Mathbox for ML |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pibp19 | Structured version Visualization version GIF version |
Description: Property P000019 of pi-base. The class of countably compact topologies. A space 𝑋 is countably compact if every countable open cover of 𝑋 has a finite subcover. (Contributed by ML, 8-Dec-2020.) |
Ref | Expression |
---|---|
pibp19.x | ⊢ 𝑋 = ∪ 𝐽 |
pibp19.19 | ⊢ 𝐶 = {𝑥 ∈ Top ∣ ∀𝑦 ∈ 𝒫 𝑥((∪ 𝑥 = ∪ 𝑦 ∧ 𝑦 ≼ ω) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝑥 = ∪ 𝑧)} |
Ref | Expression |
---|---|
pibp19 | ⊢ (𝐽 ∈ 𝐶 ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽((𝑋 = ∪ 𝑦 ∧ 𝑦 ≼ ω) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pweq 4549 | . . 3 ⊢ (𝑥 = 𝐽 → 𝒫 𝑥 = 𝒫 𝐽) | |
2 | unieq 4850 | . . . . . . 7 ⊢ (𝑥 = 𝐽 → ∪ 𝑥 = ∪ 𝐽) | |
3 | pibp19.x | . . . . . . 7 ⊢ 𝑋 = ∪ 𝐽 | |
4 | 2, 3 | eqtr4di 2796 | . . . . . 6 ⊢ (𝑥 = 𝐽 → ∪ 𝑥 = 𝑋) |
5 | 4 | eqeq1d 2740 | . . . . 5 ⊢ (𝑥 = 𝐽 → (∪ 𝑥 = ∪ 𝑦 ↔ 𝑋 = ∪ 𝑦)) |
6 | 5 | anbi1d 630 | . . . 4 ⊢ (𝑥 = 𝐽 → ((∪ 𝑥 = ∪ 𝑦 ∧ 𝑦 ≼ ω) ↔ (𝑋 = ∪ 𝑦 ∧ 𝑦 ≼ ω))) |
7 | 4 | eqeq1d 2740 | . . . . 5 ⊢ (𝑥 = 𝐽 → (∪ 𝑥 = ∪ 𝑧 ↔ 𝑋 = ∪ 𝑧)) |
8 | 7 | rexbidv 3226 | . . . 4 ⊢ (𝑥 = 𝐽 → (∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝑥 = ∪ 𝑧 ↔ ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧)) |
9 | 6, 8 | imbi12d 345 | . . 3 ⊢ (𝑥 = 𝐽 → (((∪ 𝑥 = ∪ 𝑦 ∧ 𝑦 ≼ ω) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝑥 = ∪ 𝑧) ↔ ((𝑋 = ∪ 𝑦 ∧ 𝑦 ≼ ω) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧))) |
10 | 1, 9 | raleqbidv 3336 | . 2 ⊢ (𝑥 = 𝐽 → (∀𝑦 ∈ 𝒫 𝑥((∪ 𝑥 = ∪ 𝑦 ∧ 𝑦 ≼ ω) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝑥 = ∪ 𝑧) ↔ ∀𝑦 ∈ 𝒫 𝐽((𝑋 = ∪ 𝑦 ∧ 𝑦 ≼ ω) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧))) |
11 | pibp19.19 | . 2 ⊢ 𝐶 = {𝑥 ∈ Top ∣ ∀𝑦 ∈ 𝒫 𝑥((∪ 𝑥 = ∪ 𝑦 ∧ 𝑦 ≼ ω) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝑥 = ∪ 𝑧)} | |
12 | 10, 11 | elrab2 3627 | 1 ⊢ (𝐽 ∈ 𝐶 ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽((𝑋 = ∪ 𝑦 ∧ 𝑦 ≼ ω) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = ∪ 𝑧))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∃wrex 3065 {crab 3068 ∩ cin 3886 𝒫 cpw 4533 ∪ cuni 4839 class class class wbr 5074 ωcom 7712 ≼ cdom 8731 Fincfn 8733 Topctop 22042 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1542 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-in 3894 df-ss 3904 df-pw 4535 df-uni 4840 |
This theorem is referenced by: pibt1 35587 pibt2 35588 |
Copyright terms: Public domain | W3C validator |