Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opncldeqv Structured version   Visualization version   GIF version

Theorem opncldeqv 47998
Description: Conditions on open sets are equivalent to conditions on closed sets. (Contributed by Zhi Wang, 30-Aug-2024.)
Hypotheses
Ref Expression
opncldeqv.1 (𝜑𝐽 ∈ Top)
opncldeqv.2 ((𝜑𝑥 = ( 𝐽𝑦)) → (𝜓𝜒))
Assertion
Ref Expression
opncldeqv (𝜑 → (∀𝑥𝐽 𝜓 ↔ ∀𝑦 ∈ (Clsd‘𝐽)𝜒))
Distinct variable groups:   𝑥,𝐽,𝑦   𝜒,𝑥   𝜑,𝑥,𝑦   𝜓,𝑦
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑦)

Proof of Theorem opncldeqv
StepHypRef Expression
1 eqid 2728 . . . 4 𝐽 = 𝐽
21cldopn 22955 . . 3 (𝑦 ∈ (Clsd‘𝐽) → ( 𝐽𝑦) ∈ 𝐽)
32adantl 480 . 2 ((𝜑𝑦 ∈ (Clsd‘𝐽)) → ( 𝐽𝑦) ∈ 𝐽)
4 opncldeqv.1 . . 3 (𝜑𝐽 ∈ Top)
51opncld 22957 . . . . 5 ((𝐽 ∈ Top ∧ 𝑥𝐽) → ( 𝐽𝑥) ∈ (Clsd‘𝐽))
6 elssuni 4944 . . . . . . . . 9 (𝑥𝐽𝑥 𝐽)
7 dfss4 4261 . . . . . . . . 9 (𝑥 𝐽 ↔ ( 𝐽 ∖ ( 𝐽𝑥)) = 𝑥)
86, 7sylib 217 . . . . . . . 8 (𝑥𝐽 → ( 𝐽 ∖ ( 𝐽𝑥)) = 𝑥)
98eqcomd 2734 . . . . . . 7 (𝑥𝐽𝑥 = ( 𝐽 ∖ ( 𝐽𝑥)))
109adantl 480 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑥𝐽) → 𝑥 = ( 𝐽 ∖ ( 𝐽𝑥)))
115, 10jca 510 . . . . 5 ((𝐽 ∈ Top ∧ 𝑥𝐽) → (( 𝐽𝑥) ∈ (Clsd‘𝐽) ∧ 𝑥 = ( 𝐽 ∖ ( 𝐽𝑥))))
12 eleq1 2817 . . . . . 6 (𝑦 = ( 𝐽𝑥) → (𝑦 ∈ (Clsd‘𝐽) ↔ ( 𝐽𝑥) ∈ (Clsd‘𝐽)))
13 difeq2 4116 . . . . . . 7 (𝑦 = ( 𝐽𝑥) → ( 𝐽𝑦) = ( 𝐽 ∖ ( 𝐽𝑥)))
1413eqeq2d 2739 . . . . . 6 (𝑦 = ( 𝐽𝑥) → (𝑥 = ( 𝐽𝑦) ↔ 𝑥 = ( 𝐽 ∖ ( 𝐽𝑥))))
1512, 14anbi12d 630 . . . . 5 (𝑦 = ( 𝐽𝑥) → ((𝑦 ∈ (Clsd‘𝐽) ∧ 𝑥 = ( 𝐽𝑦)) ↔ (( 𝐽𝑥) ∈ (Clsd‘𝐽) ∧ 𝑥 = ( 𝐽 ∖ ( 𝐽𝑥)))))
165, 11, 15spcedv 3587 . . . 4 ((𝐽 ∈ Top ∧ 𝑥𝐽) → ∃𝑦(𝑦 ∈ (Clsd‘𝐽) ∧ 𝑥 = ( 𝐽𝑦)))
17 df-rex 3068 . . . 4 (∃𝑦 ∈ (Clsd‘𝐽)𝑥 = ( 𝐽𝑦) ↔ ∃𝑦(𝑦 ∈ (Clsd‘𝐽) ∧ 𝑥 = ( 𝐽𝑦)))
1816, 17sylibr 233 . . 3 ((𝐽 ∈ Top ∧ 𝑥𝐽) → ∃𝑦 ∈ (Clsd‘𝐽)𝑥 = ( 𝐽𝑦))
194, 18sylan 578 . 2 ((𝜑𝑥𝐽) → ∃𝑦 ∈ (Clsd‘𝐽)𝑥 = ( 𝐽𝑦))
20 opncldeqv.2 . 2 ((𝜑𝑥 = ( 𝐽𝑦)) → (𝜓𝜒))
213, 19, 20ralxfrd 5412 1 (𝜑 → (∀𝑥𝐽 𝜓 ↔ ∀𝑦 ∈ (Clsd‘𝐽)𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1533  wex 1773  wcel 2098  wral 3058  wrex 3067  cdif 3946  wss 3949   cuni 4912  cfv 6553  Topctop 22815  Clsdccld 22940
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7746
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ral 3059  df-rex 3068  df-rab 3431  df-v 3475  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-br 5153  df-opab 5215  df-mpt 5236  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-iota 6505  df-fun 6555  df-fn 6556  df-fv 6561  df-top 22816  df-cld 22943
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator