| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > meetfval2 | Structured version Visualization version GIF version | ||
| Description: Value of meet function for a poset. (Contributed by NM, 12-Sep-2011.) (Revised by NM, 9-Sep-2018.) |
| Ref | Expression |
|---|---|
| meetfval.u | ⊢ 𝐺 = (glb‘𝐾) |
| meetfval.m | ⊢ ∧ = (meet‘𝐾) |
| Ref | Expression |
|---|---|
| meetfval2 | ⊢ (𝐾 ∈ 𝑉 → ∧ = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ({𝑥, 𝑦} ∈ dom 𝐺 ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | meetfval.u | . . 3 ⊢ 𝐺 = (glb‘𝐾) | |
| 2 | meetfval.m | . . 3 ⊢ ∧ = (meet‘𝐾) | |
| 3 | 1, 2 | meetfval 18286 | . 2 ⊢ (𝐾 ∈ 𝑉 → ∧ = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ {𝑥, 𝑦}𝐺𝑧}) |
| 4 | 1 | glbfun 18264 | . . . . 5 ⊢ Fun 𝐺 |
| 5 | funbrfv2b 6874 | . . . . 5 ⊢ (Fun 𝐺 → ({𝑥, 𝑦}𝐺𝑧 ↔ ({𝑥, 𝑦} ∈ dom 𝐺 ∧ (𝐺‘{𝑥, 𝑦}) = 𝑧))) | |
| 6 | 4, 5 | ax-mp 5 | . . . 4 ⊢ ({𝑥, 𝑦}𝐺𝑧 ↔ ({𝑥, 𝑦} ∈ dom 𝐺 ∧ (𝐺‘{𝑥, 𝑦}) = 𝑧)) |
| 7 | eqcom 2738 | . . . . 5 ⊢ ((𝐺‘{𝑥, 𝑦}) = 𝑧 ↔ 𝑧 = (𝐺‘{𝑥, 𝑦})) | |
| 8 | 7 | anbi2i 623 | . . . 4 ⊢ (({𝑥, 𝑦} ∈ dom 𝐺 ∧ (𝐺‘{𝑥, 𝑦}) = 𝑧) ↔ ({𝑥, 𝑦} ∈ dom 𝐺 ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))) |
| 9 | 6, 8 | bitri 275 | . . 3 ⊢ ({𝑥, 𝑦}𝐺𝑧 ↔ ({𝑥, 𝑦} ∈ dom 𝐺 ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))) |
| 10 | 9 | oprabbii 7408 | . 2 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ {𝑥, 𝑦}𝐺𝑧} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ({𝑥, 𝑦} ∈ dom 𝐺 ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))} |
| 11 | 3, 10 | eqtrdi 2782 | 1 ⊢ (𝐾 ∈ 𝑉 → ∧ = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ({𝑥, 𝑦} ∈ dom 𝐺 ∧ 𝑧 = (𝐺‘{𝑥, 𝑦}))}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {cpr 4573 class class class wbr 5086 dom cdm 5611 Fun wfun 6470 ‘cfv 6476 {coprab 7342 glbcglb 18211 meetcmee 18213 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-iun 4938 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-riota 7298 df-oprab 7345 df-glb 18246 df-meet 18248 |
| This theorem is referenced by: meetdm 18288 meetval 18290 |
| Copyright terms: Public domain | W3C validator |