Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pibp19 Structured version   Visualization version   GIF version

Theorem pibp19 34723
Description: Property P000019 of pi-base. The class of countably compact topologies. A space 𝑋 is countably compact if every countable open cover of 𝑋 has a finite subcover. (Contributed by ML, 8-Dec-2020.)
Hypotheses
Ref Expression
pibp19.x 𝑋 = 𝐽
pibp19.19 𝐶 = {𝑥 ∈ Top ∣ ∀𝑦 ∈ 𝒫 𝑥(( 𝑥 = 𝑦𝑦 ≼ ω) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) 𝑥 = 𝑧)}
Assertion
Ref Expression
pibp19 (𝐽𝐶 ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽((𝑋 = 𝑦𝑦 ≼ ω) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧)))
Distinct variable groups:   𝑥,𝐽,𝑦   𝑧,𝐽,𝑥   𝑥,𝑋
Allowed substitution hints:   𝐶(𝑥,𝑦,𝑧)   𝑋(𝑦,𝑧)

Proof of Theorem pibp19
StepHypRef Expression
1 pweq 4548 . . 3 (𝑥 = 𝐽 → 𝒫 𝑥 = 𝒫 𝐽)
2 unieq 4842 . . . . . . 7 (𝑥 = 𝐽 𝑥 = 𝐽)
3 pibp19.x . . . . . . 7 𝑋 = 𝐽
42, 3syl6eqr 2873 . . . . . 6 (𝑥 = 𝐽 𝑥 = 𝑋)
54eqeq1d 2822 . . . . 5 (𝑥 = 𝐽 → ( 𝑥 = 𝑦𝑋 = 𝑦))
65anbi1d 631 . . . 4 (𝑥 = 𝐽 → (( 𝑥 = 𝑦𝑦 ≼ ω) ↔ (𝑋 = 𝑦𝑦 ≼ ω)))
74eqeq1d 2822 . . . . 5 (𝑥 = 𝐽 → ( 𝑥 = 𝑧𝑋 = 𝑧))
87rexbidv 3296 . . . 4 (𝑥 = 𝐽 → (∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) 𝑥 = 𝑧 ↔ ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧))
96, 8imbi12d 347 . . 3 (𝑥 = 𝐽 → ((( 𝑥 = 𝑦𝑦 ≼ ω) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) 𝑥 = 𝑧) ↔ ((𝑋 = 𝑦𝑦 ≼ ω) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧)))
101, 9raleqbidv 3400 . 2 (𝑥 = 𝐽 → (∀𝑦 ∈ 𝒫 𝑥(( 𝑥 = 𝑦𝑦 ≼ ω) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) 𝑥 = 𝑧) ↔ ∀𝑦 ∈ 𝒫 𝐽((𝑋 = 𝑦𝑦 ≼ ω) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧)))
11 pibp19.19 . 2 𝐶 = {𝑥 ∈ Top ∣ ∀𝑦 ∈ 𝒫 𝑥(( 𝑥 = 𝑦𝑦 ≼ ω) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) 𝑥 = 𝑧)}
1210, 11elrab2 3679 1 (𝐽𝐶 ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽((𝑋 = 𝑦𝑦 ≼ ω) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1536  wcel 2113  wral 3137  wrex 3138  {crab 3141  cin 3928  𝒫 cpw 4532   cuni 4831   class class class wbr 5059  ωcom 7573  cdom 8500  Fincfn 8502  Topctop 21494
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2792
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-clab 2799  df-cleq 2813  df-clel 2892  df-nfc 2962  df-ral 3142  df-rex 3143  df-rab 3146  df-v 3493  df-in 3936  df-ss 3945  df-pw 4534  df-uni 4832
This theorem is referenced by:  pibt1  34725  pibt2  34726
  Copyright terms: Public domain W3C validator