MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dfxp3 Structured version   Visualization version   GIF version

Theorem dfxp3 8051
Description: Define the Cartesian product of three classes. Compare df-xp 5682. (Contributed by FL, 6-Nov-2013.) (Proof shortened by Mario Carneiro, 3-Nov-2015.)
Assertion
Ref Expression
dfxp3 ((𝐴 × 𝐵) × 𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝑥𝐴𝑦𝐵𝑧𝐶)}
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦,𝑧

Proof of Theorem dfxp3
Dummy variable 𝑢 is distinct from all other variables.
StepHypRef Expression
1 biidd 262 . . 3 (𝑢 = ⟨𝑥, 𝑦⟩ → (𝑧𝐶𝑧𝐶))
21dfoprab4 8045 . 2 {⟨𝑢, 𝑧⟩ ∣ (𝑢 ∈ (𝐴 × 𝐵) ∧ 𝑧𝐶)} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧𝐶)}
3 df-xp 5682 . 2 ((𝐴 × 𝐵) × 𝐶) = {⟨𝑢, 𝑧⟩ ∣ (𝑢 ∈ (𝐴 × 𝐵) ∧ 𝑧𝐶)}
4 df-3an 1088 . . 3 ((𝑥𝐴𝑦𝐵𝑧𝐶) ↔ ((𝑥𝐴𝑦𝐵) ∧ 𝑧𝐶))
54oprabbii 7479 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝑥𝐴𝑦𝐵𝑧𝐶)} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧𝐶)}
62, 3, 53eqtr4i 2769 1 ((𝐴 × 𝐵) × 𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ (𝑥𝐴𝑦𝐵𝑧𝐶)}
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1086   = wceq 1540  wcel 2105  cop 4634  {copab 5210   × cxp 5674  {coprab 7413
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pr 5427  ax-un 7729
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-iota 6495  df-fun 6545  df-fv 6551  df-oprab 7416  df-1st 7979  df-2nd 7980
This theorem is referenced by:  mpomulf  11210  mpoaddf  35632
  Copyright terms: Public domain W3C validator