MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  p0ex Structured version   Visualization version   GIF version

Theorem p0ex 5316
Description: The power set of the empty set (the ordinal 1) is a set. See also p0exALT 5317. (Contributed by NM, 23-Dec-1993.)
Assertion
Ref Expression
p0ex {∅} ∈ V

Proof of Theorem p0ex
StepHypRef Expression
1 pw0 4751 . 2 𝒫 ∅ = {∅}
2 0ex 5240 . . 3 ∅ ∈ V
32pwex 5312 . 2 𝒫 ∅ ∈ V
41, 3eqeltrri 2834 1 {∅} ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2104  Vcvv 3437  c0 4262  𝒫 cpw 4539  {csn 4565
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pow 5297
This theorem depends on definitions:  df-bi 206  df-an 398  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-v 3439  df-dif 3895  df-in 3899  df-ss 3909  df-nul 4263  df-pw 4541  df-sn 4566
This theorem is referenced by:  pp0ex  5318  dtruALT  5320  zfpair  5353  tposexg  8087  fsetexb  8683  endisj  8883  pw2eng  8903  dfac4  9928  dfac2b  9936  axcc2lem  10242  axdc2lem  10254  axcclem  10263  axpowndlem3  10405  isstruct2  16899  cat1  17861  plusffval  18381  grpinvfval  18667  grpsubfval  18672  mulgfval  18751  0symgefmndeq  19050  staffval  20156  scaffval  20190  lpival  20565  ipffval  20902  refun0  22715  filconn  23083  alexsubALTlem2  23248  nmfval  23793  tcphex  24430  tchnmfval  24441  legval  26994  locfinref  31840  oms0  32313  bnj105  32752  ssoninhaus  34686  onint1  34687  bj-tagex  35225  bj-1uplex  35246  rrnval  36033  lsatset  37204  mnuprdlem2  42104  mnuprdlem3  42105  dvnprodlem3  43718  ioorrnopn  44075  ioorrnopnxr  44077  ismeannd  44235
  Copyright terms: Public domain W3C validator