Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > snexALT | Structured version Visualization version GIF version |
Description: Alternate proof of snex 5354 using Power Set (ax-pow 5288) instead of Pairing (ax-pr 5352). Unlike in the proof of zfpair 5344, Replacement (ax-rep 5209) is not needed. (Contributed by NM, 7-Aug-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
snexALT | ⊢ {𝐴} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snsspw 4775 | . . 3 ⊢ {𝐴} ⊆ 𝒫 𝐴 | |
2 | ssexg 5247 | . . 3 ⊢ (({𝐴} ⊆ 𝒫 𝐴 ∧ 𝒫 𝐴 ∈ V) → {𝐴} ∈ V) | |
3 | 1, 2 | mpan 687 | . 2 ⊢ (𝒫 𝐴 ∈ V → {𝐴} ∈ V) |
4 | pwexg 5301 | . . . 4 ⊢ (𝐴 ∈ V → 𝒫 𝐴 ∈ V) | |
5 | 4 | con3i 154 | . . 3 ⊢ (¬ 𝒫 𝐴 ∈ V → ¬ 𝐴 ∈ V) |
6 | snprc 4653 | . . . . 5 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
7 | 6 | biimpi 215 | . . . 4 ⊢ (¬ 𝐴 ∈ V → {𝐴} = ∅) |
8 | 0ex 5231 | . . . 4 ⊢ ∅ ∈ V | |
9 | 7, 8 | eqeltrdi 2847 | . . 3 ⊢ (¬ 𝐴 ∈ V → {𝐴} ∈ V) |
10 | 5, 9 | syl 17 | . 2 ⊢ (¬ 𝒫 𝐴 ∈ V → {𝐴} ∈ V) |
11 | 3, 10 | pm2.61i 182 | 1 ⊢ {𝐴} ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ⊆ wss 3887 ∅c0 4256 𝒫 cpw 4533 {csn 4561 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-rab 3073 df-v 3434 df-dif 3890 df-in 3894 df-ss 3904 df-nul 4257 df-pw 4535 df-sn 4562 |
This theorem is referenced by: p0exALT 5308 |
Copyright terms: Public domain | W3C validator |