MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pp0ex Structured version   Visualization version   GIF version

Theorem pp0ex 5336
Description: The power set of the power set of the empty set (the ordinal 2) is a set. (Contributed by NM, 24-Jun-1993.)
Assertion
Ref Expression
pp0ex {∅, {∅}} ∈ V

Proof of Theorem pp0ex
StepHypRef Expression
1 pwpw0 4773 . 2 𝒫 {∅} = {∅, {∅}}
2 p0ex 5334 . . 3 {∅} ∈ V
32pwex 5330 . 2 𝒫 {∅} ∈ V
41, 3eqeltrri 2825 1 {∅, {∅}} ∈ V
Colors of variables: wff setvar class
Syntax hints:  wcel 2109  Vcvv 3444  c0 4292  𝒫 cpw 4559  {csn 4585  {cpr 4587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-pw 4561  df-sn 4586  df-pr 4588
This theorem is referenced by:  ord3ex  5337  zfpair  5371
  Copyright terms: Public domain W3C validator