Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > p0ex | Structured version Visualization version GIF version |
Description: The power set of the empty set (the ordinal 1) is a set. See also p0exALT 5317. (Contributed by NM, 23-Dec-1993.) |
Ref | Expression |
---|---|
p0ex | ⊢ {∅} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pw0 4751 | . 2 ⊢ 𝒫 ∅ = {∅} | |
2 | 0ex 5240 | . . 3 ⊢ ∅ ∈ V | |
3 | 2 | pwex 5312 | . 2 ⊢ 𝒫 ∅ ∈ V |
4 | 1, 3 | eqeltrri 2834 | 1 ⊢ {∅} ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2104 Vcvv 3437 ∅c0 4262 𝒫 cpw 4539 {csn 4565 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 ax-sep 5232 ax-nul 5239 ax-pow 5297 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-v 3439 df-dif 3895 df-in 3899 df-ss 3909 df-nul 4263 df-pw 4541 df-sn 4566 |
This theorem is referenced by: pp0ex 5318 dtruALT 5320 zfpair 5353 tposexg 8087 fsetexb 8683 endisj 8883 pw2eng 8903 dfac4 9928 dfac2b 9936 axcc2lem 10242 axdc2lem 10254 axcclem 10263 axpowndlem3 10405 isstruct2 16899 cat1 17861 plusffval 18381 grpinvfval 18667 grpsubfval 18672 mulgfval 18751 0symgefmndeq 19050 staffval 20156 scaffval 20190 lpival 20565 ipffval 20902 refun0 22715 filconn 23083 alexsubALTlem2 23248 nmfval 23793 tcphex 24430 tchnmfval 24441 legval 26994 locfinref 31840 oms0 32313 bnj105 32752 ssoninhaus 34686 onint1 34687 bj-tagex 35225 bj-1uplex 35246 rrnval 36033 lsatset 37204 mnuprdlem2 42104 mnuprdlem3 42105 dvnprodlem3 43718 ioorrnopn 44075 ioorrnopnxr 44077 ismeannd 44235 |
Copyright terms: Public domain | W3C validator |