![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > oteqex2 | Structured version Visualization version GIF version |
Description: Equivalence of existence implied by equality of ordered triples. (Contributed by NM, 26-Apr-2015.) |
Ref | Expression |
---|---|
oteqex2 | ⊢ (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ = ⟨⟨𝑅, 𝑆⟩, 𝑇⟩ → (𝐶 ∈ V ↔ 𝑇 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeqex 5504 | . 2 ⊢ (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ = ⟨⟨𝑅, 𝑆⟩, 𝑇⟩ → ((⟨𝐴, 𝐵⟩ ∈ V ∧ 𝐶 ∈ V) ↔ (⟨𝑅, 𝑆⟩ ∈ V ∧ 𝑇 ∈ V))) | |
2 | opex 5470 | . . 3 ⊢ ⟨𝐴, 𝐵⟩ ∈ V | |
3 | 2 | biantrur 529 | . 2 ⊢ (𝐶 ∈ V ↔ (⟨𝐴, 𝐵⟩ ∈ V ∧ 𝐶 ∈ V)) |
4 | opex 5470 | . . 3 ⊢ ⟨𝑅, 𝑆⟩ ∈ V | |
5 | 4 | biantrur 529 | . 2 ⊢ (𝑇 ∈ V ↔ (⟨𝑅, 𝑆⟩ ∈ V ∧ 𝑇 ∈ V)) |
6 | 1, 3, 5 | 3bitr4g 313 | 1 ⊢ (⟨⟨𝐴, 𝐵⟩, 𝐶⟩ = ⟨⟨𝑅, 𝑆⟩, 𝑇⟩ → (𝐶 ∈ V ↔ 𝑇 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 Vcvv 3473 ⟨cop 4638 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2706 df-cleq 2720 df-clel 2806 df-ne 2938 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 |
This theorem is referenced by: oteqex 5506 |
Copyright terms: Public domain | W3C validator |