Mathbox for ML |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pibt1 | Structured version Visualization version GIF version |
Description: Theorem T000001 of pi-base. A compact topology is also countably compact. See pibp16 35682 and pibp19 35683 for the definitions of the relevant properties. (Contributed by ML, 8-Dec-2020.) |
Ref | Expression |
---|---|
pibt1.19 | ⊢ 𝐶 = {𝑥 ∈ Top ∣ ∀𝑦 ∈ 𝒫 𝑥((∪ 𝑥 = ∪ 𝑦 ∧ 𝑦 ≼ ω) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝑥 = ∪ 𝑧)} |
Ref | Expression |
---|---|
pibt1 | ⊢ (𝐽 ∈ Comp → 𝐽 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.41 493 | . . . 4 ⊢ ((∪ 𝐽 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪ 𝑧) → ((∪ 𝐽 = ∪ 𝑦 ∧ 𝑦 ≼ ω) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪ 𝑧)) | |
2 | 1 | ralimi 3082 | . . 3 ⊢ (∀𝑦 ∈ 𝒫 𝐽(∪ 𝐽 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪ 𝑧) → ∀𝑦 ∈ 𝒫 𝐽((∪ 𝐽 = ∪ 𝑦 ∧ 𝑦 ≼ ω) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪ 𝑧)) |
3 | 2 | anim2i 617 | . 2 ⊢ ((𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽(∪ 𝐽 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪ 𝑧)) → (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽((∪ 𝐽 = ∪ 𝑦 ∧ 𝑦 ≼ ω) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪ 𝑧))) |
4 | eqid 2736 | . . 3 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
5 | 4 | pibp16 35682 | . 2 ⊢ (𝐽 ∈ Comp ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽(∪ 𝐽 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪ 𝑧))) |
6 | pibt1.19 | . . 3 ⊢ 𝐶 = {𝑥 ∈ Top ∣ ∀𝑦 ∈ 𝒫 𝑥((∪ 𝑥 = ∪ 𝑦 ∧ 𝑦 ≼ ω) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝑥 = ∪ 𝑧)} | |
7 | 4, 6 | pibp19 35683 | . 2 ⊢ (𝐽 ∈ 𝐶 ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽((∪ 𝐽 = ∪ 𝑦 ∧ 𝑦 ≼ ω) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪ 𝑧))) |
8 | 3, 5, 7 | 3imtr4i 291 | 1 ⊢ (𝐽 ∈ Comp → 𝐽 ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ∀wral 3061 ∃wrex 3070 {crab 3403 ∩ cin 3896 𝒫 cpw 4546 ∪ cuni 4851 class class class wbr 5089 ωcom 7772 ≼ cdom 8794 Fincfn 8796 Topctop 22140 Compccmp 22635 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2707 |
This theorem depends on definitions: df-bi 206 df-an 397 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2714 df-cleq 2728 df-clel 2814 df-ral 3062 df-rex 3071 df-rab 3404 df-v 3443 df-in 3904 df-ss 3914 df-pw 4548 df-uni 4852 df-cmp 22636 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |