Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oteqex2 | Structured version Visualization version GIF version |
Description: Equivalence of existence implied by equality of ordered triples. (Contributed by NM, 26-Apr-2015.) |
Ref | Expression |
---|---|
oteqex2 | ⊢ (〈〈𝐴, 𝐵〉, 𝐶〉 = 〈〈𝑅, 𝑆〉, 𝑇〉 → (𝐶 ∈ V ↔ 𝑇 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeqex 5406 | . 2 ⊢ (〈〈𝐴, 𝐵〉, 𝐶〉 = 〈〈𝑅, 𝑆〉, 𝑇〉 → ((〈𝐴, 𝐵〉 ∈ V ∧ 𝐶 ∈ V) ↔ (〈𝑅, 𝑆〉 ∈ V ∧ 𝑇 ∈ V))) | |
2 | opex 5373 | . . 3 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
3 | 2 | biantrur 530 | . 2 ⊢ (𝐶 ∈ V ↔ (〈𝐴, 𝐵〉 ∈ V ∧ 𝐶 ∈ V)) |
4 | opex 5373 | . . 3 ⊢ 〈𝑅, 𝑆〉 ∈ V | |
5 | 4 | biantrur 530 | . 2 ⊢ (𝑇 ∈ V ↔ (〈𝑅, 𝑆〉 ∈ V ∧ 𝑇 ∈ V)) |
6 | 1, 3, 5 | 3bitr4g 313 | 1 ⊢ (〈〈𝐴, 𝐵〉, 𝐶〉 = 〈〈𝑅, 𝑆〉, 𝑇〉 → (𝐶 ∈ V ↔ 𝑇 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 〈cop 4564 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-ne 2943 df-v 3424 df-dif 3886 df-un 3888 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 |
This theorem is referenced by: oteqex 5408 |
Copyright terms: Public domain | W3C validator |