Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pibp19 Structured version   Visualization version   GIF version

Theorem pibp19 37397
Description: Property P000019 of pi-base. The class of countably compact topologies. A space 𝑋 is countably compact if every countable open cover of 𝑋 has a finite subcover. (Contributed by ML, 8-Dec-2020.)
Hypotheses
Ref Expression
pibp19.x 𝑋 = 𝐽
pibp19.19 𝐶 = {𝑥 ∈ Top ∣ ∀𝑦 ∈ 𝒫 𝑥(( 𝑥 = 𝑦𝑦 ≼ ω) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) 𝑥 = 𝑧)}
Assertion
Ref Expression
pibp19 (𝐽𝐶 ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽((𝑋 = 𝑦𝑦 ≼ ω) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧)))
Distinct variable groups:   𝑥,𝐽,𝑦   𝑧,𝐽,𝑥   𝑥,𝑋
Allowed substitution hints:   𝐶(𝑥,𝑦,𝑧)   𝑋(𝑦,𝑧)

Proof of Theorem pibp19
StepHypRef Expression
1 pweq 4619 . . 3 (𝑥 = 𝐽 → 𝒫 𝑥 = 𝒫 𝐽)
2 unieq 4923 . . . . . . 7 (𝑥 = 𝐽 𝑥 = 𝐽)
3 pibp19.x . . . . . . 7 𝑋 = 𝐽
42, 3eqtr4di 2793 . . . . . 6 (𝑥 = 𝐽 𝑥 = 𝑋)
54eqeq1d 2737 . . . . 5 (𝑥 = 𝐽 → ( 𝑥 = 𝑦𝑋 = 𝑦))
65anbi1d 631 . . . 4 (𝑥 = 𝐽 → (( 𝑥 = 𝑦𝑦 ≼ ω) ↔ (𝑋 = 𝑦𝑦 ≼ ω)))
74eqeq1d 2737 . . . . 5 (𝑥 = 𝐽 → ( 𝑥 = 𝑧𝑋 = 𝑧))
87rexbidv 3177 . . . 4 (𝑥 = 𝐽 → (∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) 𝑥 = 𝑧 ↔ ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧))
96, 8imbi12d 344 . . 3 (𝑥 = 𝐽 → ((( 𝑥 = 𝑦𝑦 ≼ ω) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) 𝑥 = 𝑧) ↔ ((𝑋 = 𝑦𝑦 ≼ ω) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧)))
101, 9raleqbidv 3344 . 2 (𝑥 = 𝐽 → (∀𝑦 ∈ 𝒫 𝑥(( 𝑥 = 𝑦𝑦 ≼ ω) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) 𝑥 = 𝑧) ↔ ∀𝑦 ∈ 𝒫 𝐽((𝑋 = 𝑦𝑦 ≼ ω) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧)))
11 pibp19.19 . 2 𝐶 = {𝑥 ∈ Top ∣ ∀𝑦 ∈ 𝒫 𝑥(( 𝑥 = 𝑦𝑦 ≼ ω) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) 𝑥 = 𝑧)}
1210, 11elrab2 3698 1 (𝐽𝐶 ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽((𝑋 = 𝑦𝑦 ≼ ω) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)𝑋 = 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2106  wral 3059  wrex 3068  {crab 3433  cin 3962  𝒫 cpw 4605   cuni 4912   class class class wbr 5148  ωcom 7887  cdom 8982  Fincfn 8984  Topctop 22915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-ss 3980  df-pw 4607  df-uni 4913
This theorem is referenced by:  pibt1  37399  pibt2  37400
  Copyright terms: Public domain W3C validator