Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > joinfval2 | Structured version Visualization version GIF version |
Description: Value of join function for a poset-type structure. (Contributed by NM, 12-Sep-2011.) (Revised by NM, 9-Sep-2018.) |
Ref | Expression |
---|---|
joinfval.u | ⊢ 𝑈 = (lub‘𝐾) |
joinfval.j | ⊢ ∨ = (join‘𝐾) |
Ref | Expression |
---|---|
joinfval2 | ⊢ (𝐾 ∈ 𝑉 → ∨ = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ({𝑥, 𝑦} ∈ dom 𝑈 ∧ 𝑧 = (𝑈‘{𝑥, 𝑦}))}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | joinfval.u | . . 3 ⊢ 𝑈 = (lub‘𝐾) | |
2 | joinfval.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
3 | 1, 2 | joinfval 18006 | . 2 ⊢ (𝐾 ∈ 𝑉 → ∨ = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ {𝑥, 𝑦}𝑈𝑧}) |
4 | 1 | lubfun 17985 | . . . . 5 ⊢ Fun 𝑈 |
5 | funbrfv2b 6809 | . . . . 5 ⊢ (Fun 𝑈 → ({𝑥, 𝑦}𝑈𝑧 ↔ ({𝑥, 𝑦} ∈ dom 𝑈 ∧ (𝑈‘{𝑥, 𝑦}) = 𝑧))) | |
6 | 4, 5 | ax-mp 5 | . . . 4 ⊢ ({𝑥, 𝑦}𝑈𝑧 ↔ ({𝑥, 𝑦} ∈ dom 𝑈 ∧ (𝑈‘{𝑥, 𝑦}) = 𝑧)) |
7 | eqcom 2745 | . . . . 5 ⊢ ((𝑈‘{𝑥, 𝑦}) = 𝑧 ↔ 𝑧 = (𝑈‘{𝑥, 𝑦})) | |
8 | 7 | anbi2i 622 | . . . 4 ⊢ (({𝑥, 𝑦} ∈ dom 𝑈 ∧ (𝑈‘{𝑥, 𝑦}) = 𝑧) ↔ ({𝑥, 𝑦} ∈ dom 𝑈 ∧ 𝑧 = (𝑈‘{𝑥, 𝑦}))) |
9 | 6, 8 | bitri 274 | . . 3 ⊢ ({𝑥, 𝑦}𝑈𝑧 ↔ ({𝑥, 𝑦} ∈ dom 𝑈 ∧ 𝑧 = (𝑈‘{𝑥, 𝑦}))) |
10 | 9 | oprabbii 7320 | . 2 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ {𝑥, 𝑦}𝑈𝑧} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ({𝑥, 𝑦} ∈ dom 𝑈 ∧ 𝑧 = (𝑈‘{𝑥, 𝑦}))} |
11 | 3, 10 | eqtrdi 2795 | 1 ⊢ (𝐾 ∈ 𝑉 → ∨ = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ({𝑥, 𝑦} ∈ dom 𝑈 ∧ 𝑧 = (𝑈‘{𝑥, 𝑦}))}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {cpr 4560 class class class wbr 5070 dom cdm 5580 Fun wfun 6412 ‘cfv 6418 {coprab 7256 lubclub 17942 joincjn 17944 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-oprab 7259 df-lub 17979 df-join 17981 |
This theorem is referenced by: joindm 18008 joinval 18010 |
Copyright terms: Public domain | W3C validator |