| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > p0ex | Structured version Visualization version GIF version | ||
| Description: The power set of the empty set (the ordinal 1) is a set. See also p0exALT 5335. (Contributed by NM, 23-Dec-1993.) |
| Ref | Expression |
|---|---|
| p0ex | ⊢ {∅} ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pw0 4772 | . 2 ⊢ 𝒫 ∅ = {∅} | |
| 2 | 0ex 5257 | . . 3 ⊢ ∅ ∈ V | |
| 3 | 2 | pwex 5330 | . 2 ⊢ 𝒫 ∅ ∈ V |
| 4 | 1, 3 | eqeltrri 2825 | 1 ⊢ {∅} ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3444 ∅c0 4292 𝒫 cpw 4559 {csn 4585 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-dif 3914 df-ss 3928 df-nul 4293 df-pw 4561 df-sn 4586 |
| This theorem is referenced by: pp0ex 5336 dtruALT 5338 zfpair 5371 tposexg 8196 fsetexb 8814 endisj 9005 pw2eng 9024 dfac4 10051 dfac2b 10060 axcc2lem 10365 axdc2lem 10377 axcclem 10386 axpowndlem3 10528 isstruct2 17095 cat1 18035 plusffval 18549 grpinvfval 18886 grpsubfval 18891 mulgfval 18977 0symgefmndeq 19300 staffval 20726 scaffval 20762 lpival 21210 ipffval 21533 refun0 23378 filconn 23746 alexsubALTlem2 23911 nmfval 24452 tcphex 25093 tchnmfval 25104 legval 28487 locfinref 33804 oms0 34261 bnj105 34687 ssoninhaus 36409 onint1 36410 bj-tagex 36948 bj-1uplex 36969 rrnval 37794 lsatset 38956 mnuprdlem2 44235 mnuprdlem3 44236 dvnprodlem3 45919 ioorrnopn 46276 ioorrnopnxr 46278 ismeannd 46438 nelsubc3 49033 setc1ohomfval 49455 |
| Copyright terms: Public domain | W3C validator |