MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tposmpo Structured version   Visualization version   GIF version

Theorem tposmpo 8245
Description: Transposition of a two-argument mapping. (Contributed by Mario Carneiro, 10-Sep-2015.)
Hypothesis
Ref Expression
tposmpo.1 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
Assertion
Ref Expression
tposmpo tpos 𝐹 = (𝑦𝐵, 𝑥𝐴𝐶)
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝐴(𝑥,𝑦)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦)   𝐹(𝑥,𝑦)

Proof of Theorem tposmpo
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 tposmpo.1 . . . 4 𝐹 = (𝑥𝐴, 𝑦𝐵𝐶)
2 df-mpo 7395 . . . 4 (𝑥𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)}
3 ancom 460 . . . . . 6 ((𝑥𝐴𝑦𝐵) ↔ (𝑦𝐵𝑥𝐴))
43anbi1i 624 . . . . 5 (((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶) ↔ ((𝑦𝐵𝑥𝐴) ∧ 𝑧 = 𝐶))
54oprabbii 7459 . . . 4 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑥𝐴𝑦𝐵) ∧ 𝑧 = 𝐶)} = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑦𝐵𝑥𝐴) ∧ 𝑧 = 𝐶)}
61, 2, 53eqtri 2757 . . 3 𝐹 = {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ ((𝑦𝐵𝑥𝐴) ∧ 𝑧 = 𝐶)}
76tposoprab 8244 . 2 tpos 𝐹 = {⟨⟨𝑦, 𝑥⟩, 𝑧⟩ ∣ ((𝑦𝐵𝑥𝐴) ∧ 𝑧 = 𝐶)}
8 df-mpo 7395 . 2 (𝑦𝐵, 𝑥𝐴𝐶) = {⟨⟨𝑦, 𝑥⟩, 𝑧⟩ ∣ ((𝑦𝐵𝑥𝐴) ∧ 𝑧 = 𝐶)}
97, 8eqtr4i 2756 1 tpos 𝐹 = (𝑦𝐵, 𝑥𝐴𝐶)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  {coprab 7391  cmpo 7392  tpos ctpos 8207
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-fv 6522  df-oprab 7394  df-mpo 7395  df-tpos 8208
This theorem is referenced by:  tposconst  8246  oppchomf  17688  oppglsm  19579  mattpos1  22350  mamutpos  22352  madutpos  22536  mdetpmtr2  33821  cofuoppf  49143  oppc1stf  49281  oppc2ndf  49282
  Copyright terms: Public domain W3C validator