![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > dfxp3 | Structured version Visualization version GIF version |
Description: Define the Cartesian product of three classes. Compare df-xp 5706. (Contributed by FL, 6-Nov-2013.) (Proof shortened by Mario Carneiro, 3-Nov-2015.) |
Ref | Expression |
---|---|
dfxp3 | ⊢ ((𝐴 × 𝐵) × 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | biidd 262 | . . 3 ⊢ (𝑢 = 〈𝑥, 𝑦〉 → (𝑧 ∈ 𝐶 ↔ 𝑧 ∈ 𝐶)) | |
2 | 1 | dfoprab4 8096 | . 2 ⊢ {〈𝑢, 𝑧〉 ∣ (𝑢 ∈ (𝐴 × 𝐵) ∧ 𝑧 ∈ 𝐶)} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 ∈ 𝐶)} |
3 | df-xp 5706 | . 2 ⊢ ((𝐴 × 𝐵) × 𝐶) = {〈𝑢, 𝑧〉 ∣ (𝑢 ∈ (𝐴 × 𝐵) ∧ 𝑧 ∈ 𝐶)} | |
4 | df-3an 1089 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 ∈ 𝐶)) | |
5 | 4 | oprabbii 7517 | . 2 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶)} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 ∈ 𝐶)} |
6 | 2, 3, 5 | 3eqtr4i 2778 | 1 ⊢ ((𝐴 × 𝐵) × 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶)} |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 〈cop 4654 {copab 5228 × cxp 5698 {coprab 7449 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-iota 6525 df-fun 6575 df-fv 6581 df-oprab 7452 df-1st 8030 df-2nd 8031 |
This theorem is referenced by: mpoaddf 11278 mpomulf 11279 |
Copyright terms: Public domain | W3C validator |