Users' Mathboxes Mathbox for ML < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pibt1 Structured version   Visualization version   GIF version

Theorem pibt1 37399
Description: Theorem T000001 of pi-base. A compact topology is also countably compact. See pibp16 37396 and pibp19 37397 for the definitions of the relevant properties. (Contributed by ML, 8-Dec-2020.)
Hypothesis
Ref Expression
pibt1.19 𝐶 = {𝑥 ∈ Top ∣ ∀𝑦 ∈ 𝒫 𝑥(( 𝑥 = 𝑦𝑦 ≼ ω) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) 𝑥 = 𝑧)}
Assertion
Ref Expression
pibt1 (𝐽 ∈ Comp → 𝐽𝐶)
Distinct variable group:   𝑥,𝐽,𝑦,𝑧
Allowed substitution hints:   𝐶(𝑥,𝑦,𝑧)

Proof of Theorem pibt1
StepHypRef Expression
1 pm3.41 492 . . . 4 (( 𝐽 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) 𝐽 = 𝑧) → (( 𝐽 = 𝑦𝑦 ≼ ω) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) 𝐽 = 𝑧))
21ralimi 3081 . . 3 (∀𝑦 ∈ 𝒫 𝐽( 𝐽 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) 𝐽 = 𝑧) → ∀𝑦 ∈ 𝒫 𝐽(( 𝐽 = 𝑦𝑦 ≼ ω) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) 𝐽 = 𝑧))
32anim2i 617 . 2 ((𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽( 𝐽 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) 𝐽 = 𝑧)) → (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽(( 𝐽 = 𝑦𝑦 ≼ ω) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) 𝐽 = 𝑧)))
4 eqid 2735 . . 3 𝐽 = 𝐽
54pibp16 37396 . 2 (𝐽 ∈ Comp ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽( 𝐽 = 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) 𝐽 = 𝑧)))
6 pibt1.19 . . 3 𝐶 = {𝑥 ∈ Top ∣ ∀𝑦 ∈ 𝒫 𝑥(( 𝑥 = 𝑦𝑦 ≼ ω) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) 𝑥 = 𝑧)}
74, 6pibp19 37397 . 2 (𝐽𝐶 ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽(( 𝐽 = 𝑦𝑦 ≼ ω) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin) 𝐽 = 𝑧)))
83, 5, 73imtr4i 292 1 (𝐽 ∈ Comp → 𝐽𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wral 3059  wrex 3068  {crab 3433  cin 3962  𝒫 cpw 4605   cuni 4912   class class class wbr 5148  ωcom 7887  cdom 8982  Fincfn 8984  Topctop 22915  Compccmp 23410
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-ss 3980  df-pw 4607  df-uni 4913  df-cmp 23411
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator