Step | Hyp | Ref
| Expression |
1 | | orass 919 |
. . 3
⊢ (((𝑁 = 0 ∨ 𝑀 = 0) ∨ 𝑃 = 0) ↔ (𝑁 = 0 ∨ (𝑀 = 0 ∨ 𝑃 = 0))) |
2 | | anass 472 |
. . . . 5
⊢ (((𝑁 ∥ 𝑥 ∧ 𝑀 ∥ 𝑥) ∧ 𝑃 ∥ 𝑥) ↔ (𝑁 ∥ 𝑥 ∧ (𝑀 ∥ 𝑥 ∧ 𝑃 ∥ 𝑥))) |
3 | 2 | rabbii 3385 |
. . . 4
⊢ {𝑥 ∈ ℕ ∣ ((𝑁 ∥ 𝑥 ∧ 𝑀 ∥ 𝑥) ∧ 𝑃 ∥ 𝑥)} = {𝑥 ∈ ℕ ∣ (𝑁 ∥ 𝑥 ∧ (𝑀 ∥ 𝑥 ∧ 𝑃 ∥ 𝑥))} |
4 | 3 | infeq1i 8980 |
. . 3
⊢
inf({𝑥 ∈
ℕ ∣ ((𝑁 ∥
𝑥 ∧ 𝑀 ∥ 𝑥) ∧ 𝑃 ∥ 𝑥)}, ℝ, < ) = inf({𝑥 ∈ ℕ ∣ (𝑁 ∥ 𝑥 ∧ (𝑀 ∥ 𝑥 ∧ 𝑃 ∥ 𝑥))}, ℝ, < ) |
5 | 1, 4 | ifbieq2i 4448 |
. 2
⊢
if(((𝑁 = 0 ∨
𝑀 = 0) ∨ 𝑃 = 0), 0, inf({𝑥 ∈ ℕ ∣ ((𝑁 ∥ 𝑥 ∧ 𝑀 ∥ 𝑥) ∧ 𝑃 ∥ 𝑥)}, ℝ, < )) = if((𝑁 = 0 ∨ (𝑀 = 0 ∨ 𝑃 = 0)), 0, inf({𝑥 ∈ ℕ ∣ (𝑁 ∥ 𝑥 ∧ (𝑀 ∥ 𝑥 ∧ 𝑃 ∥ 𝑥))}, ℝ, < )) |
6 | | lcmcl 16002 |
. . . . . 6
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 lcm 𝑀) ∈
ℕ0) |
7 | 6 | 3adant3 1129 |
. . . . 5
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑁 lcm 𝑀) ∈
ℕ0) |
8 | 7 | nn0zd 12129 |
. . . 4
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑁 lcm 𝑀) ∈ ℤ) |
9 | | simp3 1135 |
. . . 4
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → 𝑃 ∈
ℤ) |
10 | | lcmval 15993 |
. . . 4
⊢ (((𝑁 lcm 𝑀) ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑁 lcm 𝑀) lcm 𝑃) = if(((𝑁 lcm 𝑀) = 0 ∨ 𝑃 = 0), 0, inf({𝑥 ∈ ℕ ∣ ((𝑁 lcm 𝑀) ∥ 𝑥 ∧ 𝑃 ∥ 𝑥)}, ℝ, < ))) |
11 | 8, 9, 10 | syl2anc 587 |
. . 3
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑁 lcm 𝑀) lcm 𝑃) = if(((𝑁 lcm 𝑀) = 0 ∨ 𝑃 = 0), 0, inf({𝑥 ∈ ℕ ∣ ((𝑁 lcm 𝑀) ∥ 𝑥 ∧ 𝑃 ∥ 𝑥)}, ℝ, < ))) |
12 | | lcmeq0 16001 |
. . . . . . 7
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑁 lcm 𝑀) = 0 ↔ (𝑁 = 0 ∨ 𝑀 = 0))) |
13 | 12 | 3adant3 1129 |
. . . . . 6
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑁 lcm 𝑀) = 0 ↔ (𝑁 = 0 ∨ 𝑀 = 0))) |
14 | 13 | orbi1d 914 |
. . . . 5
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (((𝑁 lcm 𝑀) = 0 ∨ 𝑃 = 0) ↔ ((𝑁 = 0 ∨ 𝑀 = 0) ∨ 𝑃 = 0))) |
15 | 14 | bicomd 226 |
. . . 4
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (((𝑁 = 0 ∨ 𝑀 = 0) ∨ 𝑃 = 0) ↔ ((𝑁 lcm 𝑀) = 0 ∨ 𝑃 = 0))) |
16 | | nnz 12048 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℕ → 𝑥 ∈
ℤ) |
17 | 16 | adantl 485 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ 𝑥 ∈ ℕ) → 𝑥 ∈
