![]() |
Mathbox for ML |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pibp16 | Structured version Visualization version GIF version |
Description: Property P000016 of pi-base. The class of compact topologies. A space 𝑋 is compact if every open cover of 𝑋 has a finite subcover. This theorem is just a relabeled copy of iscmp 23412. (Contributed by ML, 8-Dec-2020.) |
Ref | Expression |
---|---|
pibp16.x | ⊢ 𝑋 = ∪ 𝐽 |
Ref | Expression |
---|---|
pibp16 | ⊢ (𝐽 ∈ Comp ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pibp16.x | . 2 ⊢ 𝑋 = ∪ 𝐽 | |
2 | 1 | iscmp 23412 | 1 ⊢ (𝐽 ∈ Comp ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽(𝑋 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ∀wral 3059 ∃wrex 3068 ∩ cin 3962 𝒫 cpw 4605 ∪ cuni 4912 Fincfn 8984 Topctop 22915 Compccmp 23410 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1777 df-sb 2063 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-ss 3980 df-pw 4607 df-uni 4913 df-cmp 23411 |
This theorem is referenced by: pibt1 37399 |
Copyright terms: Public domain | W3C validator |