MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lcmass Structured version   Visualization version   GIF version

Theorem lcmass 16556
Description: Associative law for lcm operator. (Contributed by Steve Rodriguez, 20-Jan-2020.) (Proof shortened by AV, 16-Sep-2020.)
Assertion
Ref Expression
lcmass ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑁 lcm 𝑀) lcm 𝑃) = (𝑁 lcm (𝑀 lcm 𝑃)))

Proof of Theorem lcmass
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 orass 918 . . 3 (((𝑁 = 0 ∨ 𝑀 = 0) ∨ 𝑃 = 0) ↔ (𝑁 = 0 ∨ (𝑀 = 0 ∨ 𝑃 = 0)))
2 anass 468 . . . . 5 (((𝑁𝑥𝑀𝑥) ∧ 𝑃𝑥) ↔ (𝑁𝑥 ∧ (𝑀𝑥𝑃𝑥)))
32rabbii 3432 . . . 4 {𝑥 ∈ ℕ ∣ ((𝑁𝑥𝑀𝑥) ∧ 𝑃𝑥)} = {𝑥 ∈ ℕ ∣ (𝑁𝑥 ∧ (𝑀𝑥𝑃𝑥))}
43infeq1i 9472 . . 3 inf({𝑥 ∈ ℕ ∣ ((𝑁𝑥𝑀𝑥) ∧ 𝑃𝑥)}, ℝ, < ) = inf({𝑥 ∈ ℕ ∣ (𝑁𝑥 ∧ (𝑀𝑥𝑃𝑥))}, ℝ, < )
51, 4ifbieq2i 4548 . 2 if(((𝑁 = 0 ∨ 𝑀 = 0) ∨ 𝑃 = 0), 0, inf({𝑥 ∈ ℕ ∣ ((𝑁𝑥𝑀𝑥) ∧ 𝑃𝑥)}, ℝ, < )) = if((𝑁 = 0 ∨ (𝑀 = 0 ∨ 𝑃 = 0)), 0, inf({𝑥 ∈ ℕ ∣ (𝑁𝑥 ∧ (𝑀𝑥𝑃𝑥))}, ℝ, < ))
6 lcmcl 16543 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 lcm 𝑀) ∈ ℕ0)
763adant3 1129 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑁 lcm 𝑀) ∈ ℕ0)
87nn0zd 12585 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑁 lcm 𝑀) ∈ ℤ)
9 simp3 1135 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → 𝑃 ∈ ℤ)
10 lcmval 16534 . . . 4 (((𝑁 lcm 𝑀) ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑁 lcm 𝑀) lcm 𝑃) = if(((𝑁 lcm 𝑀) = 0 ∨ 𝑃 = 0), 0, inf({𝑥 ∈ ℕ ∣ ((𝑁 lcm 𝑀) ∥ 𝑥𝑃𝑥)}, ℝ, < )))
118, 9, 10syl2anc 583 . . 3 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑁 lcm 𝑀) lcm 𝑃) = if(((𝑁 lcm 𝑀) = 0 ∨ 𝑃 = 0), 0, inf({𝑥 ∈ ℕ ∣ ((𝑁 lcm 𝑀) ∥ 𝑥𝑃𝑥)}, ℝ, < )))
12 lcmeq0 16542 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑁 lcm 𝑀) = 0 ↔ (𝑁 = 0 ∨ 𝑀 = 0)))
13123adant3 1129 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑁 lcm 𝑀) = 0 ↔ (𝑁 = 0 ∨ 𝑀 = 0)))
1413orbi1d 913 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (((𝑁 lcm 𝑀) = 0 ∨ 𝑃 = 0) ↔ ((𝑁 = 0 ∨ 𝑀 = 0) ∨ 𝑃 = 0)))
1514bicomd 222 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (((𝑁 = 0 ∨ 𝑀 = 0) ∨ 𝑃 = 0) ↔ ((𝑁 lcm 𝑀) = 0 ∨ 𝑃 = 0)))
16 nnz 12580 . . . . . . . . 9 (𝑥 ∈ ℕ → 𝑥 ∈ ℤ)
1716adantl 481 . . . . . . . 8 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ 𝑥 ∈ ℕ) → 𝑥 ∈ ℤ)
18 simp1 1133 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → 𝑁 ∈ ℤ)
1918adantr 480 . . . . . . . 8 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ 𝑥 ∈ ℕ) → 𝑁 ∈ ℤ)
20 simpl2 1189 . . . . . . . 8 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ 𝑥 ∈ ℕ) → 𝑀 ∈ ℤ)
