MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  joinfval2 Structured version   Visualization version   GIF version

Theorem joinfval2 18273
Description: Value of join function for a poset-type structure. (Contributed by NM, 12-Sep-2011.) (Revised by NM, 9-Sep-2018.)
Hypotheses
Ref Expression
joinfval.u 𝑈 = (lub‘𝐾)
joinfval.j = (join‘𝐾)
Assertion
Ref Expression
joinfval2 (𝐾𝑉 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ({𝑥, 𝑦} ∈ dom 𝑈𝑧 = (𝑈‘{𝑥, 𝑦}))})
Distinct variable groups:   𝑥,𝑦,𝑧,𝐾   𝑧,𝑈
Allowed substitution hints:   𝑈(𝑥,𝑦)   (𝑥,𝑦,𝑧)   𝑉(𝑥,𝑦,𝑧)

Proof of Theorem joinfval2
StepHypRef Expression
1 joinfval.u . . 3 𝑈 = (lub‘𝐾)
2 joinfval.j . . 3 = (join‘𝐾)
31, 2joinfval 18272 . 2 (𝐾𝑉 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ {𝑥, 𝑦}𝑈𝑧})
41lubfun 18251 . . . . 5 Fun 𝑈
5 funbrfv2b 6874 . . . . 5 (Fun 𝑈 → ({𝑥, 𝑦}𝑈𝑧 ↔ ({𝑥, 𝑦} ∈ dom 𝑈 ∧ (𝑈‘{𝑥, 𝑦}) = 𝑧)))
64, 5ax-mp 5 . . . 4 ({𝑥, 𝑦}𝑈𝑧 ↔ ({𝑥, 𝑦} ∈ dom 𝑈 ∧ (𝑈‘{𝑥, 𝑦}) = 𝑧))
7 eqcom 2738 . . . . 5 ((𝑈‘{𝑥, 𝑦}) = 𝑧𝑧 = (𝑈‘{𝑥, 𝑦}))
87anbi2i 623 . . . 4 (({𝑥, 𝑦} ∈ dom 𝑈 ∧ (𝑈‘{𝑥, 𝑦}) = 𝑧) ↔ ({𝑥, 𝑦} ∈ dom 𝑈𝑧 = (𝑈‘{𝑥, 𝑦})))
96, 8bitri 275 . . 3 ({𝑥, 𝑦}𝑈𝑧 ↔ ({𝑥, 𝑦} ∈ dom 𝑈𝑧 = (𝑈‘{𝑥, 𝑦})))
109oprabbii 7408 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ {𝑥, 𝑦}𝑈𝑧} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ({𝑥, 𝑦} ∈ dom 𝑈𝑧 = (𝑈‘{𝑥, 𝑦}))}
113, 10eqtrdi 2782 1 (𝐾𝑉 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ({𝑥, 𝑦} ∈ dom 𝑈𝑧 = (𝑈‘{𝑥, 𝑦}))})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  {cpr 4573   class class class wbr 5086  dom cdm 5611  Fun wfun 6470  cfv 6476  {coprab 7342  lubclub 18210  joincjn 18212
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-oprab 7345  df-lub 18245  df-join 18247
This theorem is referenced by:  joindm  18274  joinval  18276
  Copyright terms: Public domain W3C validator