| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snexALT | Structured version Visualization version GIF version | ||
| Description: Alternate proof of snex 5411 using Power Set (ax-pow 5340) instead of Pairing (ax-pr 5407). Unlike in the proof of zfpair 5396, Replacement (ax-rep 5254) is not needed. (Contributed by NM, 7-Aug-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| snexALT | ⊢ {𝐴} ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snsspw 4825 | . . 3 ⊢ {𝐴} ⊆ 𝒫 𝐴 | |
| 2 | ssexg 5298 | . . 3 ⊢ (({𝐴} ⊆ 𝒫 𝐴 ∧ 𝒫 𝐴 ∈ V) → {𝐴} ∈ V) | |
| 3 | 1, 2 | mpan 690 | . 2 ⊢ (𝒫 𝐴 ∈ V → {𝐴} ∈ V) |
| 4 | pwexg 5353 | . . . 4 ⊢ (𝐴 ∈ V → 𝒫 𝐴 ∈ V) | |
| 5 | 4 | con3i 154 | . . 3 ⊢ (¬ 𝒫 𝐴 ∈ V → ¬ 𝐴 ∈ V) |
| 6 | snprc 4698 | . . . . 5 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
| 7 | 6 | biimpi 216 | . . . 4 ⊢ (¬ 𝐴 ∈ V → {𝐴} = ∅) |
| 8 | 0ex 5282 | . . . 4 ⊢ ∅ ∈ V | |
| 9 | 7, 8 | eqeltrdi 2843 | . . 3 ⊢ (¬ 𝐴 ∈ V → {𝐴} ∈ V) |
| 10 | 5, 9 | syl 17 | . 2 ⊢ (¬ 𝒫 𝐴 ∈ V → {𝐴} ∈ V) |
| 11 | 3, 10 | pm2.61i 182 | 1 ⊢ {𝐴} ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 Vcvv 3464 ⊆ wss 3931 ∅c0 4313 𝒫 cpw 4580 {csn 4606 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 df-v 3466 df-dif 3934 df-in 3938 df-ss 3948 df-nul 4314 df-pw 4582 df-sn 4607 |
| This theorem is referenced by: p0exALT 5360 |
| Copyright terms: Public domain | W3C validator |