21 lcmdvdsb 16555 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑁𝑥𝑀𝑥) ↔ (𝑁 lcm 𝑀) ∥ 𝑥))
2217, 19, 20, 21syl3anc 1368 . . . . . . 7 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ 𝑥 ∈ ℕ) → ((𝑁𝑥𝑀𝑥) ↔ (𝑁 lcm 𝑀) ∥ 𝑥))
2322anbi1d 629 . . . . . 6 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ 𝑥 ∈ ℕ) → (((𝑁𝑥𝑀𝑥) ∧ 𝑃𝑥) ↔ ((𝑁 lcm 𝑀) ∥ 𝑥𝑃𝑥)))
2423rabbidva 3433 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → {𝑥 ∈ ℕ ∣ ((𝑁𝑥𝑀𝑥) ∧ 𝑃𝑥)} = {𝑥 ∈ ℕ ∣ ((𝑁 lcm 𝑀) ∥ 𝑥𝑃𝑥)})
2524infeq1d 9471 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → inf({𝑥 ∈ ℕ ∣ ((𝑁𝑥𝑀𝑥) ∧ 𝑃𝑥)}, ℝ, < ) = inf({𝑥 ∈ ℕ ∣ ((𝑁 lcm 𝑀) ∥ 𝑥𝑃𝑥)}, ℝ, < ))
2615, 25ifbieq2d 4549 . . 3 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → if(((𝑁 = 0 ∨ 𝑀 = 0) ∨ 𝑃 = 0), 0, inf({𝑥 ∈ ℕ ∣ ((𝑁𝑥𝑀𝑥) ∧ 𝑃𝑥)}, ℝ, < )) = if(((𝑁 lcm 𝑀) = 0 ∨ 𝑃 = 0), 0, inf({𝑥 ∈ ℕ ∣ ((𝑁 lcm 𝑀) ∥ 𝑥𝑃𝑥)}, ℝ, < )))
2711, 26eqtr4d 2769 . 2 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑁 lcm 𝑀) lcm 𝑃) = if(((𝑁 = 0 ∨ 𝑀 = 0) ∨ 𝑃 = 0), 0, inf({𝑥 ∈ ℕ ∣ ((𝑁𝑥𝑀𝑥) ∧ 𝑃𝑥)}, ℝ, < )))
28 lcmcl 16543 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑀 lcm 𝑃) ∈ ℕ0)
29283adant1 1127 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑀 lcm 𝑃) ∈ ℕ0)
3029nn0zd 12585 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑀 lcm 𝑃) ∈ ℤ)
31 lcmval 16534 . . . 4 ((𝑁 ∈ ℤ ∧ (𝑀 lcm 𝑃) ∈ ℤ) → (𝑁 lcm (𝑀 lcm 𝑃)) = if((𝑁 = 0 ∨ (𝑀 lcm 𝑃) = 0), 0, inf({𝑥 ∈ ℕ ∣ (𝑁𝑥 ∧ (𝑀 lcm 𝑃) ∥ 𝑥)}, ℝ, < )))
3218, 30, 31syl2anc 583 . . 3 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑁 lcm (𝑀 lcm 𝑃)) = if((𝑁 = 0 ∨ (𝑀 lcm 𝑃) = 0), 0, inf({𝑥 ∈ ℕ ∣ (𝑁𝑥 ∧ (𝑀 lcm 𝑃) ∥ 𝑥)}, ℝ, < )))
33 lcmeq0 16542 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑀 lcm 𝑃) = 0 ↔ (𝑀 = 0 ∨ 𝑃 = 0)))
34333adant1 1127 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑀 lcm 𝑃) = 0 ↔ (𝑀 = 0 ∨ 𝑃 = 0)))
3534orbi2d 912 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑁 = 0 ∨ (𝑀 lcm 𝑃) = 0) ↔ (𝑁 = 0 ∨ (𝑀 = 0 ∨ 𝑃 = 0))))
3635bicomd 222 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑁 = 0 ∨ (𝑀 = 0 ∨ 𝑃 = 0)) ↔ (𝑁 = 0 ∨ (𝑀 lcm 𝑃) = 0)))
379adantr 480 . . . . . . . 8 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ 𝑥 ∈ ℕ) → 𝑃 ∈ ℤ)
38 lcmdvdsb 16555 . . . . . . . 8 ((𝑥 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑀𝑥𝑃𝑥) ↔ (𝑀 lcm 𝑃) ∥ 𝑥))
3917, 20, 37, 38syl3anc 1368 . . . . . . 7 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ 𝑥 ∈ ℕ) → ((𝑀𝑥𝑃𝑥) ↔ (𝑀 lcm 𝑃) ∥ 𝑥))
4039anbi2d 628 . . . . . 6 (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ 𝑥 ∈ ℕ) → ((𝑁𝑥 ∧ (𝑀𝑥𝑃𝑥)) ↔ (𝑁𝑥 ∧ (𝑀 lcm 𝑃) ∥ 𝑥)))
