![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opeqex | Structured version Visualization version GIF version |
Description: Equivalence of existence implied by equality of ordered pairs. (Contributed by NM, 28-May-2008.) |
Ref | Expression |
---|---|
opeqex | ⊢ (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐶 ∈ V ∧ 𝐷 ∈ V))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neeq1 3004 | . 2 ⊢ (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → (⟨𝐴, 𝐵⟩ ≠ ∅ ↔ ⟨𝐶, 𝐷⟩ ≠ ∅)) | |
2 | opnz 5474 | . 2 ⊢ (⟨𝐴, 𝐵⟩ ≠ ∅ ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
3 | opnz 5474 | . 2 ⊢ (⟨𝐶, 𝐷⟩ ≠ ∅ ↔ (𝐶 ∈ V ∧ 𝐷 ∈ V)) | |
4 | 1, 2, 3 | 3bitr3g 313 | 1 ⊢ (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐶 ∈ V ∧ 𝐷 ∈ V))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ≠ wne 2941 Vcvv 3475 ∅c0 4323 ⟨cop 4635 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 |
This theorem is referenced by: oteqex2 5500 oteqex 5501 |
Copyright terms: Public domain | W3C validator |