![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > snexALT | Structured version Visualization version GIF version |
Description: Alternate proof of snex 5431 using Power Set (ax-pow 5363) instead of Pairing (ax-pr 5427). Unlike in the proof of zfpair 5419, Replacement (ax-rep 5285) is not needed. (Contributed by NM, 7-Aug-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
snexALT | ⊢ {𝐴} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snsspw 4845 | . . 3 ⊢ {𝐴} ⊆ 𝒫 𝐴 | |
2 | ssexg 5323 | . . 3 ⊢ (({𝐴} ⊆ 𝒫 𝐴 ∧ 𝒫 𝐴 ∈ V) → {𝐴} ∈ V) | |
3 | 1, 2 | mpan 687 | . 2 ⊢ (𝒫 𝐴 ∈ V → {𝐴} ∈ V) |
4 | pwexg 5376 | . . . 4 ⊢ (𝐴 ∈ V → 𝒫 𝐴 ∈ V) | |
5 | 4 | con3i 154 | . . 3 ⊢ (¬ 𝒫 𝐴 ∈ V → ¬ 𝐴 ∈ V) |
6 | snprc 4721 | . . . . 5 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
7 | 6 | biimpi 215 | . . . 4 ⊢ (¬ 𝐴 ∈ V → {𝐴} = ∅) |
8 | 0ex 5307 | . . . 4 ⊢ ∅ ∈ V | |
9 | 7, 8 | eqeltrdi 2840 | . . 3 ⊢ (¬ 𝐴 ∈ V → {𝐴} ∈ V) |
10 | 5, 9 | syl 17 | . 2 ⊢ (¬ 𝒫 𝐴 ∈ V → {𝐴} ∈ V) |
11 | 3, 10 | pm2.61i 182 | 1 ⊢ {𝐴} ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2105 Vcvv 3473 ⊆ wss 3948 ∅c0 4322 𝒫 cpw 4602 {csn 4628 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 ax-sep 5299 ax-nul 5306 ax-pow 5363 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-rab 3432 df-v 3475 df-dif 3951 df-in 3955 df-ss 3965 df-nul 4323 df-pw 4604 df-sn 4629 |
This theorem is referenced by: p0exALT 5383 |
Copyright terms: Public domain | W3C validator |