| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tposmpo | Structured version Visualization version GIF version | ||
| Description: Transposition of a two-argument mapping. (Contributed by Mario Carneiro, 10-Sep-2015.) |
| Ref | Expression |
|---|---|
| tposmpo.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |
| Ref | Expression |
|---|---|
| tposmpo | ⊢ tpos 𝐹 = (𝑦 ∈ 𝐵, 𝑥 ∈ 𝐴 ↦ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | tposmpo.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) | |
| 2 | df-mpo 7436 | . . . 4 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} | |
| 3 | ancom 460 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ↔ (𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴)) | |
| 4 | 3 | anbi1i 624 | . . . . 5 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶) ↔ ((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 = 𝐶)) |
| 5 | 4 | oprabbii 7500 | . . . 4 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 = 𝐶)} = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 = 𝐶)} |
| 6 | 1, 2, 5 | 3eqtri 2769 | . . 3 ⊢ 𝐹 = {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ ((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 = 𝐶)} |
| 7 | 6 | tposoprab 8287 | . 2 ⊢ tpos 𝐹 = {〈〈𝑦, 𝑥〉, 𝑧〉 ∣ ((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 = 𝐶)} |
| 8 | df-mpo 7436 | . 2 ⊢ (𝑦 ∈ 𝐵, 𝑥 ∈ 𝐴 ↦ 𝐶) = {〈〈𝑦, 𝑥〉, 𝑧〉 ∣ ((𝑦 ∈ 𝐵 ∧ 𝑥 ∈ 𝐴) ∧ 𝑧 = 𝐶)} | |
| 9 | 7, 8 | eqtr4i 2768 | 1 ⊢ tpos 𝐹 = (𝑦 ∈ 𝐵, 𝑥 ∈ 𝐴 ↦ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2108 {coprab 7432 ∈ cmpo 7433 tpos ctpos 8250 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-iota 6514 df-fun 6563 df-fn 6564 df-fv 6569 df-oprab 7435 df-mpo 7436 df-tpos 8251 |
| This theorem is referenced by: tposconst 8289 oppchomf 17763 oppglsm 19660 mattpos1 22462 mamutpos 22464 madutpos 22648 mdetpmtr2 33823 |
| Copyright terms: Public domain | W3C validator |