| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > p0ex | Structured version Visualization version GIF version | ||
| Description: The power set of the empty set (the ordinal 1) is a set. See also p0exALT 5321. (Contributed by NM, 23-Dec-1993.) |
| Ref | Expression |
|---|---|
| p0ex | ⊢ {∅} ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pw0 4761 | . 2 ⊢ 𝒫 ∅ = {∅} | |
| 2 | 0ex 5243 | . . 3 ⊢ ∅ ∈ V | |
| 3 | 2 | pwex 5316 | . 2 ⊢ 𝒫 ∅ ∈ V |
| 4 | 1, 3 | eqeltrri 2828 | 1 ⊢ {∅} ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 Vcvv 3436 ∅c0 4280 𝒫 cpw 4547 {csn 4573 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-dif 3900 df-ss 3914 df-nul 4281 df-pw 4549 df-sn 4574 |
| This theorem is referenced by: pp0ex 5322 dtruALT 5324 zfpair 5357 tposexg 8170 fsetexb 8788 endisj 8977 pw2eng 8996 dfac4 10013 dfac2b 10022 axcc2lem 10327 axdc2lem 10339 axcclem 10348 axpowndlem3 10490 isstruct2 17060 cat1 18004 plusffval 18554 grpinvfval 18891 grpsubfval 18896 mulgfval 18982 0symgefmndeq 19306 staffval 20756 scaffval 20813 lpival 21261 ipffval 21585 refun0 23430 filconn 23798 alexsubALTlem2 23963 nmfval 24503 tcphex 25144 tchnmfval 25155 legval 28562 locfinref 33854 oms0 34310 bnj105 34736 ssoninhaus 36490 onint1 36491 bj-tagex 37029 bj-1uplex 37050 rrnval 37875 lsatset 39037 mnuprdlem2 44314 mnuprdlem3 44315 dvnprodlem3 45994 ioorrnopn 46351 ioorrnopnxr 46353 ismeannd 46513 nelsubc3 49111 setc1ohomfval 49533 |
| Copyright terms: Public domain | W3C validator |