Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > snexALT | Structured version Visualization version GIF version |
Description: Alternate proof of snex 5380 using Power Set (ax-pow 5312) instead of Pairing (ax-pr 5376). Unlike in the proof of zfpair 5368, Replacement (ax-rep 5233) is not needed. (Contributed by NM, 7-Aug-1994.) (Proof shortened by Andrew Salmon, 25-Jul-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
snexALT | ⊢ {𝐴} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snsspw 4793 | . . 3 ⊢ {𝐴} ⊆ 𝒫 𝐴 | |
2 | ssexg 5271 | . . 3 ⊢ (({𝐴} ⊆ 𝒫 𝐴 ∧ 𝒫 𝐴 ∈ V) → {𝐴} ∈ V) | |
3 | 1, 2 | mpan 688 | . 2 ⊢ (𝒫 𝐴 ∈ V → {𝐴} ∈ V) |
4 | pwexg 5325 | . . . 4 ⊢ (𝐴 ∈ V → 𝒫 𝐴 ∈ V) | |
5 | 4 | con3i 154 | . . 3 ⊢ (¬ 𝒫 𝐴 ∈ V → ¬ 𝐴 ∈ V) |
6 | snprc 4669 | . . . . 5 ⊢ (¬ 𝐴 ∈ V ↔ {𝐴} = ∅) | |
7 | 6 | biimpi 215 | . . . 4 ⊢ (¬ 𝐴 ∈ V → {𝐴} = ∅) |
8 | 0ex 5255 | . . . 4 ⊢ ∅ ∈ V | |
9 | 7, 8 | eqeltrdi 2846 | . . 3 ⊢ (¬ 𝐴 ∈ V → {𝐴} ∈ V) |
10 | 5, 9 | syl 17 | . 2 ⊢ (¬ 𝒫 𝐴 ∈ V → {𝐴} ∈ V) |
11 | 3, 10 | pm2.61i 182 | 1 ⊢ {𝐴} ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1541 ∈ wcel 2106 Vcvv 3442 ⊆ wss 3901 ∅c0 4273 𝒫 cpw 4551 {csn 4577 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2708 ax-sep 5247 ax-nul 5254 ax-pow 5312 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2715 df-cleq 2729 df-clel 2815 df-rab 3405 df-v 3444 df-dif 3904 df-in 3908 df-ss 3918 df-nul 4274 df-pw 4553 df-sn 4578 |
This theorem is referenced by: p0exALT 5332 |
Copyright terms: Public domain | W3C validator |