Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > oteqex2 | Structured version Visualization version GIF version |
Description: Equivalence of existence implied by equality of ordered triples. (Contributed by NM, 26-Apr-2015.) |
Ref | Expression |
---|---|
oteqex2 | ⊢ (〈〈𝐴, 𝐵〉, 𝐶〉 = 〈〈𝑅, 𝑆〉, 𝑇〉 → (𝐶 ∈ V ↔ 𝑇 ∈ V)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opeqex 5412 | . 2 ⊢ (〈〈𝐴, 𝐵〉, 𝐶〉 = 〈〈𝑅, 𝑆〉, 𝑇〉 → ((〈𝐴, 𝐵〉 ∈ V ∧ 𝐶 ∈ V) ↔ (〈𝑅, 𝑆〉 ∈ V ∧ 𝑇 ∈ V))) | |
2 | opex 5379 | . . 3 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
3 | 2 | biantrur 531 | . 2 ⊢ (𝐶 ∈ V ↔ (〈𝐴, 𝐵〉 ∈ V ∧ 𝐶 ∈ V)) |
4 | opex 5379 | . . 3 ⊢ 〈𝑅, 𝑆〉 ∈ V | |
5 | 4 | biantrur 531 | . 2 ⊢ (𝑇 ∈ V ↔ (〈𝑅, 𝑆〉 ∈ V ∧ 𝑇 ∈ V)) |
6 | 1, 3, 5 | 3bitr4g 314 | 1 ⊢ (〈〈𝐴, 𝐵〉, 𝐶〉 = 〈〈𝑅, 𝑆〉, 𝑇〉 → (𝐶 ∈ V ↔ 𝑇 ∈ V)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3432 〈cop 4567 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-v 3434 df-dif 3890 df-un 3892 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 |
This theorem is referenced by: oteqex 5414 |
Copyright terms: Public domain | W3C validator |