| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssoprab2 | Structured version Visualization version GIF version | ||
| Description: Equivalence of ordered pair abstraction subclass and implication. Compare ssopab2 5481. (Contributed by FL, 6-Nov-2013.) (Proof shortened by Mario Carneiro, 11-Dec-2016.) |
| Ref | Expression |
|---|---|
| ssoprab2 | ⊢ (∀𝑥∀𝑦∀𝑧(𝜑 → 𝜓) → {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ⊆ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . . . . . . 7 ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜓)) | |
| 2 | 1 | anim2d 612 | . . . . . 6 ⊢ ((𝜑 → 𝜓) → ((𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑) → (𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜓))) |
| 3 | 2 | aleximi 1833 | . . . . 5 ⊢ (∀𝑧(𝜑 → 𝜓) → (∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑) → ∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜓))) |
| 4 | 3 | aleximi 1833 | . . . 4 ⊢ (∀𝑦∀𝑧(𝜑 → 𝜓) → (∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑) → ∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜓))) |
| 5 | 4 | aleximi 1833 | . . 3 ⊢ (∀𝑥∀𝑦∀𝑧(𝜑 → 𝜓) → (∃𝑥∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑) → ∃𝑥∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜓))) |
| 6 | 5 | ss2abdv 4012 | . 2 ⊢ (∀𝑥∀𝑦∀𝑧(𝜑 → 𝜓) → {𝑤 ∣ ∃𝑥∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑)} ⊆ {𝑤 ∣ ∃𝑥∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜓)}) |
| 7 | df-oprab 7345 | . 2 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {𝑤 ∣ ∃𝑥∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑)} | |
| 8 | df-oprab 7345 | . 2 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} = {𝑤 ∣ ∃𝑥∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜓)} | |
| 9 | 6, 7, 8 | 3sstr4g 3983 | 1 ⊢ (∀𝑥∀𝑦∀𝑧(𝜑 → 𝜓) → {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ⊆ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∀wal 1539 = wceq 1541 ∃wex 1780 {cab 2709 ⊆ wss 3897 〈cop 4577 {coprab 7342 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-ss 3914 df-oprab 7345 |
| This theorem is referenced by: ssoprab2b 7410 eqoprab2bw 7411 joinfval 18272 meetfval 18286 |
| Copyright terms: Public domain | W3C validator |