Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  p0exALT Structured version   Visualization version   GIF version

Theorem p0exALT 5181
 Description: Alternate proof of p0ex 5180 which is quite different and longer if snexALT 5179 is expanded. (Contributed by NM, 23-Dec-1993.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
p0exALT {∅} ∈ V

Proof of Theorem p0exALT
StepHypRef Expression
1 snexALT 5179 1 {∅} ∈ V
 Colors of variables: wff setvar class Syntax hints:   ∈ wcel 2081  Vcvv 3437  ∅c0 4215  {csn 4476 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-ext 2769  ax-sep 5099  ax-nul 5106  ax-pow 5162 This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-v 3439  df-dif 3866  df-in 3870  df-ss 3878  df-nul 4216  df-pw 4459  df-sn 4477 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator