| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > p0ex | Structured version Visualization version GIF version | ||
| Description: The power set of the empty set (the ordinal 1) is a set. See also p0exALT 5324. (Contributed by NM, 23-Dec-1993.) |
| Ref | Expression |
|---|---|
| p0ex | ⊢ {∅} ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pw0 4763 | . 2 ⊢ 𝒫 ∅ = {∅} | |
| 2 | 0ex 5246 | . . 3 ⊢ ∅ ∈ V | |
| 3 | 2 | pwex 5319 | . 2 ⊢ 𝒫 ∅ ∈ V |
| 4 | 1, 3 | eqeltrri 2825 | 1 ⊢ {∅} ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3436 ∅c0 4284 𝒫 cpw 4551 {csn 4577 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3438 df-dif 3906 df-ss 3920 df-nul 4285 df-pw 4553 df-sn 4578 |
| This theorem is referenced by: pp0ex 5325 dtruALT 5327 zfpair 5360 tposexg 8173 fsetexb 8791 endisj 8981 pw2eng 9000 dfac4 10016 dfac2b 10025 axcc2lem 10330 axdc2lem 10342 axcclem 10351 axpowndlem3 10493 isstruct2 17060 cat1 18004 plusffval 18520 grpinvfval 18857 grpsubfval 18862 mulgfval 18948 0symgefmndeq 19273 staffval 20726 scaffval 20783 lpival 21231 ipffval 21555 refun0 23400 filconn 23768 alexsubALTlem2 23933 nmfval 24474 tcphex 25115 tchnmfval 25126 legval 28529 locfinref 33808 oms0 34265 bnj105 34691 ssoninhaus 36422 onint1 36423 bj-tagex 36961 bj-1uplex 36982 rrnval 37807 lsatset 38969 mnuprdlem2 44246 mnuprdlem3 44247 dvnprodlem3 45929 ioorrnopn 46286 ioorrnopnxr 46288 ismeannd 46448 nelsubc3 49056 setc1ohomfval 49478 |
| Copyright terms: Public domain | W3C validator |