Mathbox for Zhi Wang |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > opncldeqv | Structured version Visualization version GIF version |
Description: Conditions on open sets are equivalent to conditions on closed sets. (Contributed by Zhi Wang, 30-Aug-2024.) |
Ref | Expression |
---|---|
opncldeqv.1 | ⊢ (𝜑 → 𝐽 ∈ Top) |
opncldeqv.2 | ⊢ ((𝜑 ∧ 𝑥 = (∪ 𝐽 ∖ 𝑦)) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
opncldeqv | ⊢ (𝜑 → (∀𝑥 ∈ 𝐽 𝜓 ↔ ∀𝑦 ∈ (Clsd‘𝐽)𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
2 | 1 | cldopn 21775 | . . 3 ⊢ (𝑦 ∈ (Clsd‘𝐽) → (∪ 𝐽 ∖ 𝑦) ∈ 𝐽) |
3 | 2 | adantl 485 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ (Clsd‘𝐽)) → (∪ 𝐽 ∖ 𝑦) ∈ 𝐽) |
4 | opncldeqv.1 | . . 3 ⊢ (𝜑 → 𝐽 ∈ Top) | |
5 | 1 | opncld 21777 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽) → (∪ 𝐽 ∖ 𝑥) ∈ (Clsd‘𝐽)) |
6 | elssuni 4825 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝐽 → 𝑥 ⊆ ∪ 𝐽) | |
7 | dfss4 4147 | . . . . . . . . 9 ⊢ (𝑥 ⊆ ∪ 𝐽 ↔ (∪ 𝐽 ∖ (∪ 𝐽 ∖ 𝑥)) = 𝑥) | |
8 | 6, 7 | sylib 221 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝐽 → (∪ 𝐽 ∖ (∪ 𝐽 ∖ 𝑥)) = 𝑥) |
9 | 8 | eqcomd 2744 | . . . . . . 7 ⊢ (𝑥 ∈ 𝐽 → 𝑥 = (∪ 𝐽 ∖ (∪ 𝐽 ∖ 𝑥))) |
10 | 9 | adantl 485 | . . . . . 6 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽) → 𝑥 = (∪ 𝐽 ∖ (∪ 𝐽 ∖ 𝑥))) |
11 | 5, 10 | jca 515 | . . . . 5 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽) → ((∪ 𝐽 ∖ 𝑥) ∈ (Clsd‘𝐽) ∧ 𝑥 = (∪ 𝐽 ∖ (∪ 𝐽 ∖ 𝑥)))) |
12 | eleq1 2820 | . . . . . 6 ⊢ (𝑦 = (∪ 𝐽 ∖ 𝑥) → (𝑦 ∈ (Clsd‘𝐽) ↔ (∪ 𝐽 ∖ 𝑥) ∈ (Clsd‘𝐽))) | |
13 | difeq2 4005 | . . . . . . 7 ⊢ (𝑦 = (∪ 𝐽 ∖ 𝑥) → (∪ 𝐽 ∖ 𝑦) = (∪ 𝐽 ∖ (∪ 𝐽 ∖ 𝑥))) | |
14 | 13 | eqeq2d 2749 | . . . . . 6 ⊢ (𝑦 = (∪ 𝐽 ∖ 𝑥) → (𝑥 = (∪ 𝐽 ∖ 𝑦) ↔ 𝑥 = (∪ 𝐽 ∖ (∪ 𝐽 ∖ 𝑥)))) |
15 | 12, 14 | anbi12d 634 | . . . . 5 ⊢ (𝑦 = (∪ 𝐽 ∖ 𝑥) → ((𝑦 ∈ (Clsd‘𝐽) ∧ 𝑥 = (∪ 𝐽 ∖ 𝑦)) ↔ ((∪ 𝐽 ∖ 𝑥) ∈ (Clsd‘𝐽) ∧ 𝑥 = (∪ 𝐽 ∖ (∪ 𝐽 ∖ 𝑥))))) |
16 | 5, 11, 15 | spcedv 3500 | . . . 4 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽) → ∃𝑦(𝑦 ∈ (Clsd‘𝐽) ∧ 𝑥 = (∪ 𝐽 ∖ 𝑦))) |
17 | df-rex 3059 | . . . 4 ⊢ (∃𝑦 ∈ (Clsd‘𝐽)𝑥 = (∪ 𝐽 ∖ 𝑦) ↔ ∃𝑦(𝑦 ∈ (Clsd‘𝐽) ∧ 𝑥 = (∪ 𝐽 ∖ 𝑦))) | |
18 | 16, 17 | sylibr 237 | . . 3 ⊢ ((𝐽 ∈ Top ∧ 𝑥 ∈ 𝐽) → ∃𝑦 ∈ (Clsd‘𝐽)𝑥 = (∪ 𝐽 ∖ 𝑦)) |
19 | 4, 18 | sylan 583 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐽) → ∃𝑦 ∈ (Clsd‘𝐽)𝑥 = (∪ 𝐽 ∖ 𝑦)) |
20 | opncldeqv.2 | . 2 ⊢ ((𝜑 ∧ 𝑥 = (∪ 𝐽 ∖ 𝑦)) → (𝜓 ↔ 𝜒)) | |
21 | 3, 19, 20 | ralxfrd 5272 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐽 𝜓 ↔ ∀𝑦 ∈ (Clsd‘𝐽)𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1542 ∃wex 1786 ∈ wcel 2113 ∀wral 3053 ∃wrex 3054 ∖ cdif 3838 ⊆ wss 3841 ∪ cuni 4793 ‘cfv 6333 Topctop 21637 Clsdccld 21760 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1916 ax-6 1974 ax-7 2019 ax-8 2115 ax-9 2123 ax-10 2144 ax-11 2161 ax-12 2178 ax-ext 2710 ax-sep 5164 ax-nul 5171 ax-pow 5229 ax-pr 5293 ax-un 7473 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2074 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ne 2935 df-ral 3058 df-rex 3059 df-rab 3062 df-v 3399 df-sbc 3680 df-dif 3844 df-un 3846 df-in 3848 df-ss 3858 df-nul 4210 df-if 4412 df-pw 4487 df-sn 4514 df-pr 4516 df-op 4520 df-uni 4794 df-br 5028 df-opab 5090 df-mpt 5108 df-id 5425 df-xp 5525 df-rel 5526 df-cnv 5527 df-co 5528 df-dm 5529 df-iota 6291 df-fun 6335 df-fn 6336 df-fv 6341 df-top 21638 df-cld 21763 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |