Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > opeqex | Structured version Visualization version GIF version |
Description: Equivalence of existence implied by equality of ordered pairs. (Contributed by NM, 28-May-2008.) |
Ref | Expression |
---|---|
opeqex | ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐶 ∈ V ∧ 𝐷 ∈ V))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neeq1 3004 | . 2 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → (〈𝐴, 𝐵〉 ≠ ∅ ↔ 〈𝐶, 𝐷〉 ≠ ∅)) | |
2 | opnz 5423 | . 2 ⊢ (〈𝐴, 𝐵〉 ≠ ∅ ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
3 | opnz 5423 | . 2 ⊢ (〈𝐶, 𝐷〉 ≠ ∅ ↔ (𝐶 ∈ V ∧ 𝐷 ∈ V)) | |
4 | 1, 2, 3 | 3bitr3g 313 | 1 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐶 ∈ V ∧ 𝐷 ∈ V))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1541 ∈ wcel 2106 ≠ wne 2941 Vcvv 3442 ∅c0 4274 〈cop 4584 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2708 ax-sep 5248 ax-nul 5255 ax-pr 5377 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2715 df-cleq 2729 df-clel 2815 df-ne 2942 df-v 3444 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4275 df-if 4479 df-sn 4579 df-pr 4581 df-op 4585 |
This theorem is referenced by: oteqex2 5448 oteqex 5449 |
Copyright terms: Public domain | W3C validator |