MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  meetfval2 Structured version   Visualization version   GIF version

Theorem meetfval2 18021
Description: Value of meet function for a poset. (Contributed by NM, 12-Sep-2011.) (Revised by NM, 9-Sep-2018.)
Hypotheses
Ref Expression
meetfval.u 𝐺 = (glb‘𝐾)
meetfval.m = (meet‘𝐾)
Assertion
Ref Expression
meetfval2 (𝐾𝑉 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ({𝑥, 𝑦} ∈ dom 𝐺𝑧 = (𝐺‘{𝑥, 𝑦}))})
Distinct variable groups:   𝑥,𝑦,𝑧,𝐾   𝑧,𝐺
Allowed substitution hints:   𝐺(𝑥,𝑦)   (𝑥,𝑦,𝑧)   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem meetfval2
StepHypRef Expression
1 meetfval.u . . 3 𝐺 = (glb‘𝐾)
2 meetfval.m . . 3 = (meet‘𝐾)
31, 2meetfval 18020 . 2 (𝐾𝑉 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ {𝑥, 𝑦}𝐺𝑧})
41glbfun 17998 . . . . 5 Fun 𝐺
5 funbrfv2b 6809 . . . . 5 (Fun 𝐺 → ({𝑥, 𝑦}𝐺𝑧 ↔ ({𝑥, 𝑦} ∈ dom 𝐺 ∧ (𝐺‘{𝑥, 𝑦}) = 𝑧)))
64, 5ax-mp 5 . . . 4 ({𝑥, 𝑦}𝐺𝑧 ↔ ({𝑥, 𝑦} ∈ dom 𝐺 ∧ (𝐺‘{𝑥, 𝑦}) = 𝑧))
7 eqcom 2745 . . . . 5 ((𝐺‘{𝑥, 𝑦}) = 𝑧𝑧 = (𝐺‘{𝑥, 𝑦}))
87anbi2i 622 . . . 4 (({𝑥, 𝑦} ∈ dom 𝐺 ∧ (𝐺‘{𝑥, 𝑦}) = 𝑧) ↔ ({𝑥, 𝑦} ∈ dom 𝐺𝑧 = (𝐺‘{𝑥, 𝑦})))
96, 8bitri 274 . . 3 ({𝑥, 𝑦}𝐺𝑧 ↔ ({𝑥, 𝑦} ∈ dom 𝐺𝑧 = (𝐺‘{𝑥, 𝑦})))
109oprabbii 7320 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ {𝑥, 𝑦}𝐺𝑧} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ({𝑥, 𝑦} ∈ dom 𝐺𝑧 = (𝐺‘{𝑥, 𝑦}))}
113, 10eqtrdi 2795 1 (𝐾𝑉 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ({𝑥, 𝑦} ∈ dom 𝐺𝑧 = (𝐺‘{𝑥, 𝑦}))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  {cpr 4560   class class class wbr 5070  dom cdm 5580  Fun wfun 6412  cfv 6418  {coprab 7256  glbcglb 17943  meetcmee 17945
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-oprab 7259  df-glb 17980  df-meet 17982
This theorem is referenced by:  meetdm  18022  meetval  18024
  Copyright terms: Public domain W3C validator