| Step | Hyp | Ref
| Expression |
| 1 | | orass 921 |
. . 3
⊢ (((𝑁 = 0 ∨ 𝑀 = 0) ∨ 𝑃 = 0) ↔ (𝑁 = 0 ∨ (𝑀 = 0 ∨ 𝑃 = 0))) |
| 2 | | anass 468 |
. . . . 5
⊢ (((𝑁 ∥ 𝑥 ∧ 𝑀 ∥ 𝑥) ∧ 𝑃 ∥ 𝑥) ↔ (𝑁 ∥ 𝑥 ∧ (𝑀 ∥ 𝑥 ∧ 𝑃 ∥ 𝑥))) |
| 3 | 2 | rabbii 3426 |
. . . 4
⊢ {𝑥 ∈ ℕ ∣ ((𝑁 ∥ 𝑥 ∧ 𝑀 ∥ 𝑥) ∧ 𝑃 ∥ 𝑥)} = {𝑥 ∈ ℕ ∣ (𝑁 ∥ 𝑥 ∧ (𝑀 ∥ 𝑥 ∧ 𝑃 ∥ 𝑥))} |
| 4 | 3 | infeq1i 9501 |
. . 3
⊢
inf({𝑥 ∈
ℕ ∣ ((𝑁 ∥
𝑥 ∧ 𝑀 ∥ 𝑥) ∧ 𝑃 ∥ 𝑥)}, ℝ, < ) = inf({𝑥 ∈ ℕ ∣ (𝑁 ∥ 𝑥 ∧ (𝑀 ∥ 𝑥 ∧ 𝑃 ∥ 𝑥))}, ℝ, < ) |
| 5 | 1, 4 | ifbieq2i 4533 |
. 2
⊢
if(((𝑁 = 0 ∨
𝑀 = 0) ∨ 𝑃 = 0), 0, inf({𝑥 ∈ ℕ ∣ ((𝑁 ∥ 𝑥 ∧ 𝑀 ∥ 𝑥) ∧ 𝑃 ∥ 𝑥)}, ℝ, < )) = if((𝑁 = 0 ∨ (𝑀 = 0 ∨ 𝑃 = 0)), 0, inf({𝑥 ∈ ℕ ∣ (𝑁 ∥ 𝑥 ∧ (𝑀 ∥ 𝑥 ∧ 𝑃 ∥ 𝑥))}, ℝ, < )) |
| 6 | | lcmcl 16621 |
. . . . . 6
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁 lcm 𝑀) ∈
ℕ0) |
| 7 | 6 | 3adant3 1132 |
. . . . 5
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑁 lcm 𝑀) ∈
ℕ0) |
| 8 | 7 | nn0zd 12623 |
. . . 4
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑁 lcm 𝑀) ∈ ℤ) |
| 9 | | simp3 1138 |
. . . 4
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → 𝑃 ∈
ℤ) |
| 10 | | lcmval 16612 |
. . . 4
⊢ (((𝑁 lcm 𝑀) ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑁 lcm 𝑀) lcm 𝑃) = if(((𝑁 lcm 𝑀) = 0 ∨ 𝑃 = 0), 0, inf({𝑥 ∈ ℕ ∣ ((𝑁 lcm 𝑀) ∥ 𝑥 ∧ 𝑃 ∥ 𝑥)}, ℝ, < ))) |
| 11 | 8, 9, 10 | syl2anc 584 |
. . 3
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑁 lcm 𝑀) lcm 𝑃) = if(((𝑁 lcm 𝑀) = 0 ∨ 𝑃 = 0), 0, inf({𝑥 ∈ ℕ ∣ ((𝑁 lcm 𝑀) ∥ 𝑥 ∧ 𝑃 ∥ 𝑥)}, ℝ, < ))) |
| 12 | | lcmeq0 16620 |
. . . . . . 7
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑁 lcm 𝑀) = 0 ↔ (𝑁 = 0 ∨ 𝑀 = 0))) |
| 13 | 12 | 3adant3 1132 |
. . . . . 6
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑁 lcm 𝑀) = 0 ↔ (𝑁 = 0 ∨ 𝑀 = 0))) |
| 14 | 13 | orbi1d 916 |
. . . . 5
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (((𝑁 lcm 𝑀) = 0 ∨ 𝑃 = 0) ↔ ((𝑁 = 0 ∨ 𝑀 = 0) ∨ 𝑃 = 0))) |
| 15 | 14 | bicomd 223 |
. . . 4
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (((𝑁 = 0 ∨ 𝑀 = 0) ∨ 𝑃 = 0) ↔ ((𝑁 lcm 𝑀) = 0 ∨ 𝑃 = 0))) |
| 16 | | nnz 12618 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℕ → 𝑥 ∈
ℤ) |
| 17 | 16 | adantl 481 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ 𝑥 ∈ ℕ) → 𝑥 ∈