ℤ) |
18 | | simp1 1133 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → 𝑁 ∈
ℤ) |
19 | 18 | adantr 484 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ 𝑥 ∈ ℕ) → 𝑁 ∈
ℤ) |
20 | | simpl2 1189 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ 𝑥 ∈ ℕ) → 𝑀 ∈
ℤ) |
21 | | lcmdvdsb 16014 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑁 ∥ 𝑥 ∧ 𝑀 ∥ 𝑥) ↔ (𝑁 lcm 𝑀) ∥ 𝑥)) |
22 | 17, 19, 20, 21 | syl3anc 1368 |
. . . . . . 7
⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ 𝑥 ∈ ℕ) → ((𝑁 ∥ 𝑥 ∧ 𝑀 ∥ 𝑥) ↔ (𝑁 lcm 𝑀) ∥ 𝑥)) |
23 | 22 | anbi1d 632 |
. . . . . 6
⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ 𝑥 ∈ ℕ) → (((𝑁 ∥ 𝑥 ∧ 𝑀 ∥ 𝑥) ∧ 𝑃 ∥ 𝑥) ↔ ((𝑁 lcm 𝑀) ∥ 𝑥 ∧ 𝑃 ∥ 𝑥))) |
24 | 23 | rabbidva 3390 |
. . . . 5
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → {𝑥 ∈ ℕ ∣ ((𝑁 ∥ 𝑥 ∧ 𝑀 ∥ 𝑥) ∧ 𝑃 ∥ 𝑥)} = {𝑥 ∈ ℕ ∣ ((𝑁 lcm 𝑀) ∥ 𝑥 ∧ 𝑃 ∥ 𝑥)}) |
25 | 24 | infeq1d 8979 |
. . . 4
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) →
inf({𝑥 ∈ ℕ
∣ ((𝑁 ∥ 𝑥 ∧ 𝑀 ∥ 𝑥) ∧ 𝑃 ∥ 𝑥)}, ℝ, < ) = inf({𝑥 ∈ ℕ ∣ ((𝑁 lcm 𝑀) ∥ 𝑥 ∧ 𝑃 ∥ 𝑥)}, ℝ, < )) |
26 | 15, 25 | ifbieq2d 4449 |
. . 3
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) →
if(((𝑁 = 0 ∨ 𝑀 = 0) ∨ 𝑃 = 0), 0, inf({𝑥 ∈ ℕ ∣ ((𝑁 ∥ 𝑥 ∧ 𝑀 ∥ 𝑥) ∧ 𝑃 ∥ 𝑥)}, ℝ, < )) = if(((𝑁 lcm 𝑀) = 0 ∨ 𝑃 = 0), 0, inf({𝑥 ∈ ℕ ∣ ((𝑁 lcm 𝑀) ∥ 𝑥 ∧ 𝑃 ∥ 𝑥)}, ℝ, < ))) |
27 | 11, 26 | eqtr4d 2796 |
. 2
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑁 lcm 𝑀) lcm 𝑃) = if(((𝑁 = 0 ∨ 𝑀 = 0) ∨ 𝑃 = 0), 0, inf({𝑥 ∈ ℕ ∣ ((𝑁 ∥ 𝑥 ∧ 𝑀 ∥ 𝑥) ∧ 𝑃 ∥ 𝑥)}, ℝ, < ))) |
28 | | lcmcl 16002 |
. . . . . 6
⊢ ((𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑀 lcm 𝑃) ∈
ℕ0) |
29 | 28 | 3adant1 1127 |
. . . . 5
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑀 lcm 𝑃) ∈
ℕ0) |
30 | 29 | nn0zd 12129 |
. . . 4
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑀 lcm 𝑃) ∈ ℤ) |
31 | | lcmval 15993 |
. . . 4
⊢ ((𝑁 ∈ ℤ ∧ (𝑀 lcm 𝑃) ∈ ℤ) → (𝑁 lcm (𝑀 lcm 𝑃)) = if((𝑁 = 0 ∨ (𝑀 lcm 𝑃) = 0), 0, inf({𝑥 ∈ ℕ ∣ (𝑁 ∥ 𝑥 ∧ (𝑀 lcm 𝑃) ∥ 𝑥)}, ℝ, < ))) |
32 | 18, 30, 31 | syl2anc 587 |
. . 3
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑁 lcm (𝑀 lcm 𝑃)) = if((𝑁 = 0 ∨ (𝑀 lcm 𝑃) = 0), 0, inf({𝑥 ∈ ℕ ∣ (𝑁 ∥ 𝑥 ∧ (𝑀 lcm 𝑃) ∥ 𝑥)}, ℝ, < ))) |
33 | | lcmeq0 16001 |
. . . . . . 7
⊢ ((𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑀 lcm 𝑃) = 0 ↔ (𝑀 = 0 ∨ 𝑃 = 0))) |
34 | 33 | 3adant1 1127 |
. . . . . 6
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑀 lcm 𝑃) = 0 ↔ (𝑀 = 0 ∨ 𝑃 = 0))) |
35 | 34 | orbi2d 913 |
. . . . 5
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑁 = 0 ∨ (𝑀 lcm 𝑃) = 0) ↔ (𝑁 = 0 ∨ (𝑀 = 0 ∨ 𝑃 = 0)))) |
36 | 35 | bicomd 226 |
. . . 4
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑁 = 0 ∨ (𝑀 = 0 ∨ 𝑃 = 0)) ↔ (𝑁 = 0 ∨ (𝑀 lcm 𝑃) = 0))) |
37 | 9 | adantr 484 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ 𝑥 ∈ ℕ) → 𝑃 ∈
ℤ) |
38 | | lcmdvdsb 16014 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑀 ∥ 𝑥 ∧ 𝑃 ∥ 𝑥) ↔ (𝑀 lcm 𝑃) ∥ 𝑥)) |
39 | 17, 20, 37, 38 | syl3anc 1368 |
. . . . . . 7
⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ 𝑥 ∈ ℕ) → ((𝑀 ∥ 𝑥 ∧ 𝑃 ∥ 𝑥) ↔ (𝑀 lcm 𝑃) ∥ 𝑥)) |
40 | 39 | anbi2d 631 |
. . . . . 6
⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ 𝑥 ∈ ℕ) → ((𝑁 ∥ 𝑥 ∧ (𝑀 ∥ 𝑥 ∧ 𝑃 ∥ 𝑥)) ↔ (𝑁 ∥ 𝑥 ∧ (𝑀 lcm 𝑃) ∥ 𝑥))) |
41 | 40 | rabbidva 3390 |
. . . . 5
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → {𝑥 ∈ ℕ ∣ (𝑁 ∥ 𝑥 ∧ (𝑀 ∥ 𝑥 ∧ 𝑃 ∥ 𝑥))} = {𝑥 ∈ ℕ ∣ (𝑁 ∥ 𝑥 ∧ (𝑀 lcm 𝑃) ∥ 𝑥)}) |
42 | 41 | infeq1d 8979 |
. . . 4
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) →
inf({𝑥 ∈ ℕ
∣ (𝑁 ∥ 𝑥 ∧ (𝑀 ∥ 𝑥 ∧ 𝑃 ∥ 𝑥))}, ℝ, < ) = inf({𝑥 ∈ ℕ ∣ (𝑁 ∥ 𝑥 ∧ (𝑀 lcm 𝑃) ∥ 𝑥)}, ℝ, < )) |
43 | 36, 42 | ifbieq2d 4449 |
. . 3
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) →
if((𝑁 = 0 ∨ (𝑀 = 0 ∨ 𝑃 = 0)), 0, inf({𝑥 ∈ ℕ ∣ (𝑁 ∥ 𝑥 ∧ (𝑀 ∥ 𝑥 ∧ 𝑃 ∥ 𝑥))}, ℝ, < )) = if((𝑁 = 0 ∨ (𝑀 lcm 𝑃) = 0), 0, inf({𝑥 ∈ ℕ ∣ (𝑁 ∥ 𝑥 ∧ (𝑀 lcm 𝑃) ∥ 𝑥)}, ℝ, < ))) |
44 | 32, 43 | eqtr4d 2796 |
. 2
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑁 lcm (𝑀 lcm 𝑃)) = if((𝑁 = 0 ∨ (𝑀 = 0 ∨ 𝑃 = 0)), 0, inf({𝑥 ∈ ℕ ∣ (𝑁 ∥ 𝑥 ∧ (𝑀 ∥ 𝑥 ∧ 𝑃 ∥ 𝑥))}, ℝ, < ))) |
45 | 5, 27, 44 | 3eqtr4a 2819 |
1
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑁 lcm 𝑀) lcm 𝑃) = (𝑁 lcm (𝑀 lcm 𝑃))) |