| Mathbox for ML |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > pibt1 | Structured version Visualization version GIF version | ||
| Description: Theorem T000001 of pi-base. A compact topology is also countably compact. See pibp16 37436 and pibp19 37437 for the definitions of the relevant properties. (Contributed by ML, 8-Dec-2020.) |
| Ref | Expression |
|---|---|
| pibt1.19 | ⊢ 𝐶 = {𝑥 ∈ Top ∣ ∀𝑦 ∈ 𝒫 𝑥((∪ 𝑥 = ∪ 𝑦 ∧ 𝑦 ≼ ω) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝑥 = ∪ 𝑧)} |
| Ref | Expression |
|---|---|
| pibt1 | ⊢ (𝐽 ∈ Comp → 𝐽 ∈ 𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm3.41 492 | . . . 4 ⊢ ((∪ 𝐽 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪ 𝑧) → ((∪ 𝐽 = ∪ 𝑦 ∧ 𝑦 ≼ ω) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪ 𝑧)) | |
| 2 | 1 | ralimi 3074 | . . 3 ⊢ (∀𝑦 ∈ 𝒫 𝐽(∪ 𝐽 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪ 𝑧) → ∀𝑦 ∈ 𝒫 𝐽((∪ 𝐽 = ∪ 𝑦 ∧ 𝑦 ≼ ω) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪ 𝑧)) |
| 3 | 2 | anim2i 617 | . 2 ⊢ ((𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽(∪ 𝐽 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪ 𝑧)) → (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽((∪ 𝐽 = ∪ 𝑦 ∧ 𝑦 ≼ ω) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪ 𝑧))) |
| 4 | eqid 2736 | . . 3 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 5 | 4 | pibp16 37436 | . 2 ⊢ (𝐽 ∈ Comp ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽(∪ 𝐽 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪ 𝑧))) |
| 6 | pibt1.19 | . . 3 ⊢ 𝐶 = {𝑥 ∈ Top ∣ ∀𝑦 ∈ 𝒫 𝑥((∪ 𝑥 = ∪ 𝑦 ∧ 𝑦 ≼ ω) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝑥 = ∪ 𝑧)} | |
| 7 | 4, 6 | pibp19 37437 | . 2 ⊢ (𝐽 ∈ 𝐶 ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽((∪ 𝐽 = ∪ 𝑦 ∧ 𝑦 ≼ ω) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪ 𝑧))) |
| 8 | 3, 5, 7 | 3imtr4i 292 | 1 ⊢ (𝐽 ∈ Comp → 𝐽 ∈ 𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3052 ∃wrex 3061 {crab 3420 ∩ cin 3930 𝒫 cpw 4580 ∪ cuni 4888 class class class wbr 5124 ωcom 7866 ≼ cdom 8962 Fincfn 8964 Topctop 22836 Compccmp 23329 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-ss 3948 df-pw 4582 df-uni 4889 df-cmp 23330 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |