MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pp0ex Structured version   Visualization version   GIF version

Theorem pp0ex 5392
Description: The power set of the power set of the empty set (the ordinal 2) is a set. (Contributed by NM, 24-Jun-1993.)
Assertion
Ref Expression
pp0ex {∅, {∅}} ∈ V

Proof of Theorem pp0ex
StepHypRef Expression
1 pwpw0 4818 . 2 𝒫 {∅} = {∅, {∅}}
2 p0ex 5390 . . 3 {∅} ∈ V
32pwex 5386 . 2 𝒫 {∅} ∈ V
41, 3eqeltrri 2836 1 {∅, {∅}} ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2106  Vcvv 3478  c0 4339  𝒫 cpw 4605  {csn 4631  {cpr 4633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-pw 4607  df-sn 4632  df-pr 4634
This theorem is referenced by:  ord3ex  5393  zfpair  5427
  Copyright terms: Public domain W3C validator