![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pp0ex | Structured version Visualization version GIF version |
Description: The power set of the power set of the empty set (the ordinal 2) is a set. (Contributed by NM, 24-Jun-1993.) |
Ref | Expression |
---|---|
pp0ex | ⊢ {∅, {∅}} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwpw0 4620 | . 2 ⊢ 𝒫 {∅} = {∅, {∅}} | |
2 | p0ex 5137 | . . 3 ⊢ {∅} ∈ V | |
3 | 2 | pwex 5134 | . 2 ⊢ 𝒫 {∅} ∈ V |
4 | 1, 3 | eqeltrri 2863 | 1 ⊢ {∅, {∅}} ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2050 Vcvv 3415 ∅c0 4178 𝒫 cpw 4422 {csn 4441 {cpr 4443 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-ext 2750 ax-sep 5060 ax-nul 5067 ax-pow 5119 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-clab 2759 df-cleq 2771 df-clel 2846 df-nfc 2918 df-v 3417 df-dif 3832 df-un 3834 df-in 3836 df-ss 3843 df-nul 4179 df-pw 4424 df-sn 4442 df-pr 4444 |
This theorem is referenced by: ord3ex 5140 zfpair 5178 |
Copyright terms: Public domain | W3C validator |