MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snexALT Structured version   Visualization version   GIF version

Theorem snexALT 5387
Description: Alternate proof of snex 5437 using Power Set (ax-pow 5369) instead of Pairing (ax-pr 5433). Unlike in the proof of zfpair 5425, Replacement (ax-rep 5290) is not needed. (Contributed by NM, 7-Aug-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
snexALT {𝐴} ∈ V

Proof of Theorem snexALT
StepHypRef Expression
1 snsspw 4851 . . 3 {𝐴} ⊆ 𝒫 𝐴
2 ssexg 5328 . . 3 (({𝐴} ⊆ 𝒫 𝐴 ∧ 𝒫 𝐴 ∈ V) → {𝐴} ∈ V)
31, 2mpan 688 . 2 (𝒫 𝐴 ∈ V → {𝐴} ∈ V)
4 pwexg 5382 . . . 4 (𝐴 ∈ V → 𝒫 𝐴 ∈ V)
54con3i 154 . . 3 (¬ 𝒫 𝐴 ∈ V → ¬ 𝐴 ∈ V)
6 snprc 4726 . . . . 5 𝐴 ∈ V ↔ {𝐴} = ∅)
76biimpi 215 . . . 4 𝐴 ∈ V → {𝐴} = ∅)
8 0ex 5312 . . . 4 ∅ ∈ V
97, 8eqeltrdi 2834 . . 3 𝐴 ∈ V → {𝐴} ∈ V)
105, 9syl 17 . 2 (¬ 𝒫 𝐴 ∈ V → {𝐴} ∈ V)
113, 10pm2.61i 182 1 {𝐴} ∈ V
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1534  wcel 2099  Vcvv 3462  wss 3947  c0 4325  𝒫 cpw 4607  {csn 4633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pow 5369
This theorem depends on definitions:  df-bi 206  df-an 395  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-clab 2704  df-cleq 2718  df-clel 2803  df-rab 3420  df-v 3464  df-dif 3950  df-in 3954  df-ss 3964  df-nul 4326  df-pw 4609  df-sn 4634
This theorem is referenced by:  p0exALT  5389
  Copyright terms: Public domain W3C validator