Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pp0ex | Structured version Visualization version GIF version |
Description: The power set of the power set of the empty set (the ordinal 2) is a set. (Contributed by NM, 24-Jun-1993.) |
Ref | Expression |
---|---|
pp0ex | ⊢ {∅, {∅}} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwpw0 4743 | . 2 ⊢ 𝒫 {∅} = {∅, {∅}} | |
2 | p0ex 5302 | . . 3 ⊢ {∅} ∈ V | |
3 | 2 | pwex 5298 | . 2 ⊢ 𝒫 {∅} ∈ V |
4 | 1, 3 | eqeltrri 2836 | 1 ⊢ {∅, {∅}} ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2108 Vcvv 3422 ∅c0 4253 𝒫 cpw 4530 {csn 4558 {cpr 4560 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-pw 4532 df-sn 4559 df-pr 4561 |
This theorem is referenced by: ord3ex 5305 zfpair 5339 |
Copyright terms: Public domain | W3C validator |