| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > p0ex | Structured version Visualization version GIF version | ||
| Description: The power set of the empty set (the ordinal 1) is a set. See also p0exALT 5340. (Contributed by NM, 23-Dec-1993.) |
| Ref | Expression |
|---|---|
| p0ex | ⊢ {∅} ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pw0 4776 | . 2 ⊢ 𝒫 ∅ = {∅} | |
| 2 | 0ex 5262 | . . 3 ⊢ ∅ ∈ V | |
| 3 | 2 | pwex 5335 | . 2 ⊢ 𝒫 ∅ ∈ V |
| 4 | 1, 3 | eqeltrri 2825 | 1 ⊢ {∅} ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3447 ∅c0 4296 𝒫 cpw 4563 {csn 4589 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3449 df-dif 3917 df-ss 3931 df-nul 4297 df-pw 4565 df-sn 4590 |
| This theorem is referenced by: pp0ex 5341 dtruALT 5343 zfpair 5376 tposexg 8219 fsetexb 8837 endisj 9028 pw2eng 9047 dfac4 10075 dfac2b 10084 axcc2lem 10389 axdc2lem 10401 axcclem 10410 axpowndlem3 10552 isstruct2 17119 cat1 18059 plusffval 18573 grpinvfval 18910 grpsubfval 18915 mulgfval 19001 0symgefmndeq 19324 staffval 20750 scaffval 20786 lpival 21234 ipffval 21557 refun0 23402 filconn 23770 alexsubALTlem2 23935 nmfval 24476 tcphex 25117 tchnmfval 25128 legval 28511 locfinref 33831 oms0 34288 bnj105 34714 ssoninhaus 36436 onint1 36437 bj-tagex 36975 bj-1uplex 36996 rrnval 37821 lsatset 38983 mnuprdlem2 44262 mnuprdlem3 44263 dvnprodlem3 45946 ioorrnopn 46303 ioorrnopnxr 46305 ismeannd 46465 nelsubc3 49060 setc1ohomfval 49482 |
| Copyright terms: Public domain | W3C validator |