![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > joinfval2 | Structured version Visualization version GIF version |
Description: Value of join function for a poset-type structure. (Contributed by NM, 12-Sep-2011.) (Revised by NM, 9-Sep-2018.) |
Ref | Expression |
---|---|
joinfval.u | ⊢ 𝑈 = (lub‘𝐾) |
joinfval.j | ⊢ ∨ = (join‘𝐾) |
Ref | Expression |
---|---|
joinfval2 | ⊢ (𝐾 ∈ 𝑉 → ∨ = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ({𝑥, 𝑦} ∈ dom 𝑈 ∧ 𝑧 = (𝑈‘{𝑥, 𝑦}))}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | joinfval.u | . . 3 ⊢ 𝑈 = (lub‘𝐾) | |
2 | joinfval.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
3 | 1, 2 | joinfval 18431 | . 2 ⊢ (𝐾 ∈ 𝑉 → ∨ = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ {𝑥, 𝑦}𝑈𝑧}) |
4 | 1 | lubfun 18410 | . . . . 5 ⊢ Fun 𝑈 |
5 | funbrfv2b 6966 | . . . . 5 ⊢ (Fun 𝑈 → ({𝑥, 𝑦}𝑈𝑧 ↔ ({𝑥, 𝑦} ∈ dom 𝑈 ∧ (𝑈‘{𝑥, 𝑦}) = 𝑧))) | |
6 | 4, 5 | ax-mp 5 | . . . 4 ⊢ ({𝑥, 𝑦}𝑈𝑧 ↔ ({𝑥, 𝑦} ∈ dom 𝑈 ∧ (𝑈‘{𝑥, 𝑦}) = 𝑧)) |
7 | eqcom 2742 | . . . . 5 ⊢ ((𝑈‘{𝑥, 𝑦}) = 𝑧 ↔ 𝑧 = (𝑈‘{𝑥, 𝑦})) | |
8 | 7 | anbi2i 623 | . . . 4 ⊢ (({𝑥, 𝑦} ∈ dom 𝑈 ∧ (𝑈‘{𝑥, 𝑦}) = 𝑧) ↔ ({𝑥, 𝑦} ∈ dom 𝑈 ∧ 𝑧 = (𝑈‘{𝑥, 𝑦}))) |
9 | 6, 8 | bitri 275 | . . 3 ⊢ ({𝑥, 𝑦}𝑈𝑧 ↔ ({𝑥, 𝑦} ∈ dom 𝑈 ∧ 𝑧 = (𝑈‘{𝑥, 𝑦}))) |
10 | 9 | oprabbii 7500 | . 2 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ {𝑥, 𝑦}𝑈𝑧} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ({𝑥, 𝑦} ∈ dom 𝑈 ∧ 𝑧 = (𝑈‘{𝑥, 𝑦}))} |
11 | 3, 10 | eqtrdi 2791 | 1 ⊢ (𝐾 ∈ 𝑉 → ∨ = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ({𝑥, 𝑦} ∈ dom 𝑈 ∧ 𝑧 = (𝑈‘{𝑥, 𝑦}))}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 {cpr 4633 class class class wbr 5148 dom cdm 5689 Fun wfun 6557 ‘cfv 6563 {coprab 7432 lubclub 18367 joincjn 18369 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-oprab 7435 df-lub 18404 df-join 18406 |
This theorem is referenced by: joindm 18433 joinval 18435 |
Copyright terms: Public domain | W3C validator |