 𝐽 ∖ (∪ 𝐽 ∖ 𝑥)) = 𝑥) | |
| 8 | 6, 7 | sylib 218 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝐽 → (∪ 𝐽 ∖ (∪ 𝐽 ∖ 𝑥)) = 𝑥) |
| 9 | 8 | eqcomd 2737 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐽 → 𝑥 = (∪ 𝐽 ∖ (∪ 𝐽 ∖ 𝑥))) |
| 10 | 9 | adantl 481 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽) → 𝑥 = (∪ 𝐽 ∖ (∪ 𝐽 ∖ 𝑥))) |
| 11 | 5, 10 | jca 511 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽) → ((∪ 𝐽 ∖ 𝑥) ∈ (Clsd‘𝐽) ∧ 𝑥 = (∪ 𝐽 ∖ (∪ 𝐽 ∖ 𝑥)))) |
| 12 | eleq1 2819 | . . . . . 6 ⊢ (𝑦 = (∪ 𝐽 ∖ 𝑥) → (𝑦 ∈ (Clsd‘𝐽) ↔ (∪ 𝐽 ∖ 𝑥) ∈ (Clsd‘𝐽))) | |
| 13 | difeq2 4067 | . . . . . . 7 ⊢ (𝑦 = (∪ 𝐽 ∖ 𝑥) → (∪ 𝐽 ∖ 𝑦) = (∪ 𝐽 ∖ (∪ 𝐽 ∖ 𝑥))) | |
| 14 | 13 | eqeq2d 2742 | . . . . . 6 ⊢ (𝑦 = (∪ 𝐽 ∖ 𝑥) → (𝑥 = (∪ 𝐽 ∖ 𝑦) ↔ 𝑥 = (∪ 𝐽 ∖ (∪ 𝐽 ∖ 𝑥)))) |
| 15 | 12, 14 | anbi12d 632 | . . . . 5 ⊢ (𝑦 = (∪ 𝐽 ∖ 𝑥) → ((𝑦 ∈ (Clsd‘𝐽) ∧ 𝑥 = (∪ 𝐽 ∖ 𝑦)) ↔ ((∪ 𝐽 ∖ 𝑥) ∈ (Clsd‘𝐽) ∧ 𝑥 = (∪ 𝐽 ∖ (∪ 𝐽 ∖ 𝑥))))) |
| 16 | 5, 11, 15 | spcedv 3548 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽) → ∃𝑦(𝑦 ∈ (Clsd‘𝐽) ∧ 𝑥 = (∪ 𝐽 ∖ 𝑦))) |
| 17 | df-rex 3057 | . . . 4 ⊢ (∃𝑦 ∈ (Clsd‘𝐽)𝑥 = (∪ 𝐽 ∖ 𝑦) ↔ ∃𝑦(𝑦 ∈ (Clsd‘𝐽) ∧ 𝑥 = (∪ 𝐽 ∖ 𝑦))) | |
| 18 | 16, 17 | sylibr 234 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽) → ∃𝑦 ∈ (Clsd‘𝐽)𝑥 = (∪ 𝐽 ∖ 𝑦)) |
| 19 | 4, 18 | sylan 580 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐽) → ∃𝑦 ∈ (Clsd‘𝐽)𝑥 = (∪ 𝐽 ∖ 𝑦)) |
| 20 | opncldeqv.2 | . 2 ⊢ ((𝜑 ∧ 𝑥 = (∪ 𝐽 ∖ 𝑦)) → (𝜓 ↔ 𝜒)) | |
| 21 | 3, 19, 20 | ralxfrd 5344 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐽 𝜓 ↔ ∀𝑦 ∈ (Clsd‘𝐽)𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ∀wral 3047 ∃wrex 3056 ∖ cdif 3894 ⊆ wss 3897 ∪ cuni 4856 ‘cfv 6481 Topctop 22808 Clsdccld 22931 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-iota 6437 df-fun 6483 df-fn 6484 df-fv 6489 df-top 22809 df-cld 22934 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |