| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfxp3 | Structured version Visualization version GIF version | ||
| Description: Define the Cartesian product of three classes. Compare df-xp 5660. (Contributed by FL, 6-Nov-2013.) (Proof shortened by Mario Carneiro, 3-Nov-2015.) |
| Ref | Expression |
|---|---|
| dfxp3 | ⊢ ((𝐴 × 𝐵) × 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biidd 262 | . . 3 ⊢ (𝑢 = 〈𝑥, 𝑦〉 → (𝑧 ∈ 𝐶 ↔ 𝑧 ∈ 𝐶)) | |
| 2 | 1 | dfoprab4 8052 | . 2 ⊢ {〈𝑢, 𝑧〉 ∣ (𝑢 ∈ (𝐴 × 𝐵) ∧ 𝑧 ∈ 𝐶)} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 ∈ 𝐶)} |
| 3 | df-xp 5660 | . 2 ⊢ ((𝐴 × 𝐵) × 𝐶) = {〈𝑢, 𝑧〉 ∣ (𝑢 ∈ (𝐴 × 𝐵) ∧ 𝑧 ∈ 𝐶)} | |
| 4 | df-3an 1088 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 ∈ 𝐶)) | |
| 5 | 4 | oprabbii 7472 | . 2 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶)} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 ∈ 𝐶)} |
| 6 | 2, 3, 5 | 3eqtr4i 2768 | 1 ⊢ ((𝐴 × 𝐵) × 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶)} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 〈cop 4607 {copab 5181 × cxp 5652 {coprab 7404 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7727 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-mpt 5202 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-iota 6483 df-fun 6532 df-fv 6538 df-oprab 7407 df-1st 7986 df-2nd 7987 |
| This theorem is referenced by: mpoaddf 11221 mpomulf 11222 |
| Copyright terms: Public domain | W3C validator |