Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > joinfval2 | Structured version Visualization version GIF version |
Description: Value of join function for a poset-type structure. (Contributed by NM, 12-Sep-2011.) (Revised by NM, 9-Sep-2018.) |
Ref | Expression |
---|---|
joinfval.u | ⊢ 𝑈 = (lub‘𝐾) |
joinfval.j | ⊢ ∨ = (join‘𝐾) |
Ref | Expression |
---|---|
joinfval2 | ⊢ (𝐾 ∈ 𝑉 → ∨ = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ({𝑥, 𝑦} ∈ dom 𝑈 ∧ 𝑧 = (𝑈‘{𝑥, 𝑦}))}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | joinfval.u | . . 3 ⊢ 𝑈 = (lub‘𝐾) | |
2 | joinfval.j | . . 3 ⊢ ∨ = (join‘𝐾) | |
3 | 1, 2 | joinfval 17879 | . 2 ⊢ (𝐾 ∈ 𝑉 → ∨ = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ {𝑥, 𝑦}𝑈𝑧}) |
4 | 1 | lubfun 17858 | . . . . 5 ⊢ Fun 𝑈 |
5 | funbrfv2b 6770 | . . . . 5 ⊢ (Fun 𝑈 → ({𝑥, 𝑦}𝑈𝑧 ↔ ({𝑥, 𝑦} ∈ dom 𝑈 ∧ (𝑈‘{𝑥, 𝑦}) = 𝑧))) | |
6 | 4, 5 | ax-mp 5 | . . . 4 ⊢ ({𝑥, 𝑦}𝑈𝑧 ↔ ({𝑥, 𝑦} ∈ dom 𝑈 ∧ (𝑈‘{𝑥, 𝑦}) = 𝑧)) |
7 | eqcom 2744 | . . . . 5 ⊢ ((𝑈‘{𝑥, 𝑦}) = 𝑧 ↔ 𝑧 = (𝑈‘{𝑥, 𝑦})) | |
8 | 7 | anbi2i 626 | . . . 4 ⊢ (({𝑥, 𝑦} ∈ dom 𝑈 ∧ (𝑈‘{𝑥, 𝑦}) = 𝑧) ↔ ({𝑥, 𝑦} ∈ dom 𝑈 ∧ 𝑧 = (𝑈‘{𝑥, 𝑦}))) |
9 | 6, 8 | bitri 278 | . . 3 ⊢ ({𝑥, 𝑦}𝑈𝑧 ↔ ({𝑥, 𝑦} ∈ dom 𝑈 ∧ 𝑧 = (𝑈‘{𝑥, 𝑦}))) |
10 | 9 | oprabbii 7278 | . 2 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ {𝑥, 𝑦}𝑈𝑧} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ({𝑥, 𝑦} ∈ dom 𝑈 ∧ 𝑧 = (𝑈‘{𝑥, 𝑦}))} |
11 | 3, 10 | eqtrdi 2794 | 1 ⊢ (𝐾 ∈ 𝑉 → ∨ = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ({𝑥, 𝑦} ∈ dom 𝑈 ∧ 𝑧 = (𝑈‘{𝑥, 𝑦}))}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1543 ∈ wcel 2110 {cpr 4543 class class class wbr 5053 dom cdm 5551 Fun wfun 6374 ‘cfv 6380 {coprab 7214 lubclub 17816 joincjn 17818 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-oprab 7217 df-lub 17852 df-join 17854 |
This theorem is referenced by: joindm 17881 joinval 17883 |
Copyright terms: Public domain | W3C validator |