| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pp0ex | Structured version Visualization version GIF version | ||
| Description: The power set of the power set of the empty set (the ordinal 2) is a set. (Contributed by NM, 24-Jun-1993.) |
| Ref | Expression |
|---|---|
| pp0ex | ⊢ {∅, {∅}} ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwpw0 4780 | . 2 ⊢ 𝒫 {∅} = {∅, {∅}} | |
| 2 | p0ex 5342 | . . 3 ⊢ {∅} ∈ V | |
| 3 | 2 | pwex 5338 | . 2 ⊢ 𝒫 {∅} ∈ V |
| 4 | 1, 3 | eqeltrri 2826 | 1 ⊢ {∅, {∅}} ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2109 Vcvv 3450 ∅c0 4299 𝒫 cpw 4566 {csn 4592 {cpr 4594 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-pw 4568 df-sn 4593 df-pr 4595 |
| This theorem is referenced by: ord3ex 5345 zfpair 5379 |
| Copyright terms: Public domain | W3C validator |