![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > snexALT | Structured version Visualization version GIF version |
Description: Alternate proof of snex 5451 using Power Set (ax-pow 5383) instead of Pairing (ax-pr 5447). Unlike in the proof of zfpair 5439, Replacement (ax-rep 5303) is not needed. (Contributed by NM, 7-Aug-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
snexALT | ⊢ {𝐴} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snsspw 4869 | . . 3 ⊢ {𝐴} ⊆ 𝒫 𝐴 | |
2 | ssexg 5341 | . . 3 ⊢ (({𝐴} ⊆ 𝒫 𝐴 ∧ 𝒫 𝐴 ∈ V) → {𝐴} ∈ V) | |
3 | 1, 2 | mpan 689 | . 2 ⊢ (𝒫 𝐴 ∈ V → {𝐴} ∈ V) |
4 | pwexg 5396 | . . . 4 ⊢ (𝐴 ∈ V → 𝒫 𝐴 ∈ V) | |
5 | 4 | con3i 154 | . . 3 ⊢ (¬ 𝒫 𝐴 ∈ V → ¬ 𝐴 ∈ V) |
6 | snprc 4742 | . . . . 5 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
7 | 6 | biimpi 216 | . . . 4 ⊢ (¬ 𝐴 ∈ V → {𝐴} = ∅) |
8 | 0ex 5325 | . . . 4 ⊢ ∅ ∈ V | |
9 | 7, 8 | eqeltrdi 2852 | . . 3 ⊢ (¬ 𝐴 ∈ V → {𝐴} ∈ V) |
10 | 5, 9 | syl 17 | . 2 ⊢ (¬ 𝒫 𝐴 ∈ V → {𝐴} ∈ V) |
11 | 3, 10 | pm2.61i 182 | 1 ⊢ {𝐴} ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ⊆ wss 3976 ∅c0 4352 𝒫 cpw 4622 {csn 4648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-rab 3444 df-v 3490 df-dif 3979 df-in 3983 df-ss 3993 df-nul 4353 df-pw 4624 df-sn 4649 |
This theorem is referenced by: p0exALT 5403 |
Copyright terms: Public domain | W3C validator |