Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > meetfval2 | Structured version Visualization version GIF version |
Description: Value of meet function for a poset. (Contributed by NM, 12-Sep-2011.) (Revised by NM, 9-Sep-2018.) |
Ref | Expression |
---|---|
meetfval.u | ⊢ 𝐺 = (glb‘𝐾) |
meetfval.m | ⊢ ∧ = (meet‘𝐾) |
Ref | Expression |
---|---|
meetfval2 | ⊢ (𝐾 ∈ 𝑉 → ∧ = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ({𝑥, 𝑦} ∈ dom 𝐺 ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | meetfval.u | . . 3 ⊢ 𝐺 = (glb‘𝐾) | |
2 | meetfval.m | . . 3 ⊢ ∧ = (meet‘𝐾) | |
3 | 1, 2 | meetfval 17704 | . 2 ⊢ (𝐾 ∈ 𝑉 → ∧ = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ {𝑥, 𝑦}𝐺𝑧}) |
4 | 1 | glbfun 17682 | . . . . 5 ⊢ Fun 𝐺 |
5 | funbrfv2b 6716 | . . . . 5 ⊢ (Fun 𝐺 → ({𝑥, 𝑦}𝐺𝑧 ↔ ({𝑥, 𝑦} ∈ dom 𝐺 ∧ (𝐺‘{𝑥, 𝑦}) = 𝑧))) | |
6 | 4, 5 | ax-mp 5 | . . . 4 ⊢ ({𝑥, 𝑦}𝐺𝑧 ↔ ({𝑥, 𝑦} ∈ dom 𝐺 ∧ (𝐺‘{𝑥, 𝑦}) = 𝑧)) |
7 | eqcom 2765 | . . . . 5 ⊢ ((𝐺‘{𝑥, 𝑦}) = 𝑧 ↔ 𝑧 = (𝐺‘{𝑥, 𝑦})) | |
8 | 7 | anbi2i 625 | . . . 4 ⊢ (({𝑥, 𝑦} ∈ dom 𝐺 ∧ (𝐺‘{𝑥, 𝑦}) = 𝑧) ↔ ({𝑥, 𝑦} ∈ dom 𝐺 ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))) |
9 | 6, 8 | bitri 278 | . . 3 ⊢ ({𝑥, 𝑦}𝐺𝑧 ↔ ({𝑥, 𝑦} ∈ dom 𝐺 ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))) |
10 | 9 | oprabbii 7221 | . 2 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ {𝑥, 𝑦}𝐺𝑧} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ({𝑥, 𝑦} ∈ dom 𝐺 ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))} |
11 | 3, 10 | eqtrdi 2809 | 1 ⊢ (𝐾 ∈ 𝑉 → ∧ = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ({𝑥, 𝑦} ∈ dom 𝐺 ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1538 ∈ wcel 2111 {cpr 4527 class class class wbr 5036 dom cdm 5528 Fun wfun 6334 ‘cfv 6340 {coprab 7157 glbcglb 17632 meetcmee 17634 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5160 ax-sep 5173 ax-nul 5180 ax-pow 5238 ax-pr 5302 ax-un 7465 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-iun 4888 df-br 5037 df-opab 5099 df-mpt 5117 df-id 5434 df-xp 5534 df-rel 5535 df-cnv 5536 df-co 5537 df-dm 5538 df-rn 5539 df-res 5540 df-ima 5541 df-iota 6299 df-fun 6342 df-fn 6343 df-f 6344 df-f1 6345 df-fo 6346 df-f1o 6347 df-fv 6348 df-riota 7114 df-oprab 7160 df-glb 17664 df-meet 17666 |
This theorem is referenced by: meetdm 17706 meetval 17708 |
Copyright terms: Public domain | W3C validator |