| Mathbox for ML |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pibt1 | Structured version Visualization version GIF version | ||
| Description: Theorem T000001 of pi-base. A compact topology is also countably compact. See pibp16 37355 and pibp19 37356 for the definitions of the relevant properties. (Contributed by ML, 8-Dec-2020.) |
| Ref | Expression |
|---|---|
| pibt1.19 | ⊢ 𝐶 = {𝑥 ∈ Top ∣ ∀𝑦 ∈ 𝒫 𝑥((∪ 𝑥 = ∪ 𝑦 ∧ 𝑦 ≼ ω) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝑥 = ∪ 𝑧)} |
| Ref | Expression |
|---|---|
| pibt1 | ⊢ (𝐽 ∈ Comp → 𝐽 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.41 492 | . . . 4 ⊢ ((∪ 𝐽 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪ 𝑧) → ((∪ 𝐽 = ∪ 𝑦 ∧ 𝑦 ≼ ω) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪ 𝑧)) | |
| 2 | 1 | ralimi 3072 | . . 3 ⊢ (∀𝑦 ∈ 𝒫 𝐽(∪ 𝐽 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪ 𝑧) → ∀𝑦 ∈ 𝒫 𝐽((∪ 𝐽 = ∪ 𝑦 ∧ 𝑦 ≼ ω) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪ 𝑧)) |
| 3 | 2 | anim2i 617 | . 2 ⊢ ((𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽(∪ 𝐽 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪ 𝑧)) → (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽((∪ 𝐽 = ∪ 𝑦 ∧ 𝑦 ≼ ω) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪ 𝑧))) |
| 4 | eqid 2734 | . . 3 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 5 | 4 | pibp16 37355 | . 2 ⊢ (𝐽 ∈ Comp ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽(∪ 𝐽 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪ 𝑧))) |
| 6 | pibt1.19 | . . 3 ⊢ 𝐶 = {𝑥 ∈ Top ∣ ∀𝑦 ∈ 𝒫 𝑥((∪ 𝑥 = ∪ 𝑦 ∧ 𝑦 ≼ ω) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝑥 = ∪ 𝑧)} | |
| 7 | 4, 6 | pibp19 37356 | . 2 ⊢ (𝐽 ∈ 𝐶 ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽((∪ 𝐽 = ∪ 𝑦 ∧ 𝑦 ≼ ω) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪ 𝑧))) |
| 8 | 3, 5, 7 | 3imtr4i 292 | 1 ⊢ (𝐽 ∈ Comp → 𝐽 ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ∀wral 3050 ∃wrex 3059 {crab 3420 ∩ cin 3932 𝒫 cpw 4582 ∪ cuni 4889 class class class wbr 5125 ωcom 7870 ≼ cdom 8966 Fincfn 8968 Topctop 22866 Compccmp 23359 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-ral 3051 df-rex 3060 df-rab 3421 df-v 3466 df-ss 3950 df-pw 4584 df-uni 4890 df-cmp 23360 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |