Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > p0ex | Structured version Visualization version GIF version |
Description: The power set of the empty set (the ordinal 1) is a set. See also p0exALT 5311. (Contributed by NM, 23-Dec-1993.) |
Ref | Expression |
---|---|
p0ex | ⊢ {∅} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pw0 4750 | . 2 ⊢ 𝒫 ∅ = {∅} | |
2 | 0ex 5234 | . . 3 ⊢ ∅ ∈ V | |
3 | 2 | pwex 5306 | . 2 ⊢ 𝒫 ∅ ∈ V |
4 | 1, 3 | eqeltrri 2837 | 1 ⊢ {∅} ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2109 Vcvv 3430 ∅c0 4261 𝒫 cpw 4538 {csn 4566 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1544 df-fal 1554 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-v 3432 df-dif 3894 df-in 3898 df-ss 3908 df-nul 4262 df-pw 4540 df-sn 4567 |
This theorem is referenced by: pp0ex 5312 dtruALT 5314 zfpair 5347 tposexg 8040 fsetexb 8626 endisj 8815 pw2eng 8834 dfac4 9862 dfac2b 9870 axcc2lem 10176 axdc2lem 10188 axcclem 10197 axpowndlem3 10339 isstruct2 16831 cat1 17793 plusffval 18313 grpinvfval 18599 grpsubfval 18604 mulgfval 18683 0symgefmndeq 18982 staffval 20088 scaffval 20122 lpival 20497 ipffval 20834 refun0 22647 filconn 23015 alexsubALTlem2 23180 nmfval 23725 tcphex 24362 tchnmfval 24373 legval 26926 locfinref 31770 oms0 32243 bnj105 32682 ssoninhaus 34616 onint1 34617 bj-tagex 35156 bj-1uplex 35177 rrnval 35964 lsatset 36983 mnuprdlem2 41844 mnuprdlem3 41845 dvnprodlem3 43443 ioorrnopn 43800 ioorrnopnxr 43802 ismeannd 43959 |
Copyright terms: Public domain | W3C validator |