Users' Mathboxes Mathbox for Zhi Wang < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opncldeqv Structured version   Visualization version   GIF version

Theorem opncldeqv 48883
Description: Conditions on open sets are equivalent to conditions on closed sets. (Contributed by Zhi Wang, 30-Aug-2024.)
Hypotheses
Ref Expression
opncldeqv.1 (𝜑𝐽 ∈ Top)
opncldeqv.2 ((𝜑𝑥 = ( 𝐽𝑦)) → (𝜓𝜒))
Assertion
Ref Expression
opncldeqv (𝜑 → (∀𝑥𝐽 𝜓 ↔ ∀𝑦 ∈ (Clsd‘𝐽)𝜒))
Distinct variable groups:   𝑥,𝐽,𝑦   𝜒,𝑥   𝜑,𝑥,𝑦   𝜓,𝑦
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑦)

Proof of Theorem opncldeqv
StepHypRef Expression
1 eqid 2729 . . . 4 𝐽 = 𝐽
21cldopn 22951 . . 3 (𝑦 ∈ (Clsd‘𝐽) → ( 𝐽𝑦) ∈ 𝐽)
32adantl 481 . 2 ((𝜑𝑦 ∈ (Clsd‘𝐽)) → ( 𝐽𝑦) ∈ 𝐽)
4 opncldeqv.1 . . 3 (𝜑𝐽 ∈ Top)
51opncld 22953 . . . . 5 ((𝐽 ∈ Top ∧ 𝑥𝐽) → ( 𝐽𝑥) ∈ (Clsd‘𝐽))
6 elssuni 4897 . . . . . . . . 9 (𝑥𝐽𝑥 𝐽)
7 dfss4 4228 . . . . . . . . 9 (𝑥 𝐽 ↔ ( 𝐽 ∖ ( 𝐽𝑥)) = 𝑥)
86, 7sylib 218 . . . . . . . 8 (𝑥𝐽 → ( 𝐽 ∖ ( 𝐽𝑥)) = 𝑥)
98eqcomd 2735 . . . . . . 7 (𝑥𝐽𝑥 = ( 𝐽 ∖ ( 𝐽𝑥)))
109adantl 481 . . . . . 6 ((𝐽 ∈ Top ∧ 𝑥𝐽) → 𝑥 = ( 𝐽 ∖ ( 𝐽𝑥)))
115, 10jca 511 . . . . 5 ((𝐽 ∈ Top ∧ 𝑥𝐽) → (( 𝐽𝑥) ∈ (Clsd‘𝐽) ∧ 𝑥 = ( 𝐽 ∖ ( 𝐽𝑥))))
12 eleq1 2816 . . . . . 6 (𝑦 = ( 𝐽𝑥) → (𝑦 ∈ (Clsd‘𝐽) ↔ ( 𝐽𝑥) ∈ (Clsd‘𝐽)))
13 difeq2 4079 . . . . . . 7 (𝑦 = ( 𝐽𝑥) → ( 𝐽𝑦) = ( 𝐽 ∖ ( 𝐽𝑥)))
1413eqeq2d 2740 . . . . . 6 (𝑦 = ( 𝐽𝑥) → (𝑥 = ( 𝐽𝑦) ↔ 𝑥 = ( 𝐽 ∖ ( 𝐽𝑥))))
1512, 14anbi12d 632 . . . . 5 (𝑦 = ( 𝐽𝑥) → ((𝑦 ∈ (Clsd‘𝐽) ∧ 𝑥 = ( 𝐽𝑦)) ↔ (( 𝐽𝑥) ∈ (Clsd‘𝐽) ∧ 𝑥 = ( 𝐽 ∖ ( 𝐽𝑥)))))
165, 11, 15spcedv 3561 . . . 4 ((𝐽 ∈ Top ∧ 𝑥𝐽) → ∃𝑦(𝑦 ∈ (Clsd‘𝐽) ∧ 𝑥 = ( 𝐽𝑦)))
17 df-rex 3054 . . . 4 (∃𝑦 ∈ (Clsd‘𝐽)𝑥 = ( 𝐽𝑦) ↔ ∃𝑦(𝑦 ∈ (Clsd‘𝐽) ∧ 𝑥 = ( 𝐽𝑦)))
1816, 17sylibr 234 . . 3 ((𝐽 ∈ Top ∧ 𝑥𝐽) → ∃𝑦 ∈ (Clsd‘𝐽)𝑥 = ( 𝐽𝑦))
194, 18sylan 580 . 2 ((𝜑𝑥𝐽) → ∃𝑦 ∈ (Clsd‘𝐽)𝑥 = ( 𝐽𝑦))
20 opncldeqv.2 . 2 ((𝜑𝑥 = ( 𝐽𝑦)) → (𝜓𝜒))
213, 19, 20ralxfrd 5358 1 (𝜑 → (∀𝑥𝐽 𝜓 ↔ ∀𝑦 ∈ (Clsd‘𝐽)𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wral 3044  wrex 3053  cdif 3908  wss 3911   cuni 4867  cfv 6499  Topctop 22813  Clsdccld 22936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-iota 6452  df-fun 6501  df-fn 6502  df-fv 6507  df-top 22814  df-cld 22939
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator