MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lcmass Structured version   Visualization version   GIF version

Theorem lcmass 16525
Description: Associative law for lcm operator. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Proof shortened by AV, 16-Sep-2020.)
Assertion
Ref Expression
lcmass ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑁 lcm 𝑀) lcm 𝑃) = (𝑁 lcm (𝑀 lcm 𝑃)))

Proof of Theorem lcmass
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 orass 921 . . 3 (((𝑁 = 0 ∨ 𝑀 = 0) ∨ 𝑃 = 0) ↔ (𝑁 = 0 ∨ (𝑀 = 0 ∨ 𝑃 = 0)))
2 anass 468 . . . . 5 (((𝑁𝑥𝑀𝑥) ∧ 𝑃𝑥) ↔ (𝑁𝑥 ∧ (𝑀𝑥𝑃𝑥)))
32rabbii 3400 . . . 4 {𝑥 ∈ ℕ ∣ ((𝑁𝑥𝑀𝑥) ∧ 𝑃𝑥)} = {𝑥 ∈ ℕ ∣ (𝑁𝑥 ∧ (𝑀𝑥𝑃𝑥))}
43infeq1i 9369 . . 3 inf({𝑥 ∈ ℕ ∣ ((𝑁𝑥𝑀𝑥) ∧ 𝑃𝑥)}, ℝ, < ) = inf({𝑥 ∈ ℕ ∣ (𝑁𝑥 ∧ (𝑀𝑥𝑃𝑥))}, ℝ, < )
51, 4ifbieq2i 4502 . 2 if(((𝑁 = 0 ∨ 𝑀 = 0) ∨ 𝑃 = 0), 0, inf({𝑥 ∈ ℕ ∣ ((𝑁𝑥𝑀𝑥) ∧ 𝑃𝑥)}, ℝ, < )) = if((𝑁 = 0 ∨ (𝑀 = 0 ∨ 𝑃 = 0)), 0, inf({𝑥 ∈ ℕ ∣ (𝑁𝑥 ∧ (𝑀𝑥𝑃𝑥))}, ℝ, < ))
6 lcmcl 16512 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 lcm 𝑀) ∈ ℕ0)
763adant3 1132 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑁 lcm 𝑀) ∈ ℕ0)
87nn0zd 12497 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑁 lcm 𝑀) ∈ ℤ)
9 simp3 1138 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → 𝑃 ∈ ℤ)
10 lcmval 16503 . . . 4 (((𝑁 lcm 𝑀) ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑁 lcm 𝑀) lcm 𝑃) = if(((𝑁 lcm 𝑀) = 0 ∨ 𝑃 = 0), 0, inf({𝑥 ∈ ℕ ∣ ((𝑁 lcm 𝑀) ∥ 𝑥𝑃𝑥)}, ℝ, < )))
118, 9, 10syl2anc 584 . . 3 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑁 lcm 𝑀) lcm 𝑃) = if(((𝑁 lcm 𝑀) = 0 ∨ 𝑃 = 0), 0, inf({𝑥 ∈ ℕ ∣ ((𝑁 lcm 𝑀) ∥ 𝑥𝑃𝑥)}, ℝ, < )))
12 lcmeq0 16511 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑁 lcm 𝑀) = 0 ↔ (𝑁 = 0 ∨ 𝑀 = 0)))
13123adant3 1132 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑁 lcm 𝑀) = 0 ↔ (𝑁 = 0 ∨ 𝑀 = 0)))
1413orbi1d 916 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (((𝑁 lcm 𝑀) = 0 ∨ 𝑃 = 0) ↔ ((𝑁 = 0 ∨ 𝑀 = 0) ∨ 𝑃 = 0)))
1514bicomd 223 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (((𝑁 = 0 ∨ 𝑀 = 0) ∨ 𝑃 = 0) ↔ ((𝑁 lcm 𝑀) = 0 ∨ 𝑃 = 0)))
16 nnz 12492 . . . . . . . . 9 (𝑥 ∈ ℕ → 𝑥 ∈ ℤ)
1716adantl 481 . . . . . . . 8 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ 𝑥 ∈ ℕ) → 𝑥 ∈ ℤ)
18 simp1 1136 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → 𝑁 ∈ ℤ)
1918adantr 480 . . . . . . . 8 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ 𝑥 ∈ ℕ) → 𝑁 ∈ ℤ)
20 simpl2 1193 . . . . . . . 8 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ 𝑥 ∈ ℕ) → 𝑀 ∈ ℤ)
21 lcmdvdsb 16524 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑁𝑥𝑀𝑥) ↔ (𝑁 lcm 𝑀) ∥ 𝑥))
2217, 19, 20, 21syl3anc 1373 . . . . . . 7 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ 𝑥 ∈ ℕ) → ((𝑁𝑥𝑀𝑥) ↔ (𝑁 lcm 𝑀) ∥ 𝑥))
2322anbi1d 631 . . . . . 6 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ 𝑥 ∈ ℕ) → (((𝑁𝑥𝑀𝑥) ∧ 𝑃𝑥) ↔ ((𝑁 lcm 𝑀) ∥ 𝑥𝑃𝑥)))
2423rabbidva 3401 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → {𝑥 ∈ ℕ ∣ ((𝑁𝑥𝑀𝑥) ∧ 𝑃𝑥)} = {𝑥 ∈ ℕ ∣ ((𝑁 lcm 𝑀) ∥ 𝑥𝑃𝑥)})
2524infeq1d 9368 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → inf({𝑥 ∈ ℕ ∣ ((𝑁𝑥𝑀𝑥) ∧ 𝑃𝑥)}, ℝ, < ) = inf({𝑥 ∈ ℕ ∣ ((𝑁 lcm 𝑀) ∥ 𝑥𝑃𝑥)}, ℝ, < ))
2615, 25ifbieq2d 4503 . . 3 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → if(((𝑁 = 0 ∨ 𝑀 = 0) ∨ 𝑃 = 0), 0, inf({𝑥 ∈ ℕ ∣ ((𝑁𝑥𝑀𝑥) ∧ 𝑃𝑥)}, ℝ, < )) = if(((𝑁 lcm 𝑀) = 0 ∨ 𝑃 = 0), 0, inf({𝑥 ∈ ℕ ∣ ((𝑁 lcm 𝑀) ∥ 𝑥𝑃𝑥)}, ℝ, < )))
2711, 26eqtr4d 2767 . 2 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑁 lcm 𝑀) lcm 𝑃) = if(((𝑁 = 0 ∨ 𝑀 = 0) ∨ 𝑃 = 0), 0, inf({𝑥 ∈ ℕ ∣ ((𝑁𝑥𝑀𝑥) ∧ 𝑃𝑥)}, ℝ, < )))
28 lcmcl 16512 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑀 lcm 𝑃) ∈ ℕ0)
29283adant1 1130 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑀 lcm 𝑃) ∈ ℕ0)
3029nn0zd 12497 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑀 lcm 𝑃) ∈ ℤ)
31 lcmval 16503 . . . 4 ((𝑁 ∈ ℤ ∧ (𝑀 lcm 𝑃) ∈ ℤ) → (𝑁 lcm (𝑀 lcm 𝑃)) = if((𝑁 = 0 ∨ (𝑀 lcm 𝑃) = 0), 0, inf({𝑥 ∈ ℕ ∣ (𝑁𝑥 ∧ (𝑀 lcm 𝑃) ∥ 𝑥)}, ℝ, < )))
3218, 30, 31syl2anc 584 . . 3 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑁 lcm (𝑀 lcm 𝑃)) = if((𝑁 = 0 ∨ (𝑀 lcm 𝑃) = 0), 0, inf({𝑥 ∈ ℕ ∣ (𝑁𝑥 ∧ (𝑀 lcm 𝑃) ∥ 𝑥)}, ℝ, < )))
33 lcmeq0 16511 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑀 lcm 𝑃) = 0 ↔ (𝑀 = 0 ∨ 𝑃 = 0)))
34333adant1 1130 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑀 lcm 𝑃) = 0 ↔ (𝑀 = 0 ∨ 𝑃 = 0)))