4140rabbidva 3433 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → {𝑥 ∈ ℕ ∣ (𝑁𝑥 ∧ (𝑀𝑥𝑃𝑥))} = {𝑥 ∈ ℕ ∣ (𝑁𝑥 ∧ (𝑀 lcm 𝑃) ∥ 𝑥)})
4241infeq1d 9471 . . . 4 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → inf({𝑥 ∈ ℕ ∣ (𝑁𝑥 ∧ (𝑀𝑥𝑃𝑥))}, ℝ, < ) = inf({𝑥 ∈ ℕ ∣ (𝑁𝑥 ∧ (𝑀 lcm 𝑃) ∥ 𝑥)}, ℝ, < ))
4336, 42ifbieq2d 4549 . . 3 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → if((𝑁 = 0 ∨ (𝑀 = 0 ∨ 𝑃 = 0)), 0, inf({𝑥 ∈ ℕ ∣ (𝑁𝑥 ∧ (𝑀𝑥𝑃𝑥))}, ℝ, < )) = if((𝑁 = 0 ∨ (𝑀 lcm 𝑃) = 0), 0, inf({𝑥 ∈ ℕ ∣ (𝑁𝑥 ∧ (𝑀 lcm 𝑃) ∥ 𝑥)}, ℝ, < )))
4432, 43eqtr4d 2769 . 2 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑁 lcm (𝑀 lcm 𝑃)) = if((𝑁 = 0 ∨ (𝑀 = 0 ∨ 𝑃 = 0)), 0, inf({𝑥 ∈ ℕ ∣ (𝑁𝑥 ∧ (𝑀𝑥𝑃𝑥))}, ℝ, < )))
455, 27, 443eqtr4a 2792 1 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑁 lcm 𝑀) lcm 𝑃) = (𝑁 lcm (𝑀 lcm 𝑃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wo 844  w3a 1084   = wceq 1533  wcel 2098  {crab 3426  ifcif 4523   class class class wbr 5141  (class class class)co 7404  infcinf 9435  cr 11108  0cc0 11109   < clt 11249  cn 12213  0cn0 12473  cz 12559  cdvds 16202   lcm clcm 16530
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7721  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186  ax-pre-sup 11187
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ne 2935  df-nel 3041  df-ral 3056  df-rex 3065  df-rmo 3370  df-reu 3371  df-rab 3427  df-v 3470  df-sbc 3773  df-csb 3889  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-pss 3962  df-nul 4318  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4992  df-br 5142  df-opab 5204  df-mpt 5225  df-tr 5259  df-id 5567  df-eprel 5573  df-po 5581  df-so 5582  df-fr 5624  df-we 5626  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-pred 6293  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6488  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7360  df-ov 7407  df-oprab 7408  df-mpo 7409  df-om 7852  df-2nd 7972  df-frecs 8264  df-wrecs 8295  df-recs 8369  df-rdg 8408  df-er 8702  df-en 8939  df-dom 8940  df-sdom 8941  df-sup 9436  df-inf 9437  df-pnf 11251  df-mnf 11252  df-xr 11253  df-ltxr 11254  df-le 11255  df-sub 11447  df-neg 11448  df-div 11873  df-nn 12214  df-2 12276  df-3 12277  df-n0 12474  df-z 12560  df-uz 12824  df-rp 12978  df-fl 13760  df-mod 13838  df-seq 13970  df-exp 14031  df-cj 15050  df-re 15051  df-im 15052  df-sqrt 15186  df-abs 15187  df-dvds 16203  df-gcd 16441  df-lcm 16532
This theorem is referenced by:  lcmfunsnlem2lem2  16581  lcmfun  16587
  Copyright terms: Public domain W3C validator