ℤ) |
| 18 | | simp1 1136 |
. . . . . . . . 9
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → 𝑁 ∈
ℤ) |
| 19 | 18 | adantr 480 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ 𝑥 ∈ ℕ) → 𝑁 ∈
ℤ) |
| 20 | | simpl2 1192 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ 𝑥 ∈ ℕ) → 𝑀 ∈
ℤ) |
| 21 | | lcmdvdsb 16633 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑁 ∥ 𝑥 ∧ 𝑀 ∥ 𝑥) ↔ (𝑁 lcm 𝑀) ∥ 𝑥)) |
| 22 | 17, 19, 20, 21 | syl3anc 1372 |
. . . . . . 7
⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ 𝑥 ∈ ℕ) → ((𝑁 ∥ 𝑥 ∧ 𝑀 ∥ 𝑥) ↔ (𝑁 lcm 𝑀) ∥ 𝑥)) |
| 23 | 22 | anbi1d 631 |
. . . . . 6
⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ 𝑥 ∈ ℕ) → (((𝑁 ∥ 𝑥 ∧ 𝑀 ∥ 𝑥) ∧ 𝑃 ∥ 𝑥) ↔ ((𝑁 lcm 𝑀) ∥ 𝑥 ∧ 𝑃 ∥ 𝑥))) |
| 24 | 23 | rabbidva 3427 |
. . . . 5
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → {𝑥 ∈ ℕ ∣ ((𝑁 ∥ 𝑥 ∧ 𝑀 ∥ 𝑥) ∧ 𝑃 ∥ 𝑥)} = {𝑥 ∈ ℕ ∣ ((𝑁 lcm 𝑀) ∥ 𝑥 ∧ 𝑃 ∥ 𝑥)}) |
| 25 | 24 | infeq1d 9500 |
. . . 4
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) →
inf({𝑥 ∈ ℕ
∣ ((𝑁 ∥ 𝑥 ∧ 𝑀 ∥ 𝑥) ∧ 𝑃 ∥ 𝑥)}, ℝ, < ) = inf({𝑥 ∈ ℕ ∣ ((𝑁 lcm 𝑀) ∥ 𝑥 ∧ 𝑃 ∥ 𝑥)}, ℝ, < )) |
| 26 | 15, 25 | ifbieq2d 4534 |
. . 3
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) →
if(((𝑁 = 0 ∨ 𝑀 = 0) ∨ 𝑃 = 0), 0, inf({𝑥 ∈ ℕ ∣ ((𝑁 ∥ 𝑥 ∧ 𝑀 ∥ 𝑥) ∧ 𝑃 ∥ 𝑥)}, ℝ, < )) = if(((𝑁 lcm 𝑀) = 0 ∨ 𝑃 = 0), 0, inf({𝑥 ∈ ℕ ∣ ((𝑁 lcm 𝑀) ∥ 𝑥 ∧ 𝑃 ∥ 𝑥)}, ℝ, < ))) |
| 27 | 11, 26 | eqtr4d 2772 |
. 2
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑁 lcm 𝑀) lcm 𝑃) = if(((𝑁 = 0 ∨ 𝑀 = 0) ∨ 𝑃 = 0), 0, inf({𝑥 ∈ ℕ ∣ ((𝑁 ∥ 𝑥 ∧ 𝑀 ∥ 𝑥) ∧ 𝑃 ∥ 𝑥)}, ℝ, < ))) |
| 28 | | lcmcl 16621 |
. . . . . 6
⊢ ((𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑀 lcm 𝑃) ∈
ℕ0) |
| 29 | 28 | 3adant1 1130 |
. . . . 5
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑀 lcm 𝑃) ∈
ℕ0) |
| 30 | 29 | nn0zd 12623 |
. . . 4
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑀 lcm 𝑃) ∈ ℤ) |
| 31 | | lcmval 16612 |
. . . 4
⊢ ((𝑁 ∈ ℤ ∧ (𝑀 lcm 𝑃) ∈ ℤ) → (𝑁 lcm (𝑀 lcm 𝑃)) = if((𝑁 = 0 ∨ (𝑀 lcm 𝑃) = 0), 0, inf({𝑥 ∈ ℕ ∣ (𝑁 ∥ 𝑥 ∧ (𝑀 lcm 𝑃) ∥ 𝑥)}, ℝ, < ))) |
| 32 | 18, 30, 31 | syl2anc 584 |
. . 3
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑁 lcm (𝑀 lcm 𝑃)) = if((𝑁 = 0 ∨ (𝑀 lcm 𝑃) = 0), 0, inf({𝑥 ∈ ℕ ∣ (𝑁 ∥ 𝑥 ∧ (𝑀 lcm 𝑃) ∥ 𝑥)}, ℝ, < ))) |
| 33 | | lcmeq0 16620 |
. . . . . . 7
⊢ ((𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑀 lcm 𝑃) = 0 ↔ (𝑀 = 0 ∨ 𝑃 = 0))) |
| 34 | 33 | 3adant1 1130 |
. . . . . 6
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑀 lcm 𝑃) = 0 ↔ (𝑀 = 0 ∨ 𝑃 = 0))) |
| 35 | 34 | orbi2d 915 |
. . . . 5
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑁 = 0 ∨ (𝑀 lcm 𝑃) = 0) ↔ (𝑁 = 0 ∨ (𝑀 = 0 ∨ 𝑃 = 0)))) |
| 36 | 35 | bicomd 223 |
. . . 4
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑁 = 0 ∨ (𝑀 = 0 ∨ 𝑃 = 0)) ↔ (𝑁 = 0 ∨ (𝑀 lcm 𝑃) = 0))) |
| 37 | 9 | adantr 480 |
. . . . . . . 8
⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ 𝑥 ∈ ℕ) → 𝑃 ∈
ℤ) |
| 38 | | lcmdvdsb 16633 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑀 ∥ 𝑥 ∧ 𝑃 ∥ 𝑥) ↔ (𝑀 lcm 𝑃) ∥ 𝑥)) |
| 39 | 17, 20, 37, 38 | syl3anc 1372 |
. . . . . . 7
⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ 𝑥 ∈ ℕ) → ((𝑀 ∥ 𝑥 ∧ 𝑃 ∥ 𝑥) ↔ (𝑀 lcm 𝑃) ∥ 𝑥)) |
| 40 | 39 | anbi2d 630 |
. . . . . 6
⊢ (((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) ∧ 𝑥 ∈ ℕ) → ((𝑁 ∥ 𝑥 ∧ (𝑀 ∥ 𝑥 ∧ 𝑃 ∥ 𝑥)) ↔ (𝑁 ∥ 𝑥 ∧ (𝑀 lcm 𝑃) ∥ 𝑥))) |
| 41 | 40 | rabbidva 3427 |
. . . . 5
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → {𝑥 ∈ ℕ ∣ (𝑁 ∥ 𝑥 ∧ (𝑀 ∥ 𝑥 ∧ 𝑃 ∥ 𝑥))} = {𝑥 ∈ ℕ ∣ (𝑁 ∥ 𝑥 ∧ (𝑀 lcm 𝑃) ∥ 𝑥)}) |
| 42 | 41 | infeq1d 9500 |
. . . 4
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) →
inf({𝑥 ∈ ℕ
∣ (𝑁 ∥ 𝑥 ∧ (𝑀 ∥ 𝑥 ∧ 𝑃 ∥ 𝑥))}, ℝ, < ) = inf({𝑥 ∈ ℕ ∣ (𝑁 ∥ 𝑥 ∧ (𝑀 lcm 𝑃) ∥ 𝑥)}, ℝ, < )) |
| 43 | 36, 42 | ifbieq2d 4534 |
. . 3
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) →
if((𝑁 = 0 ∨ (𝑀 = 0 ∨ 𝑃 = 0)), 0, inf({𝑥 ∈ ℕ ∣ (𝑁 ∥ 𝑥 ∧ (𝑀 ∥ 𝑥 ∧ 𝑃 ∥ 𝑥))}, ℝ, < )) = if((𝑁 = 0 ∨ (𝑀 lcm 𝑃) = 0), 0, inf({𝑥 ∈ ℕ ∣ (𝑁 ∥ 𝑥 ∧ (𝑀 lcm 𝑃) ∥ 𝑥)}, ℝ, < ))) |
| 44 | 32, 43 | eqtr4d 2772 |
. 2
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → (𝑁 lcm (𝑀 lcm 𝑃)) = if((𝑁 = 0 ∨ (𝑀 = 0 ∨ 𝑃 = 0)), 0, inf({𝑥 ∈ ℕ ∣ (𝑁 ∥ 𝑥 ∧ (𝑀 ∥ 𝑥 ∧ 𝑃 ∥ 𝑥))}, ℝ, < ))) |
| 45 | 5, 27, 44 | 3eqtr4a 2795 |
1
⊢ ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑃 ∈ ℤ) → ((𝑁 lcm 𝑀) lcm 𝑃) = (𝑁 lcm (𝑀 lcm 𝑃))) |