MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snexALT Structured version   Visualization version   GIF version

Theorem snexALT 5381
Description: Alternate proof of snex 5431 using Power Set (ax-pow 5363) instead of Pairing (ax-pr 5427). Unlike in the proof of zfpair 5419, Replacement (ax-rep 5285) is not needed. (Contributed by NM, 7-Aug-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
snexALT {𝐴} ∈ V

Proof of Theorem snexALT
StepHypRef Expression
1 snsspw 4845 . . 3 {𝐴} ⊆ 𝒫 𝐴
2 ssexg 5323 . . 3 (({𝐴} ⊆ 𝒫 𝐴 ∧ 𝒫 𝐴 ∈ V) → {𝐴} ∈ V)
31, 2mpan 687 . 2 (𝒫 𝐴 ∈ V → {𝐴} ∈ V)
4 pwexg 5376 . . . 4 (𝐴 ∈ V → 𝒫 𝐴 ∈ V)
54con3i 154 . . 3 (¬ 𝒫 𝐴 ∈ V → ¬ 𝐴 ∈ V)
6 snprc 4721 . . . . 5 𝐴 ∈ V ↔ {𝐴} = ∅)
76biimpi 215 . . . 4 𝐴 ∈ V → {𝐴} = ∅)
8 0ex 5307 . . . 4 ∅ ∈ V
97, 8eqeltrdi 2840 . . 3 𝐴 ∈ V → {𝐴} ∈ V)
105, 9syl 17 . 2 (¬ 𝒫 𝐴 ∈ V → {𝐴} ∈ V)
113, 10pm2.61i 182 1 {𝐴} ∈ V
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1540  wcel 2105  Vcvv 3473  wss 3948  c0 4322  𝒫 cpw 4602  {csn 4628
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-ext 2702  ax-sep 5299  ax-nul 5306  ax-pow 5363
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1543  df-fal 1553  df-ex 1781  df-sb 2067  df-clab 2709  df-cleq 2723  df-clel 2809  df-rab 3432  df-v 3475  df-dif 3951  df-in 3955  df-ss 3965  df-nul 4323  df-pw 4604  df-sn 4629
This theorem is referenced by:  p0exALT  5383
  Copyright terms: Public domain W3C validator