MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snexALT Structured version   Visualization version   GIF version

Theorem snexALT 5301
Description: Alternate proof of snex 5349 using Power Set (ax-pow 5283) instead of Pairing (ax-pr 5347). Unlike in the proof of zfpair 5339, Replacement (ax-rep 5205) is not needed. (Contributed by NM, 7-Aug-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
snexALT {𝐴} ∈ V

Proof of Theorem snexALT
StepHypRef Expression
1 snsspw 4772 . . 3 {𝐴} ⊆ 𝒫 𝐴
2 ssexg 5242 . . 3 (({𝐴} ⊆ 𝒫 𝐴 ∧ 𝒫 𝐴 ∈ V) → {𝐴} ∈ V)
31, 2mpan 686 . 2 (𝒫 𝐴 ∈ V → {𝐴} ∈ V)
4 pwexg 5296 . . . 4 (𝐴 ∈ V → 𝒫 𝐴 ∈ V)
54con3i 154 . . 3 (¬ 𝒫 𝐴 ∈ V → ¬ 𝐴 ∈ V)
6 snprc 4650 . . . . 5 𝐴 ∈ V ↔ {𝐴} = ∅)
76biimpi 215 . . . 4 𝐴 ∈ V → {𝐴} = ∅)
8 0ex 5226 . . . 4 ∅ ∈ V
97, 8eqeltrdi 2847 . . 3 𝐴 ∈ V → {𝐴} ∈ V)
105, 9syl 17 . 2 (¬ 𝒫 𝐴 ∈ V → {𝐴} ∈ V)
113, 10pm2.61i 182 1 {𝐴} ∈ V
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1539  wcel 2108  Vcvv 3422  wss 3883  c0 4253  𝒫 cpw 4530  {csn 4558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-rab 3072  df-v 3424  df-dif 3886  df-in 3890  df-ss 3900  df-nul 4254  df-pw 4532  df-sn 4559
This theorem is referenced by:  p0exALT  5303
  Copyright terms: Public domain W3C validator