![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > p0ex | Structured version Visualization version GIF version |
Description: The power set of the empty set (the ordinal 1) is a set. See also p0exALT 5403. (Contributed by NM, 23-Dec-1993.) |
Ref | Expression |
---|---|
p0ex | ⊢ {∅} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pw0 4837 | . 2 ⊢ 𝒫 ∅ = {∅} | |
2 | 0ex 5325 | . . 3 ⊢ ∅ ∈ V | |
3 | 2 | pwex 5398 | . 2 ⊢ 𝒫 ∅ ∈ V |
4 | 1, 3 | eqeltrri 2841 | 1 ⊢ {∅} ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Vcvv 3488 ∅c0 4352 𝒫 cpw 4622 {csn 4648 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-dif 3979 df-ss 3993 df-nul 4353 df-pw 4624 df-sn 4649 |
This theorem is referenced by: pp0ex 5404 dtruALT 5406 zfpair 5439 tposexg 8281 fsetexb 8922 endisj 9124 pw2eng 9144 dfac4 10191 dfac2b 10200 axcc2lem 10505 axdc2lem 10517 axcclem 10526 axpowndlem3 10668 isstruct2 17196 cat1 18164 plusffval 18684 grpinvfval 19018 grpsubfval 19023 mulgfval 19109 0symgefmndeq 19435 staffval 20864 scaffval 20900 lpival 21357 ipffval 21689 refun0 23544 filconn 23912 alexsubALTlem2 24077 nmfval 24622 tcphex 25270 tchnmfval 25281 legval 28610 locfinref 33787 oms0 34262 bnj105 34700 ssoninhaus 36414 onint1 36415 bj-tagex 36953 bj-1uplex 36974 rrnval 37787 lsatset 38946 mnuprdlem2 44242 mnuprdlem3 44243 dvnprodlem3 45869 ioorrnopn 46226 ioorrnopnxr 46228 ismeannd 46388 |
Copyright terms: Public domain | W3C validator |