Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ssoprab2 | Structured version Visualization version GIF version |
Description: Equivalence of ordered pair abstraction subclass and implication. Compare ssopab2 5460. (Contributed by FL, 6-Nov-2013.) (Proof shortened by Mario Carneiro, 11-Dec-2016.) |
Ref | Expression |
---|---|
ssoprab2 | ⊢ (∀𝑥∀𝑦∀𝑧(𝜑 → 𝜓) → {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ⊆ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . . . . . . 7 ⊢ ((𝜑 → 𝜓) → (𝜑 → 𝜓)) | |
2 | 1 | anim2d 611 | . . . . . 6 ⊢ ((𝜑 → 𝜓) → ((𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑) → (𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜓))) |
3 | 2 | aleximi 1837 | . . . . 5 ⊢ (∀𝑧(𝜑 → 𝜓) → (∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑) → ∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜓))) |
4 | 3 | aleximi 1837 | . . . 4 ⊢ (∀𝑦∀𝑧(𝜑 → 𝜓) → (∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑) → ∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜓))) |
5 | 4 | aleximi 1837 | . . 3 ⊢ (∀𝑥∀𝑦∀𝑧(𝜑 → 𝜓) → (∃𝑥∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑) → ∃𝑥∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜓))) |
6 | 5 | ss2abdv 4001 | . 2 ⊢ (∀𝑥∀𝑦∀𝑧(𝜑 → 𝜓) → {𝑤 ∣ ∃𝑥∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑)} ⊆ {𝑤 ∣ ∃𝑥∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜓)}) |
7 | df-oprab 7272 | . 2 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {𝑤 ∣ ∃𝑥∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜑)} | |
8 | df-oprab 7272 | . 2 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓} = {𝑤 ∣ ∃𝑥∃𝑦∃𝑧(𝑤 = 〈〈𝑥, 𝑦〉, 𝑧〉 ∧ 𝜓)} | |
9 | 6, 7, 8 | 3sstr4g 3970 | 1 ⊢ (∀𝑥∀𝑦∀𝑧(𝜑 → 𝜓) → {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} ⊆ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜓}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∀wal 1539 = wceq 1541 ∃wex 1785 {cab 2716 ⊆ wss 3891 〈cop 4572 {coprab 7269 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1544 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-v 3432 df-in 3898 df-ss 3908 df-oprab 7272 |
This theorem is referenced by: ssoprab2b 7335 eqoprab2bw 7336 joinfval 18072 meetfval 18086 |
Copyright terms: Public domain | W3C validator |