| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > p0ex | Structured version Visualization version GIF version | ||
| Description: The power set of the empty set (the ordinal 1) is a set. See also p0exALT 5355. (Contributed by NM, 23-Dec-1993.) |
| Ref | Expression |
|---|---|
| p0ex | ⊢ {∅} ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pw0 4788 | . 2 ⊢ 𝒫 ∅ = {∅} | |
| 2 | 0ex 5277 | . . 3 ⊢ ∅ ∈ V | |
| 3 | 2 | pwex 5350 | . 2 ⊢ 𝒫 ∅ ∈ V |
| 4 | 1, 3 | eqeltrri 2831 | 1 ⊢ {∅} ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2108 Vcvv 3459 ∅c0 4308 𝒫 cpw 4575 {csn 4601 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-v 3461 df-dif 3929 df-ss 3943 df-nul 4309 df-pw 4577 df-sn 4602 |
| This theorem is referenced by: pp0ex 5356 dtruALT 5358 zfpair 5391 tposexg 8237 fsetexb 8876 endisj 9070 pw2eng 9090 dfac4 10134 dfac2b 10143 axcc2lem 10448 axdc2lem 10460 axcclem 10469 axpowndlem3 10611 isstruct2 17166 cat1 18108 plusffval 18622 grpinvfval 18959 grpsubfval 18964 mulgfval 19050 0symgefmndeq 19373 staffval 20799 scaffval 20835 lpival 21283 ipffval 21606 refun0 23451 filconn 23819 alexsubALTlem2 23984 nmfval 24525 tcphex 25167 tchnmfval 25178 legval 28509 locfinref 33818 oms0 34275 bnj105 34701 ssoninhaus 36412 onint1 36413 bj-tagex 36951 bj-1uplex 36972 rrnval 37797 lsatset 38954 mnuprdlem2 44245 mnuprdlem3 44246 dvnprodlem3 45925 ioorrnopn 46282 ioorrnopnxr 46284 ismeannd 46444 nelsubc3 48986 setc1ohomfval 49326 |
| Copyright terms: Public domain | W3C validator |