| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pp0ex | Structured version Visualization version GIF version | ||
| Description: The power set of the power set of the empty set (the ordinal 2) is a set. (Contributed by NM, 24-Jun-1993.) |
| Ref | Expression |
|---|---|
| pp0ex | ⊢ {∅, {∅}} ∈ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwpw0 4762 | . 2 ⊢ 𝒫 {∅} = {∅, {∅}} | |
| 2 | p0ex 5320 | . . 3 ⊢ {∅} ∈ V | |
| 3 | 2 | pwex 5316 | . 2 ⊢ 𝒫 {∅} ∈ V |
| 4 | 1, 3 | eqeltrri 2828 | 1 ⊢ {∅, {∅}} ∈ V |
| Colors of variables: wff setvar class |
| Syntax hints: ∈ wcel 2111 Vcvv 3436 ∅c0 4280 𝒫 cpw 4547 {csn 4573 {cpr 4575 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-pw 4549 df-sn 4574 df-pr 4576 |
| This theorem is referenced by: ord3ex 5323 zfpair 5357 |
| Copyright terms: Public domain | W3C validator |