MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  oteqex2 Structured version   Visualization version   GIF version

Theorem oteqex2 5518
Description: Equivalence of existence implied by equality of ordered triples. (Contributed by NM, 26-Apr-2015.)
Assertion
Ref Expression
oteqex2 (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ = ⟨⟨𝑅, 𝑆⟩, 𝑇⟩ → (𝐶 ∈ V ↔ 𝑇 ∈ V))

Proof of Theorem oteqex2
StepHypRef Expression
1 opeqex 5517 . 2 (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ = ⟨⟨𝑅, 𝑆⟩, 𝑇⟩ → ((⟨𝐴, 𝐵⟩ ∈ V ∧ 𝐶 ∈ V) ↔ (⟨𝑅, 𝑆⟩ ∈ V ∧ 𝑇 ∈ V)))
2 opex 5484 . . 3 𝐴, 𝐵⟩ ∈ V
32biantrur 530 . 2 (𝐶 ∈ V ↔ (⟨𝐴, 𝐵⟩ ∈ V ∧ 𝐶 ∈ V))
4 opex 5484 . . 3 𝑅, 𝑆⟩ ∈ V
54biantrur 530 . 2 (𝑇 ∈ V ↔ (⟨𝑅, 𝑆⟩ ∈ V ∧ 𝑇 ∈ V))
61, 3, 53bitr4g 314 1 (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ = ⟨⟨𝑅, 𝑆⟩, 𝑇⟩ → (𝐶 ∈ V ↔ 𝑇 ∈ V))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  cop 4654
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ne 2947  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655
This theorem is referenced by:  oteqex  5519
  Copyright terms: Public domain W3C validator