![]() |
Mathbox for ML |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pibp16 | Structured version Visualization version GIF version |
Description: Property P000016 of pi-base. The class of compact topologies. A space 𝑋 is compact if every open cover of 𝑋 has a finite subcover. This theorem is just a relabeled copy of iscmp 22892. (Contributed by ML, 8-Dec-2020.) |
Ref | Expression |
---|---|
pibp16.x | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
pibp16 | ⊢ (𝐽 ∈ Comp ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pibp16.x | . 2 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | iscmp 22892 | 1 ⊢ (𝐽 ∈ Comp ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∀wral 3062 ∃wrex 3071 ∩ cin 3948 𝒫 cpw 4603 ∪ cuni 4909 Fincfn 8939 Topctop 22395 Compccmp 22890 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-in 3956 df-ss 3966 df-pw 4605 df-uni 4910 df-cmp 22891 |
This theorem is referenced by: pibt1 36345 |
Copyright terms: Public domain | W3C validator |