Mathbox for ML |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > pibt1 | Structured version Visualization version GIF version |
Description: Theorem T000001 of pi-base. A compact topology is also countably compact. See pibp16 35563 and pibp19 35564 for the definitions of the relevant properties. (Contributed by ML, 8-Dec-2020.) |
Ref | Expression |
---|---|
pibt1.19 | ⊢ 𝐶 = {𝑥 ∈ Top ∣ ∀𝑦 ∈ 𝒫 𝑥((∪ 𝑥 = ∪ 𝑦 ∧ 𝑦 ≼ ω) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝑥 = ∪ 𝑧)} |
Ref | Expression |
---|---|
pibt1 | ⊢ (𝐽 ∈ Comp → 𝐽 ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm3.41 492 | . . . 4 ⊢ ((∪ 𝐽 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪ 𝑧) → ((∪ 𝐽 = ∪ 𝑦 ∧ 𝑦 ≼ ω) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪ 𝑧)) | |
2 | 1 | ralimi 3088 | . . 3 ⊢ (∀𝑦 ∈ 𝒫 𝐽(∪ 𝐽 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪ 𝑧) → ∀𝑦 ∈ 𝒫 𝐽((∪ 𝐽 = ∪ 𝑦 ∧ 𝑦 ≼ ω) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪ 𝑧)) |
3 | 2 | anim2i 616 | . 2 ⊢ ((𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽(∪ 𝐽 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪ 𝑧)) → (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽((∪ 𝐽 = ∪ 𝑦 ∧ 𝑦 ≼ ω) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪ 𝑧))) |
4 | eqid 2739 | . . 3 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
5 | 4 | pibp16 35563 | . 2 ⊢ (𝐽 ∈ Comp ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽(∪ 𝐽 = ∪ 𝑦 → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪ 𝑧))) |
6 | pibt1.19 | . . 3 ⊢ 𝐶 = {𝑥 ∈ Top ∣ ∀𝑦 ∈ 𝒫 𝑥((∪ 𝑥 = ∪ 𝑦 ∧ 𝑦 ≼ ω) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝑥 = ∪ 𝑧)} | |
7 | 4, 6 | pibp19 35564 | . 2 ⊢ (𝐽 ∈ 𝐶 ↔ (𝐽 ∈ Top ∧ ∀𝑦 ∈ 𝒫 𝐽((∪ 𝐽 = ∪ 𝑦 ∧ 𝑦 ≼ ω) → ∃𝑧 ∈ (𝒫 𝑦 ∩ Fin)∪ 𝐽 = ∪ 𝑧))) |
8 | 3, 5, 7 | 3imtr4i 291 | 1 ⊢ (𝐽 ∈ Comp → 𝐽 ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 ∀wral 3065 ∃wrex 3066 {crab 3069 ∩ cin 3890 𝒫 cpw 4538 ∪ cuni 4844 class class class wbr 5078 ωcom 7700 ≼ cdom 8705 Fincfn 8707 Topctop 22023 Compccmp 22518 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1544 df-ex 1786 df-sb 2071 df-clab 2717 df-cleq 2731 df-clel 2817 df-ral 3070 df-rex 3071 df-rab 3074 df-v 3432 df-in 3898 df-ss 3908 df-pw 4540 df-uni 4845 df-cmp 22519 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |