Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oteqex2 | Structured version Visualization version GIF version |
Description: Equivalence of existence implied by equality of ordered triples. (Contributed by NM, 26-Apr-2015.) |
Ref | Expression |
---|---|
oteqex2 | ⊢ (〈〈𝐴, 𝐵〉, 𝐶〉 = 〈〈𝑅, 𝑆〉, 𝑇〉 → (𝐶 ∈ V ↔ 𝑇 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeqex 5430 | . 2 ⊢ (〈〈𝐴, 𝐵〉, 𝐶〉 = 〈〈𝑅, 𝑆〉, 𝑇〉 → ((〈𝐴, 𝐵〉 ∈ V ∧ 𝐶 ∈ V) ↔ (〈𝑅, 𝑆〉 ∈ V ∧ 𝑇 ∈ V))) | |
2 | opex 5397 | . . 3 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
3 | 2 | biantrur 531 | . 2 ⊢ (𝐶 ∈ V ↔ (〈𝐴, 𝐵〉 ∈ V ∧ 𝐶 ∈ V)) |
4 | opex 5397 | . . 3 ⊢ 〈𝑅, 𝑆〉 ∈ V | |
5 | 4 | biantrur 531 | . 2 ⊢ (𝑇 ∈ V ↔ (〈𝑅, 𝑆〉 ∈ V ∧ 𝑇 ∈ V)) |
6 | 1, 3, 5 | 3bitr4g 313 | 1 ⊢ (〈〈𝐴, 𝐵〉, 𝐶〉 = 〈〈𝑅, 𝑆〉, 𝑇〉 → (𝐶 ∈ V ↔ 𝑇 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1540 ∈ wcel 2105 Vcvv 3440 〈cop 4576 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 ax-sep 5237 ax-nul 5244 ax-pr 5366 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2941 df-v 3442 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4471 df-sn 4571 df-pr 4573 df-op 4577 |
This theorem is referenced by: oteqex 5432 |
Copyright terms: Public domain | W3C validator |