![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > opeqex | Structured version Visualization version GIF version |
Description: Equivalence of existence implied by equality of ordered pairs. (Contributed by NM, 28-May-2008.) |
Ref | Expression |
---|---|
opeqex | ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐶 ∈ V ∧ 𝐷 ∈ V))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | neeq1 2992 | . 2 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → (〈𝐴, 𝐵〉 ≠ ∅ ↔ 〈𝐶, 𝐷〉 ≠ ∅)) | |
2 | opnz 5475 | . 2 ⊢ (〈𝐴, 𝐵〉 ≠ ∅ ↔ (𝐴 ∈ V ∧ 𝐵 ∈ V)) | |
3 | opnz 5475 | . 2 ⊢ (〈𝐶, 𝐷〉 ≠ ∅ ↔ (𝐶 ∈ V ∧ 𝐷 ∈ V)) | |
4 | 1, 2, 3 | 3bitr3g 312 | 1 ⊢ (〈𝐴, 𝐵〉 = 〈𝐶, 𝐷〉 → ((𝐴 ∈ V ∧ 𝐵 ∈ V) ↔ (𝐶 ∈ V ∧ 𝐷 ∈ V))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ≠ wne 2929 Vcvv 3461 ∅c0 4322 〈cop 4636 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-clab 2703 df-cleq 2717 df-clel 2802 df-ne 2930 df-v 3463 df-dif 3947 df-un 3949 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 |
This theorem is referenced by: oteqex2 5501 oteqex 5502 |
Copyright terms: Public domain | W3C validator |