| Mathbox for ML |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pibp16 | Structured version Visualization version GIF version | ||
| Description: Property P000016 of pi-base. The class of compact topologies. A space 𝑋 is compact if every open cover of 𝑋 has a finite subcover. This theorem is just a relabeled copy of iscmp 23361. (Contributed by ML, 8-Dec-2020.) |
| Ref | Expression |
|---|---|
| pibp16.x | ⊢ 𝑋 = ∪ 𝐽 |
| Ref | Expression |
|---|---|
| pibp16 | ⊢ (𝐽 ∈ Comp ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pibp16.x | . 2 ⊢ 𝑋 = ∪ 𝐽 | |
| 2 | 1 | iscmp 23361 | 1 ⊢ (𝐽 ∈ Comp ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3050 ∃wrex 3059 ∩ cin 3932 𝒫 cpw 4582 ∪ cuni 4889 Fincfn 8968 Topctop 22866 Compccmp 23359 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-ss 3950 df-pw 4584 df-uni 4890 df-cmp 23360 |
| This theorem is referenced by: pibt1 37358 |
| Copyright terms: Public domain | W3C validator |