3534orbi2d 915 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑁 = 0 ∨ (𝑀 lcm 𝑃) = 0) ↔ (𝑁 = 0 ∨ (𝑀 = 0 ∨ 𝑃 = 0))))
3635bicomd 223 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑁 = 0 ∨ (𝑀 = 0 ∨ 𝑃 = 0)) ↔ (𝑁 = 0 ∨ (𝑀 lcm 𝑃) = 0)))
379adantr 480 . . . . . . . 8 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ 𝑥 ∈ ℕ) → 𝑃 ∈ ℤ)
38 lcmdvdsb 16524 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑀𝑥𝑃𝑥) ↔ (𝑀 lcm 𝑃) ∥ 𝑥))
3917, 20, 37, 38syl3anc 1373 . . . . . . 7 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ 𝑥 ∈ ℕ) → ((𝑀𝑥𝑃𝑥) ↔ (𝑀 lcm 𝑃) ∥ 𝑥))
4039anbi2d 630 . . . . . 6 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ 𝑥 ∈ ℕ) → ((𝑁𝑥 ∧ (𝑀𝑥𝑃𝑥)) ↔ (𝑁𝑥 ∧ (𝑀 lcm 𝑃) ∥ 𝑥)))
4140rabbidva 3401 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → {𝑥 ∈ ℕ ∣ (𝑁𝑥 ∧ (𝑀𝑥𝑃𝑥))} = {𝑥 ∈ ℕ ∣ (𝑁𝑥 ∧ (𝑀 lcm 𝑃) ∥ 𝑥)})
4241infeq1d 9368 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → inf({𝑥 ∈ ℕ ∣ (𝑁𝑥 ∧ (𝑀𝑥𝑃𝑥))}, ℝ, < ) = inf({𝑥 ∈ ℕ ∣ (𝑁𝑥 ∧ (𝑀 lcm 𝑃) ∥ 𝑥)}, ℝ, < ))
4336, 42ifbieq2d 4503 . . 3 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → if((𝑁 = 0 ∨ (𝑀 = 0 ∨ 𝑃 = 0)), 0, inf({𝑥 ∈ ℕ ∣ (𝑁𝑥 ∧ (𝑀𝑥𝑃𝑥))}, ℝ, < )) = if((𝑁 = 0 ∨ (𝑀 lcm 𝑃) = 0), 0, inf({𝑥 ∈ ℕ ∣ (𝑁𝑥 ∧ (𝑀 lcm 𝑃) ∥ 𝑥)}, ℝ, < )))
4432, 43eqtr4d 2767 . 2 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑁 lcm (𝑀 lcm 𝑃)) = if((𝑁 = 0 ∨ (𝑀 = 0 ∨ 𝑃 = 0)), 0, inf({𝑥 ∈ ℕ ∣ (𝑁𝑥 ∧ (𝑀𝑥𝑃𝑥))}, ℝ, < )))
455, 27, 443eqtr4a 2790 1 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑁 lcm 𝑀) lcm 𝑃) = (𝑁 lcm (𝑀 lcm 𝑃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  {crab 3394  ifcif 4476   class class class wbr 5092  (class class class)co 7349  infcinf 9331  cr 11008  0cc0 11009   < clt 11149  cn 12128  0cn0 12384  cz 12471  cdvds 16163   lcm clcm 16499
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-sup 9332  df-inf 9333  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-fl 13696  df-mod 13774  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-dvds 16164  df-gcd 16406  df-lcm 16501
This theorem is referenced by:  lcmfunsnlem2lem2  16550  lcmfun  16556
  Copyright terms: Public domain W3C validator