| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > p0ex | Structured version Visualization version GIF version | ||
| Description: The power set of the empty set (the ordinal 1) is a set. See also p0exALT 5343. (Contributed by NM, 23-Dec-1993.) |
| Ref | Expression |
|---|---|
| p0ex | ⊢ {∅} ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pw0 4779 | . 2 ⊢ 𝒫 ∅ = {∅} | |
| 2 | 0ex 5265 | . . 3 ⊢ ∅ ∈ V | |
| 3 | 2 | pwex 5338 | . 2 ⊢ 𝒫 ∅ ∈ V |
| 4 | 1, 3 | eqeltrri 2826 | 1 ⊢ {∅} ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3450 ∅c0 4299 𝒫 cpw 4566 {csn 4592 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-dif 3920 df-ss 3934 df-nul 4300 df-pw 4568 df-sn 4593 |
| This theorem is referenced by: pp0ex 5344 dtruALT 5346 zfpair 5379 tposexg 8222 fsetexb 8840 endisj 9032 pw2eng 9052 dfac4 10082 dfac2b 10091 axcc2lem 10396 axdc2lem 10408 axcclem 10417 axpowndlem3 10559 isstruct2 17126 cat1 18066 plusffval 18580 grpinvfval 18917 grpsubfval 18922 mulgfval 19008 0symgefmndeq 19331 staffval 20757 scaffval 20793 lpival 21241 ipffval 21564 refun0 23409 filconn 23777 alexsubALTlem2 23942 nmfval 24483 tcphex 25124 tchnmfval 25135 legval 28518 locfinref 33838 oms0 34295 bnj105 34721 ssoninhaus 36443 onint1 36444 bj-tagex 36982 bj-1uplex 37003 rrnval 37828 lsatset 38990 mnuprdlem2 44269 mnuprdlem3 44270 dvnprodlem3 45953 ioorrnopn 46310 ioorrnopnxr 46312 ismeannd 46472 nelsubc3 49064 setc1ohomfval 49486 |
| Copyright terms: Public domain | W3C validator |