| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pp0ex | Structured version Visualization version GIF version | ||
| Description: The power set of the power set of the empty set (the ordinal 2) is a set. (Contributed by NM, 24-Jun-1993.) |
| Ref | Expression |
|---|---|
| pp0ex | ⊢ {∅, {∅}} ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwpw0 4793 | . 2 ⊢ 𝒫 {∅} = {∅, {∅}} | |
| 2 | p0ex 5364 | . . 3 ⊢ {∅} ∈ V | |
| 3 | 2 | pwex 5360 | . 2 ⊢ 𝒫 {∅} ∈ V |
| 4 | 1, 3 | eqeltrri 2830 | 1 ⊢ {∅, {∅}} ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2107 Vcvv 3463 ∅c0 4313 𝒫 cpw 4580 {csn 4606 {cpr 4608 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-v 3465 df-dif 3934 df-un 3936 df-ss 3948 df-nul 4314 df-pw 4582 df-sn 4607 df-pr 4609 |
| This theorem is referenced by: ord3ex 5367 zfpair 5401 |
| Copyright terms: Public domain | W3C validator |