MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snexALT Structured version   Visualization version   GIF version

Theorem snexALT 5306
Description: Alternate proof of snex 5354 using Power Set (ax-pow 5288) instead of Pairing (ax-pr 5352). Unlike in the proof of zfpair 5344, Replacement (ax-rep 5209) is not needed. (Contributed by NM, 7-Aug-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
snexALT {𝐴} ∈ V

Proof of Theorem snexALT
StepHypRef Expression
1 snsspw 4775 . . 3 {𝐴} ⊆ 𝒫 𝐴
2 ssexg 5247 . . 3 (({𝐴} ⊆ 𝒫 𝐴 ∧ 𝒫 𝐴 ∈ V) → {𝐴} ∈ V)
31, 2mpan 687 . 2 (𝒫 𝐴 ∈ V → {𝐴} ∈ V)
4 pwexg 5301 . . . 4 (𝐴 ∈ V → 𝒫 𝐴 ∈ V)
54con3i 154 . . 3 (¬ 𝒫 𝐴 ∈ V → ¬ 𝐴 ∈ V)
6 snprc 4653 . . . . 5 𝐴 ∈ V ↔ {𝐴} = ∅)
76biimpi 215 . . . 4 𝐴 ∈ V → {𝐴} = ∅)
8 0ex 5231 . . . 4 ∅ ∈ V
97, 8eqeltrdi 2847 . . 3 𝐴 ∈ V → {𝐴} ∈ V)
105, 9syl 17 . 2 (¬ 𝒫 𝐴 ∈ V → {𝐴} ∈ V)
113, 10pm2.61i 182 1 {𝐴} ∈ V
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1539  wcel 2106  Vcvv 3432  wss 3887  c0 4256  𝒫 cpw 4533  {csn 4561
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-in 3894  df-ss 3904  df-nul 4257  df-pw 4535  df-sn 4562
This theorem is referenced by:  p0exALT  5308
  Copyright terms: Public domain W3C validator