| Mathbox for ML |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pibp16 | Structured version Visualization version GIF version | ||
| Description: Property P000016 of pi-base. The class of compact topologies. A space 𝑋 is compact if every open cover of 𝑋 has a finite subcover. This theorem is just a relabeled copy of iscmp 23281. (Contributed by ML, 8-Dec-2020.) |
| Ref | Expression |
|---|---|
| pibp16.x | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| pibp16 | ⊢ (𝐽 ∈ Comp ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pibp16.x | . 2 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | iscmp 23281 | 1 ⊢ (𝐽 ∈ Comp ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3046 ∃wrex 3055 ∩ cin 3921 𝒫 cpw 4571 ∪ cuni 4879 Fincfn 8922 Topctop 22786 Compccmp 23279 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3047 df-rex 3056 df-rab 3412 df-v 3457 df-ss 3939 df-pw 4573 df-uni 4880 df-cmp 23280 |
| This theorem is referenced by: pibt1 37401 |
| Copyright terms: Public domain | W3C validator |