Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > p0ex | Structured version Visualization version GIF version |
Description: The power set of the empty set (the ordinal 1) is a set. See also p0exALT 5332. (Contributed by NM, 23-Dec-1993.) |
Ref | Expression |
---|---|
p0ex | ⊢ {∅} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pw0 4763 | . 2 ⊢ 𝒫 ∅ = {∅} | |
2 | 0ex 5255 | . . 3 ⊢ ∅ ∈ V | |
3 | 2 | pwex 5327 | . 2 ⊢ 𝒫 ∅ ∈ V |
4 | 1, 3 | eqeltrri 2835 | 1 ⊢ {∅} ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 Vcvv 3442 ∅c0 4273 𝒫 cpw 4551 {csn 4577 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2708 ax-sep 5247 ax-nul 5254 ax-pow 5312 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1544 df-fal 1554 df-ex 1782 df-sb 2068 df-clab 2715 df-cleq 2729 df-clel 2815 df-v 3444 df-dif 3904 df-in 3908 df-ss 3918 df-nul 4274 df-pw 4553 df-sn 4578 |
This theorem is referenced by: pp0ex 5333 dtruALT 5335 zfpair 5368 tposexg 8130 fsetexb 8727 endisj 8927 pw2eng 8947 dfac4 9983 dfac2b 9991 axcc2lem 10297 axdc2lem 10309 axcclem 10318 axpowndlem3 10460 isstruct2 16947 cat1 17909 plusffval 18429 grpinvfval 18714 grpsubfval 18719 mulgfval 18798 0symgefmndeq 19097 staffval 20212 scaffval 20246 lpival 20621 ipffval 20958 refun0 22771 filconn 23139 alexsubALTlem2 23304 nmfval 23849 tcphex 24486 tchnmfval 24497 legval 27233 locfinref 32087 oms0 32562 bnj105 33001 ssoninhaus 34774 onint1 34775 bj-tagex 35312 bj-1uplex 35333 rrnval 36141 lsatset 37308 mnuprdlem2 42264 mnuprdlem3 42265 dvnprodlem3 43877 ioorrnopn 44234 ioorrnopnxr 44236 ismeannd 44394 |
Copyright terms: Public domain | W3C validator |