Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pibp16 Structured version   Visualization version   GIF version

Theorem pibp16 37398
Description: Property P000016 of pi-base. The class of compact topologies. A space 𝑋 is compact if every open cover of 𝑋 has a finite subcover. This theorem is just a relabeled copy of iscmp 23281. (Contributed by ML, 8-Dec-2020.)
Hypothesis
Ref Expression
pibp16.x 𝑋 = 𝐽
Assertion
Ref Expression
pibp16 (𝐽 ∈ Comp ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧)))
Distinct variable group:   𝑦,𝐽,𝑧
Allowed substitution hints:   𝑋(𝑦,𝑧)

Proof of Theorem pibp16
StepHypRef Expression
1 pibp16.x . 2 𝑋 = 𝐽
21iscmp 23281 1 (𝐽 ∈ Comp ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3046  wrex 3055  cin 3921  𝒫 cpw 4571   cuni 4879  Fincfn 8922  Topctop 22786  Compccmp 23279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3047  df-rex 3056  df-rab 3412  df-v 3457  df-ss 3939  df-pw 4573  df-uni 4880  df-cmp 23280
This theorem is referenced by:  pibt1  37401
  Copyright terms: Public domain W3C validator