| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > p0ex | Structured version Visualization version GIF version | ||
| Description: The power set of the empty set (the ordinal 1) is a set. See also p0exALT 5335. (Contributed by NM, 23-Dec-1993.) |
| Ref | Expression |
|---|---|
| p0ex | ⊢ {∅} ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pw0 4772 | . 2 ⊢ 𝒫 ∅ = {∅} | |
| 2 | 0ex 5257 | . . 3 ⊢ ∅ ∈ V | |
| 3 | 2 | pwex 5330 | . 2 ⊢ 𝒫 ∅ ∈ V |
| 4 | 1, 3 | eqeltrri 2825 | 1 ⊢ {∅} ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3444 ∅c0 4292 𝒫 cpw 4559 {csn 4585 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-v 3446 df-dif 3914 df-ss 3928 df-nul 4293 df-pw 4561 df-sn 4586 |
| This theorem is referenced by: pp0ex 5336 dtruALT 5338 zfpair 5371 tposexg 8196 fsetexb 8814 endisj 9005 pw2eng 9024 dfac4 10051 dfac2b 10060 axcc2lem 10365 axdc2lem 10377 axcclem 10386 axpowndlem3 10528 isstruct2 17095 cat1 18039 plusffval 18555 grpinvfval 18892 grpsubfval 18897 mulgfval 18983 0symgefmndeq 19308 staffval 20761 scaffval 20818 lpival 21266 ipffval 21590 refun0 23435 filconn 23803 alexsubALTlem2 23968 nmfval 24509 tcphex 25150 tchnmfval 25161 legval 28564 locfinref 33824 oms0 34281 bnj105 34707 ssoninhaus 36429 onint1 36430 bj-tagex 36968 bj-1uplex 36989 rrnval 37814 lsatset 38976 mnuprdlem2 44255 mnuprdlem3 44256 dvnprodlem3 45939 ioorrnopn 46296 ioorrnopnxr 46298 ismeannd 46458 nelsubc3 49053 setc1ohomfval 49475 |
| Copyright terms: Public domain | W3C validator |