Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  opeqex Structured version   Visualization version   GIF version

Theorem opeqex 5356
 Description: Equivalence of existence implied by equality of ordered pairs. (Contributed by NM, 28-May-2008.)
Assertion
Ref Expression
opeqex (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐶 ∈ V ∧ 𝐷 ∈ V)))

Proof of Theorem opeqex
StepHypRef Expression
1 neeq1 3052 . 2 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → (⟨𝐴, 𝐵⟩ ≠ ∅ ↔ ⟨𝐶, 𝐷⟩ ≠ ∅))
2 opnz 5333 . 2 (⟨𝐴, 𝐵⟩ ≠ ∅ ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V))
3 opnz 5333 . 2 (⟨𝐶, 𝐷⟩ ≠ ∅ ↔ (𝐶 ∈ V ∧ 𝐷 ∈ V))
41, 2, 33bitr3g 316 1 (⟨𝐴, 𝐵⟩ = ⟨𝐶, 𝐷⟩ → ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐶 ∈ V ∧ 𝐷 ∈ V)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   = wceq 1538   ∈ wcel 2112   ≠ wne 2990  Vcvv 3444  ∅c0 4246  ⟨cop 4534 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-sep 5170  ax-nul 5177  ax-pr 5298 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-v 3446  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-nul 4247  df-if 4429  df-sn 4529  df-pr 4531  df-op 4535 This theorem is referenced by:  oteqex2  5357  oteqex  5358  epelgOLD  5435
 Copyright terms: Public domain W3C validator