Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pibp16 Structured version   Visualization version   GIF version

Theorem pibp16 35580
Description: Property P000016 of pi-base. The class of compact topologies. A space 𝑋 is compact if every open cover of 𝑋 has a finite subcover. This theorem is just a relabeled copy of iscmp 22537. (Contributed by ML, 8-Dec-2020.)
Hypothesis
Ref Expression
pibp16.x 𝑋 = 𝐽
Assertion
Ref Expression
pibp16 (𝐽 ∈ Comp ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧)))
Distinct variable group:   𝑦,𝐽,𝑧
Allowed substitution hints:   𝑋(𝑦,𝑧)

Proof of Theorem pibp16
StepHypRef Expression
1 pibp16.x . 2 𝑋 = 𝐽
21iscmp 22537 1 (𝐽 ∈ Comp ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽(𝑋 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1542  wcel 2110  wral 3066  wrex 3067  cin 3891  𝒫 cpw 4539   cuni 4845  Fincfn 8716  Topctop 22040  Compccmp 22535
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-ext 2711
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1545  df-ex 1787  df-sb 2072  df-clab 2718  df-cleq 2732  df-clel 2818  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-in 3899  df-ss 3909  df-pw 4541  df-uni 4846  df-cmp 22536
This theorem is referenced by:  pibt1  35583
  Copyright terms: Public domain W3C validator