| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > dfxp3 | Structured version Visualization version GIF version | ||
| Description: Define the Cartesian product of three classes. Compare df-xp 5622. (Contributed by FL, 6-Nov-2013.) (Proof shortened by Mario Carneiro, 3-Nov-2015.) |
| Ref | Expression |
|---|---|
| dfxp3 | ⊢ ((𝐴 × 𝐵) × 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶)} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biidd 262 | . . 3 ⊢ (𝑢 = 〈𝑥, 𝑦〉 → (𝑧 ∈ 𝐶 ↔ 𝑧 ∈ 𝐶)) | |
| 2 | 1 | dfoprab4 7987 | . 2 ⊢ {〈𝑢, 𝑧〉 ∣ (𝑢 ∈ (𝐴 × 𝐵) ∧ 𝑧 ∈ 𝐶)} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 ∈ 𝐶)} |
| 3 | df-xp 5622 | . 2 ⊢ ((𝐴 × 𝐵) × 𝐶) = {〈𝑢, 𝑧〉 ∣ (𝑢 ∈ (𝐴 × 𝐵) ∧ 𝑧 ∈ 𝐶)} | |
| 4 | df-3an 1088 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶) ↔ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 ∈ 𝐶)) | |
| 5 | 4 | oprabbii 7413 | . 2 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶)} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 ∈ 𝐶)} |
| 6 | 2, 3, 5 | 3eqtr4i 2764 | 1 ⊢ ((𝐴 × 𝐵) × 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶)} |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 〈cop 4582 {copab 5153 × cxp 5614 {coprab 7347 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3742 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-br 5092 df-opab 5154 df-mpt 5173 df-id 5511 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-iota 6437 df-fun 6483 df-fv 6489 df-oprab 7350 df-1st 7921 df-2nd 7922 |
| This theorem is referenced by: mpoaddf 11097 mpomulf 11098 |
| Copyright terms: Public domain | W3C validator |