![]() |
Mathbox for ML |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > pibt1 | Structured version Visualization version GIF version |
Description: Theorem T000001 of pi-base. A compact topology is also countably compact. See pibp16 36294 and pibp19 36295 for the definitions of the relevant properties. (Contributed by ML, 8-Dec-2020.) |
Ref | Expression |
---|---|
pibt1.19 | ⊢ 𝐶 = {𝑥 ∈ Top ∣ ∀𝑦 ∈ 𝒫 𝑥((∪ 𝑥 = ∪ 𝑦 ∧ 𝑦 ≼ ω) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝑥 = ∪ 𝑧)} |
Ref | Expression |
---|---|
pibt1 | ⊢ (𝐽 ∈ Comp → 𝐽 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.41 494 | . . . 4 ⊢ ((∪ 𝐽 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪ 𝑧) → ((∪ 𝐽 = ∪ 𝑦 ∧ 𝑦 ≼ ω) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪ 𝑧)) | |
2 | 1 | ralimi 3084 | . . 3 ⊢ (∀𝑦 ∈ 𝒫 𝐽(∪ 𝐽 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪ 𝑧) → ∀𝑦 ∈ 𝒫 𝐽((∪ 𝐽 = ∪ 𝑦 ∧ 𝑦 ≼ ω) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪ 𝑧)) |
3 | 2 | anim2i 618 | . 2 ⊢ ((𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽(∪ 𝐽 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪ 𝑧)) → (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽((∪ 𝐽 = ∪ 𝑦 ∧ 𝑦 ≼ ω) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪ 𝑧))) |
4 | eqid 2733 | . . 3 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
5 | 4 | pibp16 36294 | . 2 ⊢ (𝐽 ∈ Comp ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽(∪ 𝐽 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪ 𝑧))) |
6 | pibt1.19 | . . 3 ⊢ 𝐶 = {𝑥 ∈ Top ∣ ∀𝑦 ∈ 𝒫 𝑥((∪ 𝑥 = ∪ 𝑦 ∧ 𝑦 ≼ ω) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝑥 = ∪ 𝑧)} | |
7 | 4, 6 | pibp19 36295 | . 2 ⊢ (𝐽 ∈ 𝐶 ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽((∪ 𝐽 = ∪ 𝑦 ∧ 𝑦 ≼ ω) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪ 𝑧))) |
8 | 3, 5, 7 | 3imtr4i 292 | 1 ⊢ (𝐽 ∈ Comp → 𝐽 ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∀wral 3062 ∃wrex 3071 {crab 3433 ∩ cin 3948 𝒫 cpw 4603 ∪ cuni 4909 class class class wbr 5149 ωcom 7855 ≼ cdom 8937 Fincfn 8939 Topctop 22395 Compccmp 22890 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-tru 1545 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-in 3956 df-ss 3966 df-pw 4605 df-uni 4910 df-cmp 22891 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |