![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pp0ex | Structured version Visualization version GIF version |
Description: The power set of the power set of the empty set (the ordinal 2) is a set. (Contributed by NM, 24-Jun-1993.) |
Ref | Expression |
---|---|
pp0ex | ⊢ {∅, {∅}} ∈ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwpw0 4818 | . 2 ⊢ 𝒫 {∅} = {∅, {∅}} | |
2 | p0ex 5390 | . . 3 ⊢ {∅} ∈ V | |
3 | 2 | pwex 5386 | . 2 ⊢ 𝒫 {∅} ∈ V |
4 | 1, 3 | eqeltrri 2836 | 1 ⊢ {∅, {∅}} ∈ V |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2106 Vcvv 3478 ∅c0 4339 𝒫 cpw 4605 {csn 4631 {cpr 4633 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pow 5371 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-pw 4607 df-sn 4632 df-pr 4634 |
This theorem is referenced by: ord3ex 5393 zfpair 5427 |
Copyright terms: Public domain | W3C validator |