| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > joinfval2 | Structured version Visualization version GIF version | ||
| Description: Value of join function for a poset-type structure. (Contributed by NM, 12-Sep-2011.) (Revised by NM, 9-Sep-2018.) |
| Ref | Expression |
|---|---|
| joinfval.u | ⊢ 𝑈 = (lub‘𝐾) |
| joinfval.j | ⊢ ∨ = (join‘𝐾) |
| Ref | Expression |
|---|---|
| joinfval2 | ⊢ (𝐾 ∈ 𝑉 → ∨ = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ({𝑥, 𝑦} ∈ dom 𝑈 ∧ 𝑧 = (𝑈‘{𝑥, 𝑦}))}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | joinfval.u | . . 3 ⊢ 𝑈 = (lub‘𝐾) | |
| 2 | joinfval.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
| 3 | 1, 2 | joinfval 18332 | . 2 ⊢ (𝐾 ∈ 𝑉 → ∨ = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ {𝑥, 𝑦}𝑈𝑧}) |
| 4 | 1 | lubfun 18311 | . . . . 5 ⊢ Fun 𝑈 |
| 5 | funbrfv2b 6918 | . . . . 5 ⊢ (Fun 𝑈 → ({𝑥, 𝑦}𝑈𝑧 ↔ ({𝑥, 𝑦} ∈ dom 𝑈 ∧ (𝑈‘{𝑥, 𝑦}) = 𝑧))) | |
| 6 | 4, 5 | ax-mp 5 | . . . 4 ⊢ ({𝑥, 𝑦}𝑈𝑧 ↔ ({𝑥, 𝑦} ∈ dom 𝑈 ∧ (𝑈‘{𝑥, 𝑦}) = 𝑧)) |
| 7 | eqcom 2736 | . . . . 5 ⊢ ((𝑈‘{𝑥, 𝑦}) = 𝑧 ↔ 𝑧 = (𝑈‘{𝑥, 𝑦})) | |
| 8 | 7 | anbi2i 623 | . . . 4 ⊢ (({𝑥, 𝑦} ∈ dom 𝑈 ∧ (𝑈‘{𝑥, 𝑦}) = 𝑧) ↔ ({𝑥, 𝑦} ∈ dom 𝑈 ∧ 𝑧 = (𝑈‘{𝑥, 𝑦}))) |
| 9 | 6, 8 | bitri 275 | . . 3 ⊢ ({𝑥, 𝑦}𝑈𝑧 ↔ ({𝑥, 𝑦} ∈ dom 𝑈 ∧ 𝑧 = (𝑈‘{𝑥, 𝑦}))) |
| 10 | 9 | oprabbii 7456 | . 2 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ {𝑥, 𝑦}𝑈𝑧} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ({𝑥, 𝑦} ∈ dom 𝑈 ∧ 𝑧 = (𝑈‘{𝑥, 𝑦}))} |
| 11 | 3, 10 | eqtrdi 2780 | 1 ⊢ (𝐾 ∈ 𝑉 → ∨ = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ({𝑥, 𝑦} ∈ dom 𝑈 ∧ 𝑧 = (𝑈‘{𝑥, 𝑦}))}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cpr 4591 class class class wbr 5107 dom cdm 5638 Fun wfun 6505 ‘cfv 6511 {coprab 7388 lubclub 18270 joincjn 18272 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-oprab 7391 df-lub 18305 df-join 18307 |
| This theorem is referenced by: joindm 18334 joinval 18336 |
| Copyright terms: Public domain | W3C